Pisteen x lähistö koostuu kaikista ratkaisuista, jotka on saatu x:stä tekemällä siihen yksi siirto:

Koko: px
Aloita esitys sivulta:

Download "Pisteen x lähistö koostuu kaikista ratkaisuista, jotka on saatu x:stä tekemällä siihen yksi siirto:"

Transkriptio

1 Lokaali haku Optimoinnissa heuristisilla menetelmillä tarkoitetaan algoritmeja, jotka osassa tapauksista antavat tehtävälle hyvän tai lähes optimaalisen ratkaisun, mutta joiden toimivuutta ei voida täsmällisesti taata. Heuristiset menetelmät voivat olla deterministisiä tai stokastisia. Usein heuristiset algoritmit ovat hyvin tehtäväkohtaisia ja käyttävät hyväkseen ongelman erityispiirteitä. Yleisempään tarkoitukseen sopivia heuristisia menetelmiä sanotaan myös metaheuristiikaksi. Edellä käsitelty branch-and-bound on esimerkki sellaisista tarkoista algoritmeista, joiden avulla voidaan hakea (ellei aika lopu kesken) globaali optimi, ja algoritmin toiminnan onnistuminen voidaan todistaa (oletuksena ajan riittävyys). Lokaalin haun menetelmät eroavat näistä siinä, että ne nimensä mukaisesti toimivat paikallisen informaation varassa ja eivät välttämättä konvergoi kohti globaalia optimia. Näin voi käydä vaikka käypä joukko olisi suhteellisen pienikin äärellinen joukko, menetelmät eivät välttämättä "osaa" nähdä lokaalia lähiympäristöä kauemmaksi. Etuna lokaalin haun menetelmillä voi kuitenkin olla kyky saavuttaa nopeasti suurissakin ongelmissa hyviä ratkaisuja, vaikka ei välttämättä täysin optimaalisia. Tarkastellaan optimointiprobleemaa muodossa max z = f(x), x S X, missä X on ratkaisuavaruus ja S probleeman käypä joukko. Tässä X voi olla yleisempi kombinatorisen optimoinnin tehtävän ratkaisuavaruus kuin R n. Toisin sanoen, tehtävän muotoilua MI(N)LP:ksi ei välttämättä edellytetä. Oleellista on nyt sopia, mitä ovat tietyn ratkaisun x lähellä olevat muut ratkaisut. Lähellä x:ää olevat "naapurit" ajatellaan saaduksi ratkaisusta x sopivalla siirrolla. Se, mitkä siirrot katsotaan sopiviksi, määrittelee avaruuden X lähistörakenteen. Oletamme, että nämä siirrot on sovittu. (Huomataan, että "kokonaislukumaailmassa" läheisyyden ilmaiseminen voi olla vaikeampaa, kuin esimerkiksi R n :ssä tai muussa metrisessä avaruudessa, jossa on käytössä etäisyyden käsite.) Olkoon M kaikkien siirtojen m joukko. Ratkaisua x muutetaan siirrolla m siten, että tulos x ' = x m on uusi "häiritty" ratkaisu. Siirto m on käypä (sallittu), jos x m on käypä, muuten siirto on epäkäypä. Pisteen x lähistö koostuu kaikista ratkaisuista, jotka on saatu x:stä tekemällä siihen yksi siirto: N(x) = {x' X x' = x m, m M }. Käypä lähistö saadaan tekemällä vain sallittuja käypiä siirtoja: N(x) S. (Termiä "lähistö" on käytetty tarkoituksellisesti topologian termin "ympäristö" asemasta sekaantumisen välttämiseksi)

