Tietorakenteet, laskuharjoitus 1,
|
|
- Harri Korpela
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tietorakenteet, laskuharjoitus 1, Huom: laskarit alkavat jo ensimmäisellä luentoviikolla 1. Taustaa Halutaan todistaa, että oletuksesta A seuraa väite B eli propositiologiikan merkinnöin A B. A ja B siis ovat propositioita, eli väittämiä jotka ovat joko tosia tai epätosia. A voisi olla esim. väittämä x on rationaaliluku ja B väittämä x on irrationaaliluku. Jos ajatellaan tiettyä lukua x, esim. x = 754, niin väittämä x on irrationaaliluku on luvulle joko tosi tai epätosi. Mitään "kolmatta" vaihtoehtoa ei ole. 1 Loogisten konnektiivien totuus voidaan määritellä totuustaulujen avulla. Seuraavassa implikaation eli A B:n totuustaulu: A B A B T T T F T T T F F F F T Käytännössä tämä sanoo että jos A on tosi, niin B:n on oltava tosi. Muussa tapauksessa asioihin ei oteta kantaa, eli jos A on epätosi, voi B olla joko tosi tai epätosi. Näytetään totuustaulun avulla, että A B:n kanssa yhtäpitävää on B A, eli että A B pitää paikkansa jos ja vain jos B A pitää paikkansa. A B B A B A T T F F T F T F T T T F T F F F F T T T Näemme, että A B:n ja B A:n arvo on sama kaikilla mahdollisilla A:n ja B:n arvoilla, eli ne ovat ekvivalentit: A B B A Tämä voidaan ajatella niin, että olivatpa asiat miten tahansa A:n ja B:n suhteen, ovat lauseet A B ja B A merkitykseltään samat, eli jos toinen on tosi niin toinenkin. Samoin epätotuuden suhteen. Tehdään sitten totuustaulu seuraavalle A B F:lle 1 Eli riippumatta siitä osataanko jotain matemaattista väittämää todistaa, niin väittämä joko on tosi tai ei ole tosi. Voi olla, että ihminen ei tiedä onko väittämä tosi vai epätosi, mutta "matematiikan" mielestä epävarmuutta ei ole. 1
2 A B B A B A B F T T F F T F T F F T T F T T F F F T F T Nytkin huomaamme, että A B ja B A käyttäytyvät täsmälleen samalla, eli ne ovat ekvivalentit: A B A B F Totuustaulujen avulla on helppo näyttää myös, että A B B A on ekvivalentti A B:n kanssa. 2. Tehtävänä on todistaa induktiolla yhtäsuuruus n i=0 2i = 2 n+1 1. Summakaava on järkevä, kun n on positiivinen kokonaisluku (1, 2, 3,... ). Esimerkiksi jos n = 3, niin n i=0 2i = 3 i=1 2i = = 15. Toisaalta 2 n+1 1 = = 15, joten kaava pitää paikkansa ainakin n:n arvolla 3. Seuraavaksi osoitetaan, että yhtäsuuruus on voimassa kaikilla n:n arvoilla. Induktiotodistus muodostuu kahdesta osasta: perustapauksesta ja induktioaskeleesta. Perustapaus osoittaa, että kaava pitää paikkansa pienimmällä n:n arvolla eli tapauksessa n = 1. Induktioaskel osoittaa, että jos kaava pitää paikkansa tapauksessa n = k, se pitää paikkansa myös tapauksessa n = k + 1. Jos nämä kaksi ominaisuutta pystytään todistamaan, kaava yleistyy kaikille positiivisille kokonaisluvuille, koska mihin tahansa lukuun päästään perustapauksesta hyödyntämällä monta kertaa induktioaskeleen tietoa. Esimerkiksi kaavan on silloin pakko päteä tapauksessa n = 37294, koska ensinnäkin kaava pätee tapauksessa n = 1, sitten kun kaava pätee tapauksessa n = 1, se pätee myös tapauksessa n = 2, edelleen kun kaava pätee tapauksessa n = 2, se pätee myös tapauksessa n = 3, jne., kunnes lopulta kun kaava pätee tapauksessa n = 37293, se pätee myös tapauksessa n = Perustapaus: Kun n = 0, vasen puoli 0 i=0 2i = 2 0 = 1 ja oikea puoli = = 1, joten kaava pitää paikkansa. Induktioaskel: Oletetaan, että kaava pätee tapauksessa n = k, ja osoitetaan, että kaava pätee tapauksessa n = k + 1. Toisin sanoen oletetaan, että k i=0 2i = 2 k+1 1, ja osoitetaan tämän tiedon avulla, että k+1 i=0 2i = 2 k+2 1. Otetaan viimeinen summattava summamerkinnän ulkopuolelle: k+1 i=0 2i = k i=0 2i + 2 k+1. Nyt summa k i=0 2i vastaa tapausta n = k, ja induktio-oletuksen perustella se on 2 k+1 1. Eli k+1 i=0 2i = 2 k k+1 = 2 2 k+1 1 = k+1 1. Muistamme kansakoulusta, että a m a n = a m+n, eli saadaan k+1 i=0 2i = 2 k+2 1. Olemme siis osoittaneen, että kaava pätee myös tapauksessa n = k
