Trigonometriset funk/ot
|
|
- Annika Ahola
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Trigonometriset funk/ot Suorakulmainen kolmio sin(θ) = a c cos(θ) = b c hypotenuusa c tan(θ) = sin(θ) cos(θ) = a b kulma θ b katee8 a katee8 a = c sin(θ) b = c cos(θ) cot(θ) = cos(θ) sin(θ) = b a
2 Trigonometriset funk/ot Suorakulmainen kolmio hypotenuusa c kulma θ b katee8 Pythagoraan lause: a 2 + b 2 = c 2 (c sin(θ)) 2 + (c cos(θ)) 2 = c 2 c 2 sin 2 (θ) + c 2 cos 2 (θ) = c 2 sin 2 (θ) + cos 2 (θ) = 1 a katee8 Huomaa merkintä: sin 2 (θ) = (sin(θ)) 2
3 Miten sin, cos, tan määritellään muilla kulmilla? Yksikköympyrä (ympyrä jonka säde on 1) (0,1) (cos θ, sin θ) (- 1,0) θ cos θ sin θ (1,0) (0,- 1)
4 Kehän pituus on 2πR Yksikköympyrä, R = 1 Kehän pituus 2π Radiaanit ja asteet Kulman suuruus radiaaneina vastaa kulman sisään jäävän yksikköympyrän kaaren pituuqa Koko ympyrä = 360 = 2π radiaania
5 Nega/iviset kulmat cos(- θ) = cos(θ) sin(- θ) = - sin(θ) (0,1) (cos θ, sin θ) (- 1,0) θ - θ sin θ (1,0) (0,- 1) (cos θ, - sin θ)
6 Mitä kaikkea yksikköympyrästä saa 1. Erikoiskulmien arvot selville?
7 0
8 Mitä kaikkea yksikköympyrästä saa 1. Erikoiskulmien arvot cos(0) = 1 sin(0) = 0 selville?
9 π/2
10 Mitä kaikkea yksikköympyrästä saa 1. Erikoiskulmien arvot cos(0) = 1 cos(π/2) = 0 sin(0) = 0 sin(π/2) = 1 selville?
11 π
12 Mitä kaikkea yksikköympyrästä saa 1. Erikoiskulmien arvot selville? cos(0) = 1 cos(π/2) = 0 cos(π)=- 1 sin(0) = 0 sin(π/2) = 1 sin(π)=0
13 3π/2
14 Mitä kaikkea yksikköympyrästä saa 1. Erikoiskulmien arvot selville? cos(0) = 1 cos(π/2) = 0 cos(π)=- 1 sin(0) = 0 sin(π/2) = 1 sin(π)=0 cos(3π/2) = 0 sin(3π/2) = - 1
15 2π
16 Mitä kaikkea yksikköympyrästä saa 1. Erikoiskulmien arvot selville? cos(0) = 1 cos(π/2) = 0 cos(π)=- 1 sin(0) = 0 sin(π/2) = 1 sin(π)=0 cos(3π/2) = 0 cos(2π) = 1 sin(3π/2) = - 1 sin(2π) = 0
17 Mitä kaikkea yksikköympyrästä saa 1. Erikoiskulmien arvot selville? cos(0) = 1 cos(π/2) = 0 cos(π)=- 1 sin(0) = 0 sin(π/2) = 1 sin(π)=0 cos(3π/2) = 0 cos(2π) = 1 sin(3π/2) = - 1 sin(2π) = 0 2. Trigonometristen funk/oiden jaksollisuus
18 2π
19 Mitä kaikkea yksikköympyrästä saa selville? 1. Erikoiskulmien arvot cos(0) = 1 cos(π/2) = 0 cos(π)=- 1 sin(0) = 0 sin(π/2) = 1 sin(π)=0 cos(3π/2) = 0 cos(2π) = 1 sin(3π/2) = - 1 sin(2π) = 0 2. Trigonometristen funk/oiden jaksollisuus Sinin ja kosinin arvot toistuvat 2π välein. Sanotaan eqä sinin ja kosinin jakso on 2π. sin(x+2π) = sin(x) cos(x+2π) = cos(x) yleisemmin: sin(x ± N 2π) = sin(x) cos(x ± N 2π) = cos(x)
20 Mitä kaikkea yksikköympyrästä saa selville? 3. π radiaanin (180 asteen) siirron vaikutus
21 θ
22 θ + π θ
23 θ θ + 2π
24 Mitä kaikkea yksikköympyrästä saa selville? 3. π radiaanin (180 asteen) siirron vaikutus cos(x + π) = - cos x sin(x + π) = - sin x 4. Tangen/n jaksollisuus Tangen/n arvot toistuu π:n välein eli tangen/n jakso on π. tan(x+π) = sin(x + π)/cos(x + π) = - sin x /- cos x = sin x/cos x = tan x huom! tan(x) määri0elemätön kun cos(x) = 0, eli x = π/2 + nπ 5. Trigonometristen funk/oiden etumerkit Välillä [0, π/2]? Välillä [π/2, π]? Välillä [π, 3π/2]? Välillä [3π/2, 2π]?