2 25 Lähistön koko on sen alkioiden lukumäärä. Se kertoo siis, kuinka monta erilaista siirtoa x:lle voidaan tehdä ("nollasiirto" eli että ei tehdä mitään siirtoa luetaan useimmiten myös siirroksi). Kaikille lähistöjä käyttäville menetelmille on onnistumisen kannalta oleellista, minkälainen lähistöstruktuuri on valittu. Jos lähistöt ovat liian suuria (ääritapauksessa koko ratkaisuavaruus X voi olla lähistönä), niin menetelmän jokainen iteraatio voi olla samaa luokkaa laskentatyöltään kuin alkuperäinen probleema. Jos lähistö on taas liian suppea, niin menetelmät etenevät hyvin hitaasti. Lokaali haku (Local Search, Neighborhood Search) on menetelmä(tyyppi), jossa jokaisessa iteraatiossa uusi iteraatiopiste valitaan nykyisen lähistöstä. Valintaan voidaan käyttää evaluointifunktiota E, jonka maksimiarvon mukaan uusi piste poimitaan. Algoritmi on silloin seuraava, kun aloituspisteenä on jokin käypä ratkaisu x 0 : 1. k:=1, x k =x 0, x * = x 0 2. Laske E(x) x N(x k ) 3. x k+1 :=argmax{e(x) x N(x k )} 4. k:=k+1 5. Jos f(x k )>f(x * ), niin tee päivitys x * = x k. 6. Onko lopetusehto voimassa? Jos on, x * on paras ratkaisu. Jos ei, niin jatka kohdasta 2. (Evaluointifunktio ja lopetusehto jäävät tässä yleisellä tasolla määrittelemättä. Yleensä evaluointifunktio on maksimointitehtävässä kohdefunktio f sellaisenaan ja minimointitehtävässä -f tai positiivisen funktion tapauksessa myös 1/f. Osa sellaisista rajoitusehdoista, jotka on vaikea ilmaista lähistöjen käypyydellä, voidaan ottaa huomioon evaluointifunktiossa esim. sakkotermien avulla.) Jos evaluointifunktiona käytetään pelkästään kohdefunktiota f, kyseessä on jyrkimmän nousun (steepest ascent) menetelmä. (Minimoinnissa: jyrkin vietto, steepest descent.) Sanotaan myös, että algoritmi on ahne (greedy), koska joka kerta valitaan eniten kohdefunktiota parantava vaihtoehto lähistöstä. (On sukua derivoituvien funktioiden gradienttimenetelmälle, mutta merkitys on suhteessa suurempi.) Lokaalin haun suurimpia ongelmia on, että se jää usein kiinni lokaaliin optimiin. Esimerkki 1. Muodosta pisteen x = [ ] T B 5 lähistö, jos siirtona on a) yhden komponentin (bitin) muuttaminen nollasta ykköseksi tai päinvastoin. b) kahden komponentin vaihto keskenään (esim. 1. ja 5. x' = [ ] T ).

3 26 Esimerkki 2: Kaupparatsuongelman ratkaisumenetelmä 2-opt Menetelmässä verrataan olemassa olevaa ratkaisua x sellaisiin lähellä oleviin ratkaisuihin, jotka saadaan vaihtamalla kaksi reitin jaksoa toisiin kahteen jaksoon, muuten reitti säilyy samana. Siirto on siis tämä vaihto, ja lähistö koostuu näin saaduista reiteistä. Kaupunkien lukumäärä N, käytävä läpi kaikki kaupungit täsmälleen kerran. Aloitus kaupungista 1, johon sitten lopuksi palataan. Reitti on jono kaupunkeja i 1, i 2,, i N, missä i 1 = 1 ja jono kertoo järjestyksen, jossa kaikki kaupungit käydään läpi. Reitin jaksot ovat i 1 ->i 2, i 2 ->i 3,, i N-1 ->i N, i N ->i 1. Nyt oletetaan, että tilanne on symmetrinen, eli jakson suunnalla ei ole väliä ja jokaisen jakson kustannus on sama molempiin suuntiin. Kustannukset saadaan symmetrisestä kustannusmatriisista W, koko N*N. Koska vaihdettavia jaksoja on täsmälleen kaksi, ne eivät voi olla peräkkäin. (Jos poistetaan peräkkäiset kaksi jaksoa, jää keskimmäinen kaupunki eristetyksi, jolloin se pitää yhdistää johonkin muuhun, mikä taas pakottaa poistamaan kolmannenkin jakson jostakin kohtaa) Edelleen todetaan, että jos tietyt kaksi jaksoa (a,b) ja (c,d) on poistettu, niin reitti on korjattava tasan kahdella uudella jaksolla käymättä missään kaupungissa useammin kuin kerran. Silloin uusiksi jaksoiksi reittiin on otettava (a,c) ja (b,d), muita mahdollisuuksia ei ole, kuten kuvasta voidaan päätellä. Joten vaihto on yksiselitteinen, kun poistettavat jaksot on päätetty. Algoritmi lähtee jaksosta i 1 ->i 2, käy läpi kaikki muut (paitsi vieressä olevia i 2 ->i 3 ja i N ->i 1 ) ja kokeilee kannattaako vaihtaa. Vaihto on kannattava, mikäli kustannusten pudotus W(a,b)+W(c,d)-(W(a,c)+W(b,d)) on positiivinen. Jakson i 1 ->i 2 vaihtokaveriksi otetaan se (jos löytyy), joka antaa suurimman positiivisen pudotuksen. Näin käydään läpi kaikki mahdollisuudet muutella reittiä kahden vaihdolla. Lopetetaan, kun ei enää löydy kannattavaa vaihtoa. Silloin on löydetty (ainakin) lokaalisti optimaalinen reitti. Se ei ole välttämättä globaali optimi, mutta on käytännössä todettu usein melko hyväksi. Etuna on laskennan nopeus ja menetelmän yksinkertaisuus. (Menetelmä tunnetaan yleisemmässä muodossaan k-opt-algoritmina ja Lin-Kernighanalgoritmina.) Oheisissa kuvissa on Matlabilla toteutetulla 2-opt-algoritmilla ratkaistu 300:n kaupungin TSP satunnaisesta alkuratkaisusta lähtien.