3 3. (i) log 2 4 = 2 sillä 4/2/2 = 1. (ii) log 2 32 = 5 sillä 32/2 = 16, 16/2 = 8, 8/2 = 4, 4/2 = 2 ja 2/2 = 1. Tehdään seuraava huomio: Jakamalla 32 viisi kertaa kahtia, päädytään lukuun yksi: 32/2/2/2/2/1 = 1, joka taas on sama kuin 32/2 5 = 1. Kerrotaan tämä puolittain 2 5 :llä ja saadaan 32 = 2 5. Tämähän on juuri logaritmin määritelmä, eli luvun 32 2-kantainen logaritmi on luku, joka kertoo kuinka monenteen potenssiin 2 on korotettava, jotta saadaan 32! (iii) log 3 3 = 1. (iv) log 3 81 = 4, sillä 81/3 = 27, 27/3 = 9, 9/3 = 3, 3/3 = 1. (v) log 7 1 = 0, sillä 7 0 = 1. (vi) log 7 49 = 2, sillä 49/7/7 = 1. (vii) log = 3. (viii) log = Jatkoa edelliseen tehtävään a. Perustellaan peräkkäisten jakamisten avulla laskusääntö: log a (x y) = log a x + log a y Tässä on mielekästä olettaa tehtävän 3 tapaan, että a:lla jakaminen menee tasan. Tarkastellaan esimerkkiä log 2 32 = log 2 (8 4). Miten monta kertaa tulo 8*4 on jaettava kahdella, jotta se menee ykköseksi? Jos 8 jaetaan 3 kertaa kahdella, tuloksena 1 ja jos 4 jaetaan 2 kertaa, tuloksena 1. Eli jakamalla 3+2 kertaa kahdella, tulosta tulee 1. Eli näyttää siltä, että kokonaisuuden x*y saa ykköseksi, kun siihen kohdistetaan jaot, joilla x:n saa ykköseksi plus ne jaot, joilla y:n saa ykköseksi. Hieman täsmällisemmin ilmaistuna: log a x = j ja log a y = k on kolmosen perusteella sama asia kuin x/2 j = 1 ja y/2 k = 1 joka taas sama kuin x y = x y eli x y saadaan ykköseksi 2 j 2 k 2 j+k jakamalla se kahdella j + k-kertaa, joka siis kolmosen perusteella sama kuin log a x y = j + k. b. Perustellaan edellisen säännön avulla että log a x y = y log a x Oletetaan, että y on kokonaisluku. Nyt log a x y = log a (x x {{... x ) edellisen y kappaletta säännön perusteella tämä on log a x+log a (x x {{... x ) =... = log a x log a x = {{ y-1 kappaletta y kappaletta y log a x Jos y ei ole kokonaisluku, ei kaavaa pystytä perustelemaan suoraan a-kohdan avulla. 5. Fibonaccin lukujonon n:s luku voidaan määritellä seuraavasti F(n) = { 1 jos n = 1 tai n = 2 F(n 1) + F(n 2) jos n > 2 3
4 Laske kynällä ja paperilla 10 ensimmäistä Fibonaccin lukua. f(1) = 1 f(2) = 1 f(3) = f(2) + f(1) = = 2 f(4) = f(3) + f(2) = Kaikki kolme Javalla seuraavassa. Mukana myös pääohjelma testaamista varten class Fibo { public static long fib1(int k){ if ( k== 1 k==2 ) return 1; return fib1(k-1)+fib1(k-2); public static long fib2(int k){ long[] f = new long[k+1]; f[1] = 1; f[2] = 1; for ( int i=3; i<=k; i++ ) f[i] = f[i-1]+f[i-2]; return f[k]; public static long fib3(int k){ if ( k==1 k==2 ) return 1; int fi = 1; // i:s numero int fi_1 = 1; // i-1:s numero int fi_2 = 1; // i-2:s numero for ( int i=3; i<=k; i++ ) { // i:s numero kahden edellisen summa fi = fi_1 + fi_2; // uusi i-2:s on vanha i-1:s fi_2 = fi_1; // uusi i-1:s on vanha i fi_1 = fi; return fi; public static void main(string args[]){ // ensimmäinen komentoriviparametri kertoo mitä algoritmia käytetään if ( args.length<2 ) System.exit(0); int valinta = Integer.parseInt( args[0] ); 4