25 Mitkä funk/ot (sin, cos, tan) ovat posi/ivisia? [0, π/2] kaikki
26 Mitkä funk/ot (sin, cos, tan) ovat posi/ivisia? [π/2, π] sin
27 Mitkä funk/ot (sin, cos, tan) ovat posi/ivisia? tan [π, 3π/2]
28 Mitkä funk/ot (sin, cos, tan) ovat posi/ivisia? cos [3π/2, 2π]
29 Trigonometriset käänteisfunk/ot Sinin käänteisfunk/o on arkus- sini, merkitään arcsin, laskimissa usein sin - 1 (x) Määritelmä: jos sin(x) = a, x = arcsin(a) Vastaavas/ arkus- kosini, arkus- tange8 Jos cos(x) = a, x =arccos(a) Jos tan(x) = a, x = arctan(a) Geometrinen tulkinta suorakulmaisesta kolmiosta tai yksikköympyrästä: sin, cos, tan - funk/ot oqavat kulman ja antavat kolmion tahkojen suhteita tai yksikköympyrän koordinaaqeja, arkus- funk/ot taas oqavat tahkojen suhteita tai yks. ympyrän koordinaaqeja ja antavat kulman.
30 Trigonometriset käänteisfunk/ot Arkusfunk/ot voi a) päätellä (ainakin helpoille kulmille kuten π/2, π jne) b) löytää taulukkokirjasta c) laskea laskimella (opetelkaa tämä, ja opetelkaa myös vaihtamaan asteiden & radiaanien välillä!) Arkusfunk/ot yhdessä yksikköympyrän kansssa hyödyllisiä trigonometristen yhtälöiden ratkaisemisessa. Esim: sin x = 0.5, mikä on x? Vastaus: x = arcsin (0.5) = rad = π/6 rad = 30 asteqa. Mu5a: myös π - arcsin (0.5) = rad eli 150 asteqa toteuqaa yhtälön! (tarkemmin o0aen x = π/6 + N 2π rad tai 5π/6 + N 2π rad, eli 30 + N 360 tai N 360 aste0a, missä N on mikä tahansa kokonaisluku)
31 Sin(x) = 0.5 Sin(x) = 0.5
32 Muista jaksollisuus trigonometrisia yhtälöitä ratkaistessa! Sini ja kosini on määritelty kaikilla kulman x arvoilla 2π sin(x)
33 Muista jaksollisuus trigonometrisia yhtälöitä ratkaistessa! Sini ja kosini on määritelty kaikilla kulman x arvoilla 2π cos(x)
34 Muista jaksollisuus trigonometrisia yhtälöitä ratkaistessa! Tangen8 määritelty kun cos(x) 0 π tan(x)
35 Vielä trigonometrisistä yhtälöistä Yleisen ratkaisun etsiminen trigonometrisissä yhtälöissä edellyqää sekä jaksollisuuden eqä ylimääräisten ratkaisujen huomioimista. Jos sin(x)=y, niin myös sin(π- x) = y Jos cos(x) = y, niin myös cos(- x) = cos (2π- x) = y Tämä jäi viime vuonna sin(x) = 0.5 esimerkistä luennoitsijaltakin huomaama0a, kiitos Joonas Mäkiselle virheen löytämisestä!