4 27

5 Simuloitu mellotus Lokaalin haun suurimpia ongelmia oli algoritmin juuttuminen lokaaliin optimiin. Eräs keino korjata tämä tilanne on löydettävissä fysikaalisen analogian kautta metallien lämpökäsittelystä. Kun sulaa hehkuvaa metallia jäähdytetään sopivan hitaasti (annealing), sen kiderakenne päätyy minimienergiatilaan. Jos taas jäähdytys on äkkinäistä (rapid quenching), rakenne voi jäädä lokaaliin optimitilaan ja tuloksena on hauraampi materiaali. Tätä matkivat matemaattiset optimointialgoritmit tunnetaan nimellä simuloitu mellotus (simulated annealing, simulated cooling, simuloitu hehkutus, simuloitu jäähdytys, termodynaaminen algoritmi). Ne kuuluvat stokastisten lokaalisten hakualgoritmien luokkaan. Periaate on lyhyesti seuraava: Olemassa olevan iteraatiopisteen lähistöstä valitaan satunnaisesti vertailupiste. Jos se parantaa kohdefunktion arvoa, se otetaan uudeksi iteraatiopisteeksi. Ellei, se voidaan silti hyväksyä uudeksi iteraatiopisteeksi todennäköisyydellä P(T, d) = e -d/t,

6 29 missä d on kohdefunktion huononnus pisteestä toiseen siirryttäessä ja T on ohjausparametri ("lämpötila"). Siis paljon nykyistä huonompi ratkaisu voi tulla kysymykseen vain hyvin pienellä todennäköisyydellä. Todennäköisyysfunktion muoto on peräisin Boltzmannin jakaumasta. Ohjausparametriä T muutetaan vakionopeudella r pienemmäksi (lämpötilan lasku, r = cooling rate). Alussa lämpötila T on suuri, jolloin todennäköisyys huononnusten hyväksymiseen on suurehko. Iteroinnin edetessä lämpötila T laskee ja huononnusta aiheuttavien ratkaisujen hyväksymisen todennäköisyys lähenee nollaa. Olkoot aloituslämpötila T, jäähdytyskerroin r (0,1), lopetussääntö ja aloitusratkaisu x 1 annettu. Lisäksi tarvitaan iterointiluku L, joka ilmaisee, kuinka monta iterointipistettä samassa lämpötilassa satunnaisesti haetaan, ennen kuin lämpötilaa lasketaan. Koska kyseessä on satunnaistettu lokaali haku, tarvitaan myös pisteen x lähistö N(x). Tällöin algoritmin eräs toteutus on seuraava: Simuloitu mellotus 0. x * = x 1, j = 1, k=1. 1. Jos lopetussääntö on voimassa, lopeta, x * on paras löydetty ratkaisu. Ellei, jatka kohdasta Jos j=l+1, jatka kohdasta 8. Ellei, jatka kohdasta Valitse satunnaisesti piste y N(x k ) ja laske kohdefunktion arvomuutos d = f(y)-f(x k ). 4. Jos d 0, generoi välille [0,1] tasaisesti jakautuneista satunnaisluvuista arvo p ja jatka kohdasta 5. Jos d<0, jatka kohdasta Jos p e -d/t, jatka kohdasta 6. Ellei, aseta j=j+1 ja jatka kohdasta Aseta x k+1 =y ja k=k Jos f(x k ) < f(x * ), aseta x * = x k, j=1 ja jatka kohdasta 8. Ellei, aseta j=j+1 ja jatka kohdasta Aseta T=rT, j=1 ja jatka kohdasta 1.