5 int n = Integer.parseInt( args[1] ); long vast = 0; if ( valinta == 1 ) vast = fib1(n); else if ( valinta == 2 ) vast = fib2(n); else vast = fib3(n); System.out.println( "fib"+ valinta + "(" + n + ")=" + vast ); Rekursiivinen ratkaisu on esteettisesti tyylikäs, mutta erittäin tehoton. Esim. kun lasketaan f(5), lasketaan ensin rekursiivisesti f(4) ja f(3). Kun lasketaan f(4) tarvitaan myös f(3), mutta algoritmi laskee sen uudelleen. Vastaavasti laskennan aikana eri arvot f(i) lasketaan toistuvati yhä uudelleen ja uudelleen ja aikaa kuluu. Aikavaativuuden suhteen algotimi onkin eksponentiaalinen. Rekursiivisuuden takia myös tilaa kuluu paljon: kun ollaan siinä vaiheessa, että k = 2, on rekursiivisten kutsujen joissa k = 3, 4, 5,..., n kutsu kesken. Koska jokainen kutsuinstanssi vie vakiomäärän tilaa, lienee tilavaativuus O(n). Taulukkoratkaisu hyödyntää esim. lukua f(7) laskiessaan jo valmiina taulukossa olevat arvot f(6) ja f(5). Taulukko käydään kerran läpi, joten aikavaativuus selvästi O(n). Myös tilavaativuus on O(n) sillä aputaulukon koko on n + 1 (indeksiä 0 ei käytetä). Laskettaessa taulukon lokeron f[i] arvoa tarvitaan ainoastaan kahta edellistä lokeroa f[i_1] ja f[i_2], eli taulukon alkuosassa olevat arvot eivät ole enää tarpeen. Kolmas ratkaisu käyttääkin muistia ainoastaan vakiomäärän, eli käytössä on kolme muuttujaa fi, fi_1 ja fi_2, joista ensimmäinen on se fibonacci jolle ollaan juuri laskemassa arvoa, muut kaksi kertovat edellisen ja sitäedellisen. Kun uusi arvo on laskettu, päivitetään edellinen ja sitäedellinen. Aikavaativuus edelleen O(n), mutta tilavaativuus O(1). Äkkisältään tarkastellen fib3 siis vaikuttaa parhaalta. Entä jos tarvitsisimme jossakin sovelluksessa fibonaccin lukuja toistuvasti? Taulukkoon perustuvasta ratkaisusta olisi helpohkosti muokattavissa algoritmi, joka laskiessaan kerran tietyn fibonaccin luvun, esim. F(1000) säilyttäisi laskennan aikana selvitetyt luvut F(3),..., F(1000) tulevaa käyttöä varten. Jos jossain vaiheessa algoritmilta kysyttäisiin esim. fibonaccin lukua F(859) se saataisiin vakioajassa. Jos taas kysyttäisiin esim. lukua F(2345) sen arvo jouduttaisiin laskemaan, mutta voitaisiin aloittaa F(1):n sijasta jo muistissa olevien lukujen ansiosta F(1001):sta. Näin saataisiin taas tulevaisuuden varalle selvitettyä lisää fibonaccin lukuja. 6. Olkoon x desimaaliluku ja n 0 kokonaisluku. Luku x n voidaan laskea seuraavan palautuskaavan mukaisella rekursiivisella algoritmilla: 5
6 1 jos n = 0 x n = xx n 1 jos n pariton x n/2 x n/2 jos n parillinen Lasketaan seuraavassa 3 11 :lle arvo. Jokaisessa askeleessa on sovellettu jotain palautuskaavan osaa alleviivattuun termiin = = = = = =... = Ratkaisu Javalla, mukana myös pääohjelma testaamista varten. Rekursion toisessa tapauksessa lasketaan x n/2 x n/2. Riittää tietenkin laskea termin x n/2 arvo kertaalleen ja kertoa sitten tulos itsellään. class Pot { public static double potenssi(double x, int n){ if ( n==0 ) return 1; else if ( n % 2!= 0 ) return x*potenssi(x,n-1); else { double apu = potenssi(x, n/2); return apu*apu; public static void main(string args[]){ if ( args.length<2 ) System.exit(0); double x = Double.parseDouble( args[0] ); int n = Integer.parseInt( args[1] ); double vast = potenssi(x,n); System.out.println( x +"^"+ n +" = "+ vast ); Algoritmi laskee potenssin käyttämällä pelkästään kertolaskuoperaatiota. Esim. Java API:sta löytyy pow, joka tekee suunilleen saman asian (Javan pow:issa potenssin tyyppi saa olla double). Täytyy kuitenkin huomioida, että ainakaan yleisesti käytössä olevat prosessoriarkkitehtuurit eivät suoraan tue potenssiin korottamisen tapaisia monimutkaisia operaatiota, vaan ne on joka tapauksessa suoritettava alkeellisimmilla komennoilla esim. kertolaskuoperaatiota käyttäen. Algoritmin syötteen kokona voi käyttää potenssia n. Algoritmi selvästi "puolittaa" potenssin vähintään joka toisella rekursiivisella kutsulla. Jos nimittän n on pariton, muuttuu se seuraavan kutsun jälkeen parilliseksi: 6