36 Muista jaksollisuus trigonometrisia yhtälöitä ratkaistessa! Usein fysikaalisia reunaehtoja voidaan käyqää rajoiqamaan kulma jollekin välille, esim [0,2π], tai ollaan kiinnostuneita pienimmästä yhtälön toteuqavasta kulmasta. Jollei näin ole, arkusfunk/ot tuoqavat ääreqömän määrän mahdollisia ratkaisuja: sin (x) = a x = arcsin(a) ± N 2π tai x = π arcsin(a) ± N 2π cos (x) = a x = arccos(a) ± N 2π tai x = arccos(a) ± N 2π tan (x) = a x = arctan(a) ± N π (N Z) (N Z) (N Z) (N Z) (N Z)
37 Trigonometrisia kaavoja Näitä löytyy taulukkokirjoista kymmeniä ellei satoja... Joidenkin johto varsin helppo läh/en Pythagoraan lauseesta tai yksikköympyrästä, usein myös Eulerin kaava: e iθ = cos(θ) + isin(θ) EriQäin hyödyllinen ja "voimakas" kaava joka kytkee yhteen eksponen8funk/ot ja trigonometrian. Eulerin kaavalla voi helpos/ johtaa esim. tupla- ja puolikulmien lausekkeet. Tästä lisää kompleksilukujen yhteydessä. Kaavoja tarvitaan trigonometristen yhtälöjen ratkaisemisessa ja etenkin trigonometristen funk/oiden differen/aalilaskennan yhteydessä. Ei tarvitse opetella kaavojen johtoja tai muistaa niitä ulkoa, muqa kaavojen käyqö on osaqava!
38 Etenkin trigonometriassa (ja myös fysiikassa) esiintyy paljon kreikkalaisia kirjaimia. Näitä ei toki tarvitse osata tai opetella, muqa ohessa lista joqa pysyqe kärryillä mistä koukerosta milloinkin puhutaan!
39 Trigonometrisia kaavoja: summa & erotus ± = ± cos( a ± b) = cos a cosb sin a sin b tan a ± tan b tan( a ± b) = 1 tan a tan b sin ( a b ) sin a cos b cos a sin b ( a+ b) ( a b) sin a sin b = cos sin ( a+ b) ( a b) cos a + cosb = cos cos ( a+ b) ( a b) cosa cosb = sin sin 2 2 2
40 Trigonometrisia kaavoja: tupla- ja puolikulmat Double angle formulas: 2tan θ tan 2θ = 2 1 tan θ sin2θ = 2sinθcosθ 2 cos2θ = 2cos θ cos 2θ = 1 2sin θ cos2θ = cos θ sin θ Pythagorean Identities: sin 2 θ + cos 2 θ = 1 tan 2 2 θ + 1 = sec θ cot θ + 1 = csc Half angle formulas: sin θ = ( cos ) 2 1 2θ cos θ = ( cos ) θ θ 1 cosθ θ 1+ cosθ sin = ± cos = ± θ 1 cosθ sin θ 1 cosθ tan = ± = = 2 1+ cosθ 1 + cosθ sin θ θ
41 Trigonometristen funk/oiden arvoja TRIGONOMETRIC VALUES FOR COMMON ANGLES Degrees Radians sin θ cos θ tan θ cot θ sec θ csc θ Undefined 1 Undefined 30 π/6 1/2 3 / 2 3 / / π/4 2 / 2 2 / π/3 3 / 2 1/2 3 3 / / 3 90 π/2 1 0 Undefined 0 Undefined π/3 3 / 2-1/ / / π/4 2 / 2-2 / π/6 1/2-3 / 2-3 / / π Undefined -1 Undefined 210 7π/6-1/2-3 / 2 3 / / π/4-2 / 2-2 / π/3-3 / 2-1/2 3 3 / / π/2-1 0 Undefined 0 Undefined π/3-3 / 2 1/ / π/4-2 / 2 2 / π/6-1/2 3 / 2-3 / / π Undefined 1 Undefined
42 Polaariset koordinaa/t (napakoordinaa/t) Kuvaavat tasossa olevia pisteitä eli vektoreita y x p(x,y) y x
43 Polaariset koordinaa/t (napakoordinaa/t) Kuvaavat tasossa olevia pisteitä eli vektoreita y x p(r, θ) R θ y x
44 Polaariset koordinaa/t (napakoordinaa/t) Napakoordinaateilla yhteys kompleksilukuihin (näistä myöhemmin) y x p(r,θ) KolmiuloQeisessa avaruudessa vastaava asia ovat pallokoordinaa/t. Muunnokset karteesisista (x,y) polaarisiin koordinaaqeihin: R θ y x cos(θ) = x/r è x = Rcos(θ) sin(θ) = y/r è y = Rsin(θ)
45 Polaariset koordinaa/t (napakoordinaa/t) Muunnos toisinpäin: x 2 + y 2 = R 2 cos 2 (ϑ) + R 2 sin 2 (ϑ) =R 2 (cos 2 (ϑ) + sin 2 (ϑ)) = R 2 (1) =R 2 è R = (x 2 +y 2 ) tan(ϑ)=y/x è ϑ = arctan(y/x) y R θ x p(r,θ) Huom: tangen/n jaksollisuuden (π) takia arctan(y/x) ei määriqele kulmaa ϑ täydellises/ arkustangen/n arvoon saaqaa joutua lisäämään π, kuten esimerkeistä nähdään. y x
46 Esimerkki Esim: löydä pisteen (R,ϑ) = (2, π/6) karteesiset koordinaa/t. Ratkaisu: x = Rcos(ϑ) = 2cos(π/6) = 3 y = Rsin(ϑ) = 2sin(π/6) = 1 2 π/6
47 Kuvasta nähdään eqä tämä ei voi olla oikea kulma, Koska piste on kvadran/ssa ( ). Oikea kulma on π = rad = = Esimerkki Esim: löydä pisteen (x,y) = (- 1,2) napakoordinaa8esitys. Ratkaisu: R = (x 2 +y 2 ) = ((- 1) ) = 5 arctan(y/x) = arctan (2/- 1) = arctan(- 2) rad
48 Trigonometriset funk/ot kemiassa Ehkä vähän harvinaisempia kuin logaritmi- ja eksponen8funk/ot, muqa kuitenkin hyödyllisiä Tarvitaan minkä tahansa jaksollisen (säännöllises/ toistuvan) ilmiön kuvaamiseen Oskilloivat reak/ot Kaikenlaiset värähtelyt ja aaltoliikkeet Tarvitaan kuvaamaan sähkömagnee8sen säteilyn kulkua ja vuorovaikutusta Lähes kaikki eri spektroskopian muodot... Kvan8kemiassa he/ alusta alkaen, esim. vetyatomin aaltofunk/ossa on myös trigonometrisia funk/oita
49 Polaaristen koordinaa8en hyöty Joitain funk/oita on huomaqavas/ helpompi esiqää /etyssä koordinaa/stossa Esim 2- säteinen ympyrä Napakoordinaateissa: r = 2 Karteesisissa: y = ± (2- x 2 )
50 Esimerkki: klassinen harmoninen värähtelijä toteuqaa liikeyhtälön F = ma kx = m d2 x dt 2 jonka ratkaisu on x(t) = Acos(ωt) missä A = maksimipoikkeama tasapainoasemasta ω = (k/m) = kulmataajuus x(t) on jaksollinen funk/o ja sen jakso on τ = 2π/ω, sillä x(t +τ) = x(t + 2π ω ) = Acos(ω(t + 2π )) = Acos(ωt + 2π) ω = Acos(ωt) = x(t)
51 Esimerkki: sähkömagnee8nen säteily on sähkö- ja magnee8kentän poikiqaista aaltoliikeqä, jota voidaan kuvata sini- tai kosinifunk/oilla. Esim. sähkökentän suuruuqa paikan funk/ona kuvaa aalto ψ 1 (x) = E cos( 2πx λ ) Tehtävä: tämän aallon edellä kulkee toinen aalto ψ 2 (x) = E cos( 2πx λ + ϕ) Tutki vahvistavatko vai kumoavatko aallot toisensa, kun a)φ = 0 b)φ = π
52 Ratkaisu a)φ = 0 ψ 1 (x) +ψ 2 (x) = E cos( 2πx λ ) + E cos(2πx λ + 0) = 2E cos( 2πx λ ) b) φ = π aallot vahvistavat toisiaan ψ 1 (x) +ψ 2 (x) = E cos( 2πx λ ) + E cos(2πx λ + π) = E cos( 2πx λ ) E cos(2πx λ ) = 0 aallot kumoavat toisensa
53 Esimerkki: Vetyatomin (protoni + elektroni) aaltofunk/o: ψ n,l,m (r,θ,ϕ) = N n,l,m e r na 0 ( 2r )L 2l+1 n l 1 ( 2r )Y m l (θ,ϕ) na 0 na 0 missä n, m, l ovat kvan8lukuja, N on normitusvakio, a 0 on Bohrin säde, L on Laguerren polynomi ja Y on palloharmoninen funk/o:
54 palloharmonisia funk/oita
Trigonometriset funk/ot
Trigonometriset funk/ot Suorakulmainen kolmio sin(θ) = a c cos(θ) = b c hypotenuusa c tan(θ) = sin(θ) cos(θ) = a b kulma θ b katee8 a katee8 a = c sin(θ) b = c cos(θ) cot(θ) = cos(θ) sin(θ) = b a Trigonometriset
Trigonometriset funk4ot
Trigonometriset funk4ot Suorakulmainen kolmio sin() = a c cos() = b c hypotenuusa c tan() = sin() cos() = a b kulma b katee= a katee= a = c sin() b = c cos() cot() = cos() sin() = b a Trigonometriset funk4ot
Äärettömät raja-arvot
Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen
Radiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa.
Radiaanit Kulmia mitataan matematiikassa paitsi asteissa, myös radiaaneissa. Radiaanien taustaideana on, että kun kulmaa α asetetaan yksikköympyrään, kulmien kylkien välille muodostuu ympyrän kehälle kaari
Trigonometriset funktiot
Peruskäsitteet Y-peilaus X-peilaus Pistepeilaus Muistikulmat Muistikolmio 1 Muistikolmio 2 Jaksollisuus Esimerkki 5.A Esimerkki 5.B1 Esimerkki 5.B2 Esimerkki 5C.1 Esimerkki 5C.2 (1/2) (2/2) Muunnelmia
Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.
6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon
6. Kompleksiluvut. Kompleksilukuja esiintyy usein polynomiyhtälöiden ratkaisuina. Esim:
6. Kompleksiluvut Yhtälöllä x = 1 ei ole reaalilukuratkaisua: tarvitaan uusia lukuja. Kompleksiluku on kahden reaaliluvun järjesteby "pari" (x,y): Z = x +iy Missä i on imaginääriyksikkö, jolla on ominaisuus
Matemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia
Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:
4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan
TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT
TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT ARI LEHTONEN. Trigonometriset funktiot.. Peruskaavat. tan x := sin x cos x, cos x cot x := sin x Anglosaksisissa maissa käytössä ovat myös funktiot sekantti sec
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Tilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy
z 2 y 2 x 2 z y x Tilavuusintegroin. f(x,y,z)dxdydz z 2 y 2 x 2 = f(x,y,z)dx dy dz z y x Tyypillises. kemian sovelluksissa f(x,y,z) on massa.heys, jolloin integraalin arvo on massa alueella jota integroin.rajat
Kompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
Sini- ja kosinifunktio
Sini- ja kosinifunktio Trigonometriset funktio voidaan määritellä muun muassa potenssisarjana tai yksikköympyrän avulla. Yksikköympyrään pohjautuvassa määritelmässä sini- ja kosinifunktion muuttujana pidetään
* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat
Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa
Funktion määrittely (1/2)
Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.
MS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää
1. Viikko. K. Tuominen MApu II 1/17 17
1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen
Lineaarialgebra MATH.1040 / trigonometriaa
Lineaarialgebra MATH.1040 / trigonometriaa 1 Aste, 1 (engl. degree) Täsi kierros on 360 (360 astetta). Yksi aste jaetaan 60 kulmaminuuttiin (1 = 60 ) ja ksi kulmaminuutti jaetaan 60 kulmasekuntiin (1 =
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,
1.5. Trigonometriset perusyhtälöt
Tämän asian otsake on takavuosina ollut Trigonometriset yhtälöt ja sen käsittely tuolloin ollut huomattavasti laajempi. Perusyhtälöillä tarkoitetaan muotoa sin x = a tan x = c cos x = b (cot x = d) olevia
Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
Vinokulmainen kolmio. Hannu Lehto. Lahden Lyseon lukio
Vinokulmainen kolmio Hannu Lehto Lahden Lyseon lukio Yksikköympyrä ja suunnattu kulma Yksikköympyrä 1 y 0 x -1-1 0 1 Hannu Lehto 18. maaliskuuta 2008 Lahden Lyseon lukio 2 / 8 Yksikköympyrä ja suunnattu
z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)
. Osoita geometrisesti, että jos = ja niin pätee Im +) = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän htälön? Kirjoitetaan +) = 0 ) ), ) 0 jossa, ja 0 vastaavat kolmion pisteitä kompleksitasossa.
Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa
Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Antti Rasila 2016 Polaarimuoto Kuvasta nähdään: { x = r cos θ, y = r sin θ. Siis z = x + iy = r cos θ + ir sin θ. Saadaan kompleksiluvun
5. lukujonot ja sarjat.
5. lukujonot ja sarjat. Lukujono on järjeste1y joukko lukuja x 1, x 2, x 3,..., x N Kun jonon alkiot lasketaan yhteen, saadaan summa: N x i = x 1 + x 2 + x 3 +...+ x N i=1 Jos lukujono on ääre1ömän pitkä
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77
Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin
Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin
Rautaisannos. Simo K. Kivelä 30.8.2011
Yhteenlasku Rautaisannos 30.8.011 Yhteenlasku sin x + cos x Yhteenlasku sin x + cos x = 1 sin x + cos x = 1 x R Yhteenlasku sin x + cos x = 1 x C Yhteenlasku Yhteenlasku Yhteenlasku Yhteenlasku Yhteenlasku
Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2
Mb8 Koe 0.11.015 Kuopion Lyseon lukio (KK) sivu 1/ Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on
Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä
a(t) = v (t) = 3 2 t a(t) = 3 2 t < t 1 2 < 69 t 1 2 < 46 t < 46 2 = 2116 a(t) = v (t) = 50
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus 1, Syksy 015 1. (a) Kiihtyvyys on nopeuden derivaatta, eli a(t) v (t) 3 t 1 + 1 Nyt on siis selvitettävä, milloin kiihtyvyys kasvaa itseisarvoltaan
Derivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
Kompleksiluvut. JYM, Syksy /99
Kompleksiluvut JYM, Syksy 2014 1/99 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot
Trigonometrian kaavat 1/6 Sisältö Ulkoa muistettavat peruskaavat Trigonometrisia funktioita koskevia kaavoja on paljon. Seuraavassa esitetään tärkeimmät ja lyhyet ohjeet niiden muistamiseen. Varsinaisesti
A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.
MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset
5. lukujonot ja sarjat.
5. lukujonot ja sarjat. Lukujono on järjeste1y joukko lukuja x 1, x 2, x 3,..., x N Kun jonon alkiot lasketaan yhteen, saadaan sarja: N x i = x 1 + x 2 + x 3 +...+ x N i=1 Yhteenlaskun tulosta sanotaan
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus
Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt
Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti
Tilavuusintegroin3. Tilavuusintegroin3
/5/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x,y,z)dxdydz z 2 # y 2 # x 2 & & = % % f(x,y,z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa
0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut
0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z
5. lukujonot ja sarjat.
5. lukujonot ja sarjat. Lukujono on järjeste1y joukko lukuja x 1, x 2, x 3,..., x N Kun jonon alkiot lasketaan yhteen, saadaan sarja: N x i = x 1 + x 2 + x 3 +...+ x N i=1 Yhteenlaskun tulosta sanotaan
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot
Trigonometriset funktiot 1/7 Sisältö Trigonometriset funktiot suorakulmaisessa kolmiossa a c b Olkoon suorakulmaisen kolmion terävä kulma, a tämän vastainen kateetti, b viereinen kateetti ja c kolmion
Fysiikan matematiikka P
Fysiikan matematiikka 763101P Luennoija: Kari Rummukainen, Fysikaalisten tieteiden laitos Tavoite: tarjota opiskelijalle nopeasti fysikaalisten tieteiden tarvitsemia matematiikan perustietoja ja taitoja.
3. Differen*aalilaskenta
3. Differen*aalilaskenta Differen*aali "hyvin pieni muutos" Derivaa9a kuvaa funk*on muutosnopeu9a Esim. 1 kertaluvun kemiallinen reak*o A > B Reak*on nopeus on A:n tai B:n konsentraa*on muutosnopeus. Reak*on
= 9 = 3 2 = 2( ) = = 2
Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100
15. Suorakulmaisen kolmion geometria
15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen
läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?
BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
Opiskelijan pikaopas STACK-tehtäviin. Lassi Korhonen, Oulun yliopisto
Opiskelijan pikaopas STACK-tehtäviin Lassi Korhonen, Oulun yliopisto 21.3.2016 SISÄLLYSLUETTELO Oppaan käyttäminen... 2 Vastauksen syöttämisen perusteet... 2 Operaatiot... 2 Luvut ja vakiot... 3 Funktiot...
x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x
Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e
1.6. Yhteen- ja vähennyslaskukaavat
Yhteen- ja vähennyslaskukaavoiksi sanotaan trigonometriassa niitä kaavoja, jotka sisältävät kehitelmät kahden reaaliluvun summan tai erotuksen trigonometriselle funktiolle, kuten sin( + y) sin cos y +
x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi
Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2
5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
5. lukujonot ja sarjat. Suppeneminen. Geometrinen lukujono ja summa. AritmeeMnen lukujono ja summa 1/31/13
5. lukujonot ja sarjat. Lukujono on järjeste4y joukko lukuja x 1, x, x 3,..., x N Kun jonon alkiot lasketaan yhteen, saadaan summa: N x i = x 1 + x + x 3 +...+ x N i=1 Jos lukujono on ääre4ömän pitkä (eli
2) Kaksi lentokonetta lähestyy toisiaan samalla korkeudella kuvan osoittamalla tavalla. Millä korkeudella ja kuinka kaukana toisistaan ne ovat?
2..207 Määritelmä, (terävän kulman) trigonometriset funktiot: Suorakulmaisessa kolmiossa terävän kulman trigonometriset funktiot ovat: kulman sini hpotenuusa sin a c kulman kosini hpotenuusa kulman tangentti
( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V
Kenttäteorian matemaattisia apuneuvoja 4..7. Gaussin ja Stokesin lauseet V S ds A = dl A = V S A dv, =, tai ) ds ) A ). Greenin kaavat I : II : 3. Diracin deltafunktio 4. Vektorilaskentaa V V ψ ξ dv +
MATP153 Approbatur 1B Harjoitus 6 Maanantai
. (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään
1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7
Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko Tehtävä (L): Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
Jaksollisen signaalin spektri
Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta
Osi+aisintegroin3. Palautetaan mieleen tulon derivoimissääntö:
9//3 Osi+aisintegroin3 Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x)) = df(x) g(x) + f(x) dg(x) f(x)
Johdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
Tilavuusintegroin3. Tilavuusintegroin3 3/19/13. f(x, y, z)dxdydz. ρ(x,y,z) = x 2 + y 2 + z 2 (kg) Ratkaisu: ρ(x,y,z)dxdydz
/9/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x, y, z)dxdydz z 2 # y 2 # x 2 & & = % % f(x, y, z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa
Matematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
Trigonometriaa: kolmioita ja kaavoja
Trigonometriaa: kolmioita ja kaavoja Trigonometriset funktiot voidaan määritellä eri tavoin Yksikköympyrään x + y 1 perustuva määritelmä on yleensä selkeä Jos A 1, 0) ja t 0 on reaaliluku, on olemassa
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
Päähakemisto Tehtävien ratkaisut -hakemisto. Vastaus: a) 90 b) 60 c) 216 d) 1260 e) 974,03 f) ,48
Trigonometriset funktiot 169. Muutetaan asteet radiaaneiksi. 180 astetta on radiaaneina π eli 180 = π rad Tällöin 1 rad. 180 45 1 a) 45 180 4 4 65 1 b) 65 180 6 10 c) 10 180 5 5 d) 5 180 4 40 7 e) 40 180
Johdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 1 Pekka Salmi 18. syyskuuta 2015 Pekka Salmi FUNK 18. syyskuuta 2015 1 / 65 Yleistä Luennot: ma 1214, pe 1012 Luennoitsija: Pekka Salmi, M229 (kahden viikon
Sanna Hassinen. Katariina Hemmo. Timo Taskinen SIGMA. Matemaattisia malleja III. Opettajan opas. Kustannusosakeyhtiö TAMMI
L u k i o n l y h y t m a t e m a t i i k k a Sanna Hassinen Katariina Hemmo Timo Taskinen SIGMA 8 Matemaattisia malleja III Opettajan opas Kustannusosakeyhtiö TAMMI Helsinki 1. 2. painos Tekijät ja Kustannusosakeyhtiö
Läpäisyehto: Kokeesta saatava 5. Uusintakoe: Arvosana määräytyy yksin uusintakokeen perusteella.
MAA7 Trigonometriset funktiot Arvosanan perusteet: koe 70 %, harjoitustehtävä 10 %, tuntitestit 20 %, lisäksi oppimisen ja työskentelyn havainnointi opettajan harkinnan mukaan (ks. OPS 6.2). Muu arviointi:
Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.
Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa
Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta. VASTAUS: ...
4 Alkeisfunktiot 41 Potenssifunktio 42 Polynomit ja rationaalifunktiot 102 Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta 103 Olkoon p()
3. Differen*aalilaskenta
3. Differen*aalilaskenta Differen*aali "hyvin pieni muutos" Derivaa9a kuvaa funk*on muutosnopeu9a Esim. 1 kertaluvun kemiallinen reak*o A B Reak*on nopeus on A:n tai B:n konsentraa*on muutosnopeus. Reak*on
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen
Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut
Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin
Ratkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)
Matematiikan TESTI 3, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/07 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.
Calculus Kurssikoe..7. Laske (a) x sin x, (b) x x + x. (a) Merkitään u(x) = x ja v (x) = sin x, jolloin u (x) =, v(x) = cos x ja osittaisintegroimalla saadaan x sin x = u(x)v (x) = u(x)v(x) u (x)v(x) =
Matematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
Trigonometriaa ja solve-komento GeoGebralla
Trigonometriaa ja solve-komento GeoGebralla Valitse yläreunasta Näytä-valikosta CAS ja Piirtoalue. CAS-on laskinohjelma, piirtoalueen avulla saat kuviot näkyville tarvittaessa. Harjoitellaan ensiksi CAS-ikkunan
C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
MS-A Differentiaali- ja integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko
MS-A0107 - Differentiaali- integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko 1 Tehtävä Etsi seuraavien yhtälöiden yleiset ratkaisut: Ratkaisu: a) y y 2y = 4x, b) y + 4y = sin 3x, c) y + 2y + 5y = e x
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 26..208 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
6.8 Erityisfunktioiden sovelluksia
6.8 Erityisfunktioiden sovelluksia Tässä luvussa esitellään muutama esimerkki, joissa käytetään hyväksi eksponentti-, logaritmi- sekä trigonometrisia funktioita. Ensimmäinen esimerkki juontaa juurensa
Integroimistekniikkaa Integraalifunktio
. Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri
TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT
3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään
a b c d + + + + + + + + +
28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista
b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)
Matematiikan TESTI, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/017 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että:
Mapu I Laskuharjoitus 2, tehtävä 1 1. Eräs trigonometrinen ientiteetti on sin2x = 2sinxcosx Derivoimalla yhtälön molemmat puolet x:n suhteen, joha lauseke cos 2x:lle. Ratkaisu: Derivoiaan molemmat puolet,
Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3
Mb8 Koe 4.11.015 Kuopion Lyseon lukio (KK) sivu 1/3 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A
1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2
Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................
Kolmiot, L1. Radiaani. Kolmiolauseet. Aiheet. Kulmayksiköt, aste. Radiaani. Suorakulmainen kolmio. Kolmiolauseet
Kolmiot, L1 Kulmayksiköt 1 Aste, 1 (engl. degree) Kun kellon viisari kiertyy yhden kierroksen, sanomme, että se kääntyy 360 (360 astetta). Ajatus täyden kierroksen jakamisesta 360 asteeseen, juontaa kaldealaiseen
Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1
Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!