Edellä on tarkasteltu luettelointimenetelmiä, jotka ainakin periaatteessa

Edellä on tarkasteltu luettelointimenetelmiä, jotka ainakin periaatteessa 75 9. Lokaali haku Edellä on tarkasteltu luettelointimenetelmiä, jotka ainakin periaatteessa (jos laskenta-aikaa vain riittää) voivat löytää kaikkein parhaimman ratkaisun eli globaalin optimin. Toisenlainen

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019

Lisätiedot

Algoritmit 2. Luento 12 To Timo Männikkö

Algoritmit 2. Luento 12 To Timo Männikkö Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien

Lisätiedot

Demo 1: Simplex-menetelmä

Demo 1: Simplex-menetelmä MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x

Lisätiedot

Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Luetteloivat ja heuristiset menetelmät Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Branch and Bound sekä sen variaatiot (Branch and Cut, Lemken menetelmä) Optimointiin

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Algoritmit 2. Luento 12 Ke Timo Männikkö

Algoritmit 2. Luento 12 Ke Timo Männikkö Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

Search space traversal using metaheuristics

Search space traversal using metaheuristics Search space traversal using metaheuristics Mika Juuti 11.06.2012 Ohjaaja: Ville Mattila Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki

Lisätiedot

3.4 Peruutus (backtracking)

3.4 Peruutus (backtracking) 3.4 Peruutus (backtracking) Tarkastellaan kahta esimerkkiongelmaa: Kahdeksan kuningattaren ongelma: sijoitettava 8 8 ruudun pelilaudalle 8 nappulaa siten, että millekään vaaka-, pysty- tai viistoriville

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Evoluutiopohjainen monitavoiteoptimointi MCDM ja EMO Monitavoiteoptimointi kuuluu

Lisätiedot

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Geneettiset algoritmit

Geneettiset algoritmit Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 5 2.2.28 Tehtävä a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x + x 2 + x 3 x 3 x 2 3 x 3 3 x, x 2, x 3 Tämä on tehtävän kanoninen muoto, n = 3 ja m =. b) Otetaan

Lisätiedot

8. Ensimmäisen käyvän kantaratkaisun haku

8. Ensimmäisen käyvän kantaratkaisun haku 38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:

Lisätiedot

Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely)

Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Jari Hast xx.12.2013 Ohjaaja: Harri Ehtamo Valvoja: Hari Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen 4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Kuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen

Kuvioton metsäsuunnittelu Paikkatietomarkkinat, Helsinki Tero Heinonen Paikkatietomarkkinat, Helsinki 3.11.2009 Tero Heinonen Sisältö Kuvioton metsäsuunnittelu Optimointi leimikon suunnittelumenetelmänä Verrataan optimointi lähestymistapaa diffuusiomenetelmään Muuttuvat käsittely-yksiköt

Lisätiedot

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu

Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Haitallinen valikoituminen: yleinen malli ja sen ratkaisu Mat-2.4142 Optimointiopin seminaari Matias Leppisaari 29.1.2008 Esityksen rakenne Yleinen malli Käypyys ja rajoitusehdot Mallin ratkaisu Kotitehtävä

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

Yhden muuttujan funktion minimointi

Yhden muuttujan funktion minimointi Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot

Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0

Optimaalisuusehdot. Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 Optimaalisuusehdot Yleinen minimointitehtävä (NLP): min f(x) kun g i (x) 0 h j (x) = 0 i = 1,..., m j = 1,..., l missä f : R n R, g i : R n R kaikilla i = 1,..., m, ja h j : R n R kaikilla j = 1,..., l

Lisätiedot

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 11: Rajoitusehdot. Ulkopistemenetelmät Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja

Lisätiedot

Luento 3: Simplex-menetelmä

Luento 3: Simplex-menetelmä Luento 3: Simplex-menetelmä Kuten graafinen tarkastelu osoittaa, LP-tehtävän ratkaisu on aina käyvän alueen kulmapisteessä, eli ekstreemipisteessä (extreme point). Simplex-menetelmässä ekstreemipisteitä,

Lisätiedot

Gradient Sampling-Algoritmi

Gradient Sampling-Algoritmi 1/24 Gradient Sampling-Algoritmi Ville-Pekka Eronen April 20, 2016 2/24 Perusidea -"Stabiloitu nopeimman laskeutumisen menetelmä" - Laskevan suunnan haku: lasketaan gradientit nykyisessä pisteessä sekä

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta). Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 5 10.4.2017 Tehtävä 1 x 2 7 0,7 9,8 6 5 4 x 1 x 2 7 x 1 x 2 1 3 2 x 1 0 4,3 x 1 9 1 0,0 x 2 0 9,0 1 2 3 4 5 6 7 8 9 x 1 Kuva 1: Tehtävän 1 sallittu joukko S Optimointitehtävän sallittu

Lisätiedot

Haku osittaisen informaation vallitessa

Haku osittaisen informaation vallitessa 136 Haun merkittävä ongelma on mahdollisuus laajentaa uudelleen jo kertaalleen tutkittu tila Näin äärellinen tila-avaruus voi johtaa äärettömään hakupuuhun Ratkeava ongelma voi muuttua käytännössä ratkeamattomaksi

Lisätiedot

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. 5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I. Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.