7 = = , jne. Tekemällä kertominen suoraviivaisesti public static double potenss2(double x, int n){ int vast = 1; for ( int i=1; i<=n; i++ ) vast = vast * x; return vast; päädytään selvästi ajassa O(n) toimivaan algoritmiin. Rekursiivinen algoritmi siis puolittaa syötteen koon vähintään joka toisella kutsulla. Luentokalvoilla todettiin, että ongelma-alueen puolitukseen perustuvat algoritmit ovat O(log n). Voidaan ajatella, että algoritmimme on puolet huonompi kuin logaritminen algoritmi (koska vain joka toinen rekursiivinen kutsu puolittaa syötteen). Koska O-analyysissä vakiot häviävät, ei "puolet huonommalla" ole merkitystä ja täten rekursioon perustuva tapa laskea potenssi on myös O(log n). Eli algoritmi on hyvä, parempaa ei liene olemassa. Huom: tämä päättely ei täytä täysin kaikken jyrkimpiä matemaattisia kriteereitä mutta riittänee TiRa-kurssin tarpeisiin. 7
58131 Tietorakenteet ja algoritmit (syksy 2015)
58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
Tietorakenteet, laskuharjoitus 2,
Tietorakenteet, laskuharjoitus, 6.-9.1 Muista TRAKLA-tehtävien deadline 31.1. 1. Tarkastellaan ensin tehtävää yleisellä tasolla. Jos funktion T vaativuusluokka on O(f), niin funktio T on muotoa T (n) =
2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.
3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä
Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö
Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
Tietorakenteet (syksy 2013)
Tietorakenteet (syksy 2013) Harjoitus 1 (6.9.2013) Huom. Sinun on osallistuttava perjantain laskuharjoitustilaisuuteen ja tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. Näiden laskuharjoitusten
Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot
-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi
-Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei
Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä
Tietorakenteet ja algoritmit syksy Laskuharjoitus 1
Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,
Matematiikan tukikurssi, kurssikerta 5
Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään
Vastaoletuksen muodostaminen
Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset
1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,
Tietorakenteet, laskuharjoitus 3, ratkaisuja
Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan
Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...
Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa
= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 4 Ratkaisuehdotuksia 4-810 1 Osoita induktiolla, että luku 15 jakaa luvun 4 n 1 aina, kun n Z + Todistus Tarkastellaan ensin väitettä
Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
4 Matemaattinen induktio
4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla
1. Esitä rekursiivinen määritelmä lukujonolle
Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)
(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17
1.4 Funktioiden kertaluokat
1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)
58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä
Todistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 2 Ratkaisuehdotukset 1. Olkoon totuusjakauma v sellainen että v(p i ) = 1 kaikilla i N ja A propositiolause, jossa
Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:
MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön
Nopea kertolasku, Karatsuban algoritmi
Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa
Algoritmi on periaatteellisella tasolla seuraava:
Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on
13. Loogiset operaatiot 13.1
13. Loogiset operaatiot 13.1 Sisällys Loogiset operaatiot AND, OR, XOR ja NOT. Operaatioiden ehdollisuus. Bittioperaatiot. Loogiset operaatiot ohjausrakenteissa. Loogiset operaatiot ja laskentajärjestys.
Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................
T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )
T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 opetusmoniste, lauselogiikka 2.1-3.5) 21 24.9.2004 1. Määrittele lauselogiikan konnektiivit a) aina epätoden lauseen ja implikaation
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,
LOGIIKKA johdantoa
LOGIIKKA johdantoa LUKUTEORIA JA TO- DISTAMINEN, MAA11 Logiikan tehtävä: Logiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat päättelyt
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.
3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >
(2n 1) = n 2
3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa
Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
Luku 8. Aluekyselyt. 8.1 Summataulukko
Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa
Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...
2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen
Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO
8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset
815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 6 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/
Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus syksy 008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä Todista ketjumurtoluvun peräkkäisille konvergenteille kaava ( ) n induktiolla käyttämällä jonojen ( ) ja ( ) rekursiokaavaa.
Java-kielen perusteita
Java-kielen perusteita valintalauseet 1 Johdantoa kontrollirakenteisiin Tähän saakka ohjelmissa on ollut vain peräkkäisyyttä eli lauseet on suoritettu peräkkäin yksi kerrallaan Tarvitsemme myös valintaa
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden
Johdatus matemaattiseen päättelyyn (5 op)
Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi
Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014
Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
Ratkaisu: Yksi tapa nähdä, että kaavat A (B C) ja (A B) (A C) ovat loogisesti ekvivalentit, on tehdä totuustaulu lauseelle
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 3 Ratkaisuehdotukset 1. Olkoot A, B ja C propositiolauseita. Näytä, että A (B C) (A B) (A C). Ratkaisu: Yksi tapa
13. Loogiset operaatiot 13.1
13. Loogiset operaatiot 13.1 Sisällys Loogiset operaatiot AND, OR, XOR ja NOT. Operaatioiden ehdollisuus. Bittioperaatiot. Loogiset operaatiot ohjausrakenteissa. Loogiset operaatiot ja laskentajärjestys.
Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT ALGORITMIEN ANALYYSISTÄ 1.ratkaisu Laskentaaika hakkeri - optimoitu ALGORITMIANALYYSIÄ hyvä algoritmi hakkeri -optimoitu hyvä algoritmi Tehtävän koko Kuva mukailtu
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,
1. Osoita juuren määritelmän ja potenssin (eksponenttina kokonaisluku) laskusääntöjen. xm = ( n x) m ;
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Ohjaus 11 7.1.009 alkavalle viikolle Ratkaisut (AK) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan tärkeiden transkendenttifunktioiden
Pikapaketti logiikkaan
Pikapaketti logiikkaan Tämän oppimateriaalin tarkoituksena on tutustua pikaisesti matemaattiseen logiikkaan. Oppimateriaalin asioita tarvitaan projektin tekemisessä. Kiinnostuneet voivat lukea lisää myös
Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.
Metodien tekeminen Javalla
1 Metodien tekeminen Javalla Mikä metodi on? Metodin syntaksi Metodi ja sen kutsuminen Parametreista Merkkijonot ja metodi Taulukot ja metodi 1 Mikä metodi on? Metodilla toteutetaan luokkaan toiminnallisuutta.
Loogiset konnektiivit
Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi... jos ja vain jos... Sulkeita ( ) käytetään selkeyden vuoksi
SAT-ongelman rajoitetut muodot
SAT-ongelman rajoitetut muodot olemme juuri osoittaneet että SAT on NP-täydellinen perusidea on nyt osoittaa joukolle kiinnostavia ongelmia A NP että SAT p m A, jolloin kyseiset A myös ovat NP-täydellisiä
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat
Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus
f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))
Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia
Matemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 11. Kurssikerta Petrus Mikkola 29.11.2016 Tämän kerran asiat Eksponenttifunktio Eksponenttifunktion määritelmä Eksponenttifunktion ominaisuuksia Luonnolinen logaritmi
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:
11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta
Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on
Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.
MS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf
1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Algoritmit 1. Luento 2 Ke Timo Männikkö
Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen
Matematiikan tukikurssi, kurssikerta 2
Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin
7. Näytölle tulostaminen 7.1
7. Näytölle tulostaminen 7.1 Sisällys System.out.println- ja System.out.print-operaatiot. Tulostus erikoismerkeillä. Edistyneempää tulosteiden muotoilua. 7.2 Tulostusoperaatiot System.out.println-operaatio
Tekijä Pitkä Matematiikka 11 ratkaisut luku 2
Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen
a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx
x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun
b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.
Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos
Reaalifunktioista 1 / 17. Reaalifunktioista
säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,
Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.
Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z
Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E.
Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E. Perusaksioomat: Laki 1: Kukin totuusfunktio antaa kullekin propositiolle totuusarvoksi joko toden T tai epätoden