Lisätiedot

Sekalukuoptimointi. Lehtonen, Matti Matemaattisen ohjelmoinnin seminaari, Tietojenkäsittelytieteen laitos Helsingin Yliopisto

Sekalukuoptimointi. Lehtonen, Matti Matemaattisen ohjelmoinnin seminaari, Tietojenkäsittelytieteen laitos Helsingin Yliopisto Sekalukuoptimointi Lehtonen, Matti Matemaattisen ohjelmoinnin seminaari, 2000-10-11 Tietojenkäsittelytieteen laitos Helsingin Yliopisto 1 Tiivistelmä Seminaarin aihe käsittelee globaalin optimoinnin erästä

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Duaalisuus kokonaislukuoptimoinnissa Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Duaalisuus binäärisissä optimointitehtävissä Lagrangen duaalisuus Lagrangen

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

Luento 4: Lineaarisen tehtävän duaali

Luento 4: Lineaarisen tehtävän duaali Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

4 Heuristinen haku. Eero Hyvönen Helsingin yliopisto

4 Heuristinen haku. Eero Hyvönen Helsingin yliopisto 4 Heuristinen haku Eero Hyvönen Helsingin yliopisto Strategioita: - Breath-first - Uniform-cost - Depth-first - Depth-limited - Iterative deepening - Bidirectional Tekoäly, Eero Hyvönen, 2004 2 Heuristisen

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

3. laskuharjoituskierros, vko 6, ratkaisut

3. laskuharjoituskierros, vko 6, ratkaisut Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa

Lisätiedot

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lineaarinen ohjelmointi..7 Luento 7 Duaalisimple ja herkkyysanalyysi (kirja 4.5, 5., 5.5-5.6) Lineaarinen ohjelmointi - Syksy 7 / Duaalisimple Herkkyysanalyysi Luentorunko Parametrinen ohjelmointi

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun

Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun Jälki- ja herkkyysanalyysi Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun 1 Hinnat ja varjohinnat Objektifunktio c T x = Kerroin c j ilmoittaa, paljonko

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

Osakesalkun optimointi

Osakesalkun optimointi Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 16.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 16.9.2015 1 / 26 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Shorin algoritmin matematiikkaa Edvard Fagerholm

Shorin algoritmin matematiikkaa Edvard Fagerholm Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua

Lisätiedot

Algoritmit 2. Luento 8 To Timo Männikkö

Algoritmit 2. Luento 8 To Timo Männikkö Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu. Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.

Mikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen. 4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.3140 Lineaarinen ohjelmointi 4.10.2007 Luento 4 Ekstreemipisteiden optimaalisuus ja Simplex (kirja 2.4-2.6, 3.1-3.2) Lineaarinen ohjelmointi - Syksy 2007 / 1 Luentorunko Degeneroituvuus Ekstreemipisteiden

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 27.1.2010 T-106.1208 Ohjelmoinnin perusteet Y 27.1.2010 1 / 37 If-käsky toistokäskyn sisällä def main(): HELLERAJA = 25.0 print "Anna lampotiloja, lopeta -300:lla."

Lisätiedot

Algoritmit 2. Luento 6 To Timo Männikkö

Algoritmit 2. Luento 6 To Timo Männikkö Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100

Lisätiedot

r > y x z x = z y + y x z y + y x = r y x + y x = r

r > y x z x = z y + y x z y + y x = r y x + y x = r HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.

Lisätiedot

Luento 6: Monitavoiteoptimointi

Luento 6: Monitavoiteoptimointi Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman

Lisätiedot

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. 3 Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa osiin. Ideana on, että voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin kokonaisuuksina, ja jättää

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 24.1.2011 T-106.1208 Ohjelmoinnin perusteet Y 24.1.2011 1 / 36 Luentopalaute kännykällä alkaa tänään! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti Vast

Lisätiedot

Algoritmit 2. Luento 10 To Timo Männikkö

Algoritmit 2. Luento 10 To Timo Männikkö Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot