Tehnyt 9B Tarkistanut 9A
|
|
- Risto Hyttinen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tehnyt 9B Tarkistanut 9A Kuitinmäen koulu Syksy 2006
2 Avaruusgeometrian soveltavia tehtäviä Päästäänkö uimaan? Mummon kahvipaketti Tiiliseinä SISUSTUSTA Kirkon torni Säästöpakkauspulma PAHVIRISTI VIININ METSÄSTYS Talon maalaaminen Mausteita Jarin pelikassi Pallomeri KUPOLITEATTERI Kauppakassi Ikkunapulma MAALI! Ratkaisut Päästäänkö uimaan? Mummon kahvipaketti Tiiliseinä SISUSTUSTA Kirkon torni Säästöpakkauspulma PAHVIRISTI VIININ METSÄSTYS Talon maalaaminen Mausteita Jarin pelikassi Pallomeri KUPOLITEATTERI Kauppakassi Ikkunapulma MAALI! Tehnyt 9B, tarkistanut 9A Etusivun kuva: (viittaus ) 2
3 Avaruusgeometrian soveltavia tehtäviä 1. Päästäänkö uimaan? Uima-allasta täytetään. Täyttämiseen on käytettävissä litraa vettä. Kuinka korkea vesikerros altaaseen muodostuu? Altaan mitat ovat: pituus: 9m leveys: 4m syvyys: 5m 2. Mummon kahvipaketti Laitetaan suorakulmaisensärmiön muotoisen kahvipaketin sisältö lasipurkkiin. Kuinka monta desilitraa jää tyhjää tilaa? Kahvipaketti Lasipurkki 3
4 3. Tiiliseinä Rakennat taloosi väliseinää tiilistä ja sementistä. Väliseinästä tehdään yhden tiilen leveyden paksuinen. Tiiliä on 200 ja yhden tiilen mitat ovat: korkeus 7 cm, pituus 26 cm ja leveys 13 cm. Miten suuri seinästä tulee pinta-alaltaan tiilien ja sementin avulla, kun sementti lisää seinän pinta-alaa 10%? 4
5 4. SISUSTUSTA Tiia haluaa maalata huoneensa lilalla. Kuinka paljon maalattavan alan pinta-ala on, kun huoneen korkeus on 3m, leveys 6m ja pituus 10m? Kuitenkin päätyseinässä on ympyränmuotoinen ikkuna, jonka halkaisija on 1,2m ja toisessa päätyseinässä on ovi, jonka mitat ovat 2m ja 1,2m. Kaikki pinnat maalataan, paitsi lattia. 5
6 5. Kirkon torni Ranskan pohjoisosassa on kirkko nimeltä Sacre bleu. Yhtä kirkon tornin kattoa remontoidaan, mutta kirkon pohjapiirustuksissa ei ole tarvittavia tietoja sen tekemiseen. Selvitä tornin katon korkeus. 6
7 6. Säästöpakkauspulma Perhe osti kaakaojauhetta suuren säästöpakkauksen. Kotona perheen äiti huomasi, ettei kaakaojauhe välttämättä mahtuisikaan vanhaan ympyrälieriön muotoiseen säilytysrasiaan. Selvitä laskemalla, mahtuuko kaakaojauhe säilytysrasiaan. 7
8 7. PAHVIRISTI Laske pahviristin tilavuus, kun sen syvyys on 0,2cm, leveys on 3cm ja korkeus on 3,6cm. Pahvilevyn leveys on 0.6 cm. 3,6 cm 0,6 cm 3 cm 8
9 8. VIININ METSÄSTYS Viinipikariin kaadetaan vettä melkein piripintaan asti. Vajaaksi jää yhden senttimetrin verran. Laske kuinka monta desilitraa vettä viinipikariin mahtuu? 9
10 9. Talon maalaaminen Kuinka monta purkkia maalia tarvitaan vajan seinien maalaamiseen? Kun maalin riittoisuus 1prk/10m 2 ja ikkunoiden ja oven yhteenlaskettu pinta-ala on 4m 2. 10
11 10. Mausteita SÄILYTYSPULLON HALKAISIJAN PITUUS ON 6,3 cm, KORKEUS 10 cm JA PULLON NOKAN KORKEUS ON 2,5 cm. SIIHEN TYHJENNETÄÄN MAUSTEPURKIN SISÄLTÖ. MAUSTEPURKIN PITUUS ON 5 cm, LEVEYS 3 cm JA KORKEUS 13 cm. MAHTUUKO SE SIIHEN KOKONAAN? 11. Jarin pelikassi Jarilla on suoran ympyrälieriön muotoinen pelikassi, jonka pituus on 70 cm ja pääty-ympyrän halkaisija 30cm. Kassissa on pallo, jonka halkaisija on 20cm ja kuution muotoinen kenkälaatikko, jonka tilavuus on 3375cm³. Laske, kuinka monta Toblerone-suklaapötikköä mahtuu vielä kassiin, kun Tobleronen pohjan pinta-ala on 8cm 2 ja korkeus 17 cm. Toblerone on kolmesivuisen särmiön muotoinen. Patukoiden asettelulla ei ole väliä. 11
12 12. Pallomeri a) Risteilyaluksen pallomerelle tarkoitetun altaan leveys on 3m, pituus 5m ja korkeus 0,9m, kuinka monta halkaisijaltaan 8cm olevaa palloa altaaseen mahtuu? b) Päättele: Jos palloja laitetaan koko allas täyteen, miten käy, kun sekaan menee lisäksi muutama lapsi? 12
13 13. KUPOLITEATTERI Suorakulmaisen muotoisen oopperatalon päälle rakennetaan puolipallon muotoinen kupoliteatteri. Oopperatalon pituus on 30m, leveys 25m ja korkeus 10m. Kupoliteatterin halkaisija on 20m. Laske tarvittava maalin määrä, kun koko yhdistelmärakennuksen seinät ja katto maalataan. Maalin riittoisuus on 5 m 2 / litra. 14. Kauppakassi 1. Kauppakassiin pakataan pikkupaketteja. Laske kuinka monta pikkupakettia kassiin mahtuu. Pikkupaketit pakataan siististi riveittäin ja pinoittain. Kauppakassin mitat: leveys 32cm, korkeus 48cm, syvyys 10cm Pikkupaketin mitat: leveys 8cm, korkeus 4cm, syvyys 2cm 2. Kauppakassiin kaadetaan riisiä pikkupaketeista. Kuinka monta pikkupaketillista riisiä kassiin voidaan kaataa? 13
14 15. Ikkunapulma a) Huoneessa on ympyrän muotoinen ikkuna, jonka halkaisija on 107,3 cm. Ikkuna menee rikki ja sinun täytyy selvittää ikkunan pinta-ala. Muista että ikkunaan tarvitaan kaksinkertainen lasi. b) Kun ikkunassa on kaksinkertainen lasi, sen paksuus on 3,7 cm. Laske kuinka paljon kokonainen lasi painaa. Lasin tiheys on 2,5 kg/dm 3. 14
15 16. MAALI! Jalkapallomaalin mitat ovat 4.25 m ja 2.0m. Maalissa on maalivahtina puusta tehty este, jonka pään halkaisija on 20 cm, kokonaiskorkeus on 1.5 m, leveys 30 cm ja kädet ovat 25cm pitkiä ja 12 cm korkeita suorakulmioita. Kuinka paljon tyhjää tilaa maalintekoon jää? 15
16 Ratkaisut 1. Päästäänkö uimaan? litraa= dm 3 =150m 3 pohjan pinta-ala: 9m 4m=36m 2 Koska veden korkeutta ei tiedetä, jaetaan veden tilavuus pohjan pinta-alalla, jotta saadaan tietoon veden korkeus. h=v/a P 150m 3 : 36m 2 4,2m tulos: Veden korkeus on noin 4,2 metriä 2. Mummon kahvipaketti Kahvipaketin V = 10cm 10cm 15cm = 1500cm 3 ( 5cm) 4 π Lasipurkin V = ,4cm cm + π 2 Lasipurkin V Kahvipaketin V = 594,4cm 3 = 594,4ml 5,9dl 2 20cm 16
17 3. Tiiliseinä 7cm 26cm (7cm 26cm 200) : 10 = cm dm 2 4. SISUSTUSTA Katto: 6m 10m = 60m 2 1 seinä: 3m 10m = 30 m 2 2 seinä: 3m 10m = 30 m 2 ikkuna seinä: ikkunan pa: (0.6) 2 = 1,1 m 2 seinän pa: 3m 6m = 18 m 2 maalataan: 18 m 2 ( ) = 17 m 2 ovi seinä: oven pa: 2m 1.2m = 2,4 m 2 seinän pa: 6m 3m = 18 m 2 maalataan: 18 m 2 (2m 1,2m) = 15,6 m 2 V: maalattava pinta-ala tarkoilla arvoilla laskettuna on 152, m 2 5. Kirkon torni 10 2 = x 2 + 2,5 2 x 2 = ,5 2 x 2 = 100 6,24 x 2 = 93,75 x = 93, 75 x 9, x 9,7m Vast. Kirkon tornin katon korkeus on 9,7m. 17
18 6. Säästöpakkauspulma Lasketaan kaakaopaketin tilavuus: 30cm 23cm 45cm = 31050cm³ Vähennetään kaakaojauheen tilavuus peltipurkin tilavuudesta. (π 15² )cm² 50cm cm³ 4293cm³ Lasketaan lieriön tilavuus. Ensin lasketaan lieriön pohjan pinta-ala, π r² π 15² = 706,9cm² Sen jälkeen lasketaan pohjan pa:n avulla koko lieriön tilavuus, (π 15² )cm² 50cm 35343cm³ Koska tyhjää tilaa jää, kaakaojauhe mahtuu säilytyspurkkiin. 7. PAHVIRISTI 18
19 8. VIININ METSÄSTYS Ensiksi katso tarkkaan ja huomaat, että pohjan jalusta on prikulleen yhtä pitkä kuin pikari päältä. Ratkaistaan korkeus pythagoraan lauseen avulla. Saadaan korkeus, jolloin mietitään laskukaava, jolla kartion tilavuus saadaan selville. Pohjan pinta-ala korkeus : 3. Saadaan vastaus, jolloin se muutetaan dm 3, koska 1dm 3 = 1l. 2,5 2 + X 2 = ,25 + X 2 = 169-6,25 X 2 = 162,25 X 2 = 12,8cm πr 2 π 2,5 2 = 19,6 cm 2 Pohjan pinta-ala Pohjan pinta-ala korkeus : 3 (π 2,5 2 ) 12,8cm : 3 Pitää muistaa vähentää 1cm niin kuin ohjeessa luki. (π 2,5 2 ) 11,8cm : 3 = 77,2cm 3 = 0,077dm 3 = 0,077l = 0,77dl 9. Talon maalaaminen 2 (4m 3m) + 2 (3m 3m) = 42 m 2 42m 2 4m 2 =38m 2 38m 2 : 10m 2 = 3,8 Vast: Maalaamiseen tarvitaan 4 purkkia maalia. 19
20 10. Mausteita MAUSTEPURKIN TILAVUUS: V= 5 cm. 3 cm. 13 cm= 195 cm 2 SÄILYTYSPURKIN TILAVUUS: A p= πr 2 π. (3,15) 2 = 31,17245 cm 2 31,17245 cm 2. 10cm= 311,7245 cm 3 PULLON NOKAN TILAVUUS: 2 A p =. πr h π. ( 1,5 cm) 2. 2,5 cm 17,67145 cm 3 311,7245 cm ,67145 cm 3 = n. 329,4cm 3 MAUSTEET MAHTUVAT SÄILYTYSPULLOON KOSKA PULLON TILAVUUS ON n. 329,4cm 3 ja MAUSTEIDEN 195cm 3 20
21 11. Jarin pelikassi 4πr Pallon tilavuus: V= 3 3 r= 20cm:2=10cm (4 π (10cm)³): ,8cm³ 4200cm³ Kassin tilavuus: V=πr²h r= 30cm:2=15cm π (15cm)² 70cm 49480,1cm³ 49000cm³ Tyhjää tilaa jää: (π (15cm)² 70cm) - (4 π (10cm)³): cm³=41916,29409 Tobleronen tilavuus: V=hA p V= 8cm² 17cm=136cm³ 41916,29409cm³:136cm³ 308,2 Vastaus: Tobleroneja mahtuu kassiin siis 308 kappaletta. 12. Pallomeri Altaan tilavuus: 500cm 300cm 90cm= cm 3 Pallon tilavuus: V= (4Лr 3 ): 3= (4 Л (8cm:2) 3 ):3 =268, cm cm 3 : 268, cm 3 = , palloa a) Pallomerelle varattuun altaaseen mahtuu yhteensä palloa. b) Kun täyteen pallomereen menee sekaan lapsia, pallot vierivät yli. 21
22 13. KUPOLITEATTERI A v = 30m 10m m 10m 2 = 1100m 2 20m = 10m 2 A = 4π ( 10m) ,3m 2 A = л (10m) 2 314,2m 2 A = 30m 25m = 750m 2 ((750m 2 л (10m) 2 ) + Vastaus: 433 litraa 4π ( 10m) m 2 ) : 5 432, Kauppakassi 1. Kassin pohjalle mahtuu pikkupaketteja riviin: 32cm : 2cm = 16 Päällekkäin paketteja mahtuu: 48cm : 4cm = 12 Leveys suuntaan kassi oli 10cm leveä, joten siihen mahtuu yksi 8cm leveä paketti = 192 Vastaus: kassiin mahtuu 192 pikkupakettia 2. Kassin tilavuus: 32cm 10cm 48cm = 15360cm³ Pikkupaketin tilavuus: 8cm 4cm 2cm = 64cm³ 15360cm³ : 64cm³ = 240 Vastaus: kassiin voidaan kaataa 240 paketillista riisiä 22
23 15. Ikkunapulma a) 107,3cm = 53,65 cm 2 π 53, = 9042, = 18085,03364 cm 2 1,8 m 2 b) 18085,03364 cm 2 3,7 cm = 66914,62447 cm 3 laskukaava m ρ = V = 66, dm 3 2,5 kg/dm 3 = 167, kg 170 kg 16. MAALI! 4.25m 2m = 8.5m² = m² m² (30cm (150cm 20 cm) + 12cm 25cm 2 + π (20 cm / 2) ²) = cm² Maalintekoon jää siis n. 8 m² 23
24 24
25 25
MATEMATIIKKA PAOJ2 Harjoitustehtävät
MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )
2.1 Yhdenmuotoiset suorakulmaiset kolmiot
2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9
[MATEMATIIKKA, KURSSI 9]
2016 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 9] Avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille 1 SISÄLLYSLUETTELO 9. KURSSIN SISÄLTÖ... 3 9.0.1 MALLIKOE 1... 4 9.0.2 MALLIKOE 2...
MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.
MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen
MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.
MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen
Ammattimatematiikan tuki
Ammattimatematiikan tuki 1) Kuinka monta prosenttia a) 350 grammaa on 15 kilogrammasta b) 20 euroa on 260 eurosta c) 15 minuuttia on 3 tunnista d) 80 senttiä on 20 eurosta e) 56 senttimetriä on 3,2 metristä?
C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013
MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013 PROSENTTILASKENTA Prosentti on 1/100 tai 0,01. Esimerkki 40. Lukuarvo % 0,42 42 0,013 1,3 1,002 100,2 1/25 100/25=4 23/45 51,1
1 Kertausta geometriasta
1 Kertausta geometriasta 1.1 Monikulmiota 1. a) Kolmion kulmien summa on 180. Koska tiedetään kaksi kulmaa, kulma x voidaan laskea. 180 x 35 80 x 180 35 80 x 65 b) Suunnikkaan vastakkaiset kulmat ovat
Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.
Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.
3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 )
Avaruusgeometria Lieriö 4. a) 0 0 1 7 00 (cm ) 7 00 cm 7, dm 7, l b) A p h 0 15 450 (cm ) 5. Kuution särmän pituus on a 1, cm. a) a 1, 1,78 1,7 (cm ) b) A 6a 6 1, 8,64 8,6 (cm ) 16 6. r d 8 (cm) A p h
C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. 4Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty b) Kappaleet II ja III ovat likimain lieriöitä.
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.018 6 AVARUUSGEOMETRIA ALOITA PERUSTEISTA 8A. a) Kappale II on likimain särmiö. Vastaus: II b) Kappaleet II ja III ovat likimain
Avaruusgeometrian perusteita
Avaruusgeometrian perusteita Määritelmä: Kolmiulotteisen avaruuden taso on sellainen pinta, joka sisältää kokonaan jokaisen sellaisen suoran, jonka kanssa sillä on kaksi yhteistä pistettä. Ts. taso on
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus
= A h, joten poikkipinta-alaksi saadaan. Rännin tilavuus V. 80 dm. 90 dm = 0,888... dm 0,89 dm 902 V. Poikkipinta-alan pitää olla. 0,89 dm.
Pyramidi Geometria tetävien ratkaisut sivu 149 901 a on lieriö b ei ole, ojat eivät ole ytenevät c on d ei ole, lieriön määritelmän eto suora liikkuu suuntansa säilyttäen ja alaa louksi lätöaikkaansa käymättä
[MATEMATIIKKA, KURSSI 8]
2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...
MAA03.3 Geometria Annu
1 / 8 2.2.2018 klo 11.49 MAA03.3 Geometria Annu Kokeessa on kolme (3) osaa; Monivalinnat 1 ja 2 ovat pakollisia (6 p /tehtävä, yht. 12 p) B1 osa Valitse kuusi (6) mieleisintä tehtävää tehtävistä 3-10.
KERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o.
KERTAUSHARJOITUKSIA KULMA 45 l 6. a) Samankohtaisista kulmista 80( 80456) 08 b) Kolmion kulmien summa on ( 80) 80 6 l 5 80 :( 5) 6 Kysytty kulma 80 8067 Vastaus: a) 08 o b) 7 o 7. Kulmien summa on ( )
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Copyright Isto Jokinen 2013 MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. Isto Jokinen 2013 SISÄLTÖ. Pinta-alojen laskeminen
Copyright Isto Jokinen 01 MTEMTIIKK Matematiikkaa pintakäsittelijöille POJ. Isto Jokinen 01 SISÄLTÖ Pinta-alojen laskeminen Tilavuuksien laskeminen Prosenttilaskut Käyttö opetuksessa tekijän luvalla 1
4 TOISEN ASTEEN YHTÄLÖ
Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 4 TOISEN ASTEEN YHTÄLÖ POHDITTAVAA 1. Merkitään toisen neliön sivun pituutta kirjaimella x. Tällöin toisen neliön sivun pituus on
AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE
AMMATTIKORKEAKOULUJEN LUONNONVARA JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 7.6.2005 Nimi: Henkilötunnus: Sain kutsun kokeeseen Hämeen amk:lta Jyväskylän amk:lta Kymenlaakson amk:lta Laurea amk:lta
Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa
Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen
A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1
Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Mittakaava Avainsanat: yhdenmuotoisuus, suurennos, pienennös, mittakaava, mittaaminen, pinta-ala, tilavuus, suhde Luokkataso: 3-9 Välineet: kynä,
Näyte. Peruslaskutoimitukset. Perustehtävät. Alkulämmittely. A Laske a) 1 + 2 3 35 b) 7 c) 2 7 + 8 7 d) 32 + 75 + 68
LUKKPIRUETTEJ Peruslaskutoimitukset Perustehtävät Laske a) 1 + 2 5 b) 7 c) 2 7 + 8 7 d) 2 + 75 + 68 Muunna sekunneiksi a) 8 min b) 4,5 min Muunna minuuteiksi. a) 120 s b) 150 s c) 1 h 1. Jalkapallo-ottelun
Kappaleiden tilavuus. Suorakulmainensärmiö.
Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)
Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä
Kenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)
Kenguru 2014 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
454918 PIENET GEOMETRISET KAPPALEET Geometristen kappaleiden tilavuudet
Ohje Tevellan tuotteelle Viinikankatu 49 A, 33800 Tampere Puh (03) 380 5300, Fax (03) 380 5353 E-mail: myynti@tevella.fi, www.tevella.fi Pieni kuutio V=AxH V=(sxs)xH V=(2,5x2,5)x2,5 V=15,6 cm 3 Suuri kuutio
Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää!
MAA Koe 4.4.011 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! 1 Selitä ja piirrä seuraavat lyhyesti: a) Vieruskulmat b) Tangentti kulmasta Katsottuna.
Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli
Kertausosa 1. Kulma α on 7 suurempi kuin kulma eli 7. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli 180 7 180 14 : 71,5 Siis 7 71,5 7 108, 5 Vastaus: 108,5, 71, 5. Kuvaan merkityt kulmat
MITTAAMINEN I. Käännä! matematiikkalehtisolmu.fi
1 MITTAAMINEN I Tehtävät sopivat peruskoulun alaluokille. Ne on koostettu Matematiikkalehti Solmun Matematiikkadiplomeista I IV. Sivunumerot viittaavat näiden diplomitehtävien sivuihin. Aihepiirejä: oma
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo
OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain.
OSA 3: GEOMETRIAA Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Kokoa neljästä alla olevasta palasesta M kirjain. G. GEOMETRIAA Hannu ja
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Arkkitehtimatematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Arkkitehtimatematiikan koe..017, Ratkaisut (Sarja A) 1. a) Mitkä reaaliluvut x toteuttavat yhtälön x =? (1 p.) b) Mitkä reaaliluvut x toteuttavat
MATEMATIIKKAKILPAILU
Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 14.11.2013 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU
4 Avaruusgeometria. Ennakkotehtävät. 1. a) Pisin mahdollinen jana on jana AC. Pisin mahdollinen jana on jana AG. c) Kulma on 90.
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.10.016 4 Avaruusgeometria Ennakkotehtävät 1. a) b) Pisin mahdollinen jana on jana AC. Pisin mahdollinen jana on jana AG. c) Kulma on 90.
HUOLTOMATEMATIIKKA 2, MATERIAALI
1 SISÄLTÖ HUOLTOMATEMATIIKKA, MATERIAALI 1) Murtoluvut ) Yhtenevyys ja yhdenmuotoisuus 3) Tasokuvioiden pinta-alat ja piirit 4) Kappaleiden tilavuudet 5) Suorakulmainen kolmio ja Pythagoran lause 6) Suorakulmaisen
Avaruuslävistäjää etsimässä
Avaruuslävistäjää etsimässä Avainsanat: avaruusgeometria, mittaaminen Luokkataso: 6.-9. lk, lukio Välineet: lankaa, särmiön muotoisia kartonkisia pakkauksia(esim. maitotölkki tms.), sakset, piirtokolmio,
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 17.10.016 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ 1. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 180. Kolmannen kulman
Aloita A:sta. Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan.
Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)
Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.
KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt
1 Laske ympyrän kehän pituus, kun
Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin
MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!
MAA7 7. Koe Jussi Tyni 1..01 1. Laske raja-arvot: a) 5 x lim x5 x 10 b) x 8x16 lim x x 9 x. a) Määritä erotusosamäärän avulla funktion f (5). b) Onko funktio f x vastauksesi lyhyesti 1 9 x ( ) x f ( x)
Kenguru 2011 Benjamin (6. ja 7. luokka)
sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua
Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Mittauspäivä ja aika LASKE VIRTAAMA, JOS TIEDÄT TEHON JA LÄMPÖTILAERON
LÄMPÖPUMPUN ANTOTEHO JA COP Täytä tiedot vihreisiin ruutuihin Täytä tiedot Mittauspäivä ja aika Lähdön lämpötila Paluun lämpötila 32,6 C 27,3 C Meno paluu erotus Virtaama (Litraa/sek) 0,32 l/s - Litraa
Betonimatematiikkaa
Betonimatematiikkaa.11.017 Kiviaineksen rakeisuusesimerkki Laske seuraavan seulontatuloksen rakeisuusluku ja piirrä rakeisuuskäyrä Seula # mm Seulalle jäänyt Läpäisyarvo % g % Pohja 60 9,0-0,15 30 4,5
5 Kertaus: Geometria. 5.1 Kurssin keskeiset asiat. 1. a) Merkitään suorakulmion sivuja 3x ja 4x. Piirretään mallikuva.
5 Kertaus: Geometria 5.1 Kurssin keskeiset asiat 1. a) Merkitään suorakulmion sivuja 3x ja 4x. Piirretään mallikuva. 4x 3x 10 cm Muodostetaan Pythagoraan lause ja ratkaistaan sen avulla x. (3 x) (4 x)
MAA7 7.2 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! lim.
MAA7 7. Koe Jussi Tyni 8.1.01 1. Laske raja-arvot: a) 9 lim 6 lim 1. a) Määritä erotusosamäärän avulla funktion f (). 1 f ( ) derivaatta 1 Onko funktio f ( ) 9 kaikkialla vähenevä? Perustele vastauksesi
Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN
alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä
Kenguru 2006 sivu 1 Cadet-ratkaisut
Kenguru 2006 sivu 1 3 pistettä 1. Kenguru astuu sisään sokkeloon. Se saa käydä vain kolmion muotoisissa huoneissa. Mistä se pääsee ulos? A) a B) b C) c D) d E) e 2. Kengurukilpailu on pidetty Euroopassa
Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin.
1 MITTAAMINEN II Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin. Aihepiirejä: Suomen maantieto, nopeus, matka ja aika, erilaisten
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
Öljysäiliö maan alla
Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö
Esimerkiksi jos käytössä ovat kirjaimet FFII, mahdolliset nimet ovat FIFI ja IFIF. Näistä aakkosjärjestykssä ensimmäinen nimi on FIFI.
A Nimi Uolevi sai koiranpennun, mutta siltä puuttuu vielä nimi. Uolevi on jo päättänyt, mitä kirjaimia nimessä tulee olla. Lisäksi hän haluaa, että nimi muodostuu toistamalla kaksi kertaa sama merkkijono.
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä
KORJAUSMATIIKKA 3, TEHTÄVÄT
1 SISÄLTÖ KORJAUSMATIIKKA, TEHTÄVÄT 1) Potenssi 2) Juuri ) Polynomit ) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa ja toisen asteen yhtälön ratkaisukaava TEHTÄVÄT: Käythän
MAA3 HARJOITUSTEHTÄVIÄ
MAA3 HARJOITUSTEHTÄVIÄ 1. Selosta, miten puolitat (jaat kahtia) annetun koveran kulman pelkästään harppia ja viivoitinta käyttäen. 2. Piirrä kolmio, kun tunnetaan sen kaksi kulmaa (α ja β) sekä näiden
Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.
5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41
OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI
OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Mitkä kuutiot on taiteltu kuvassa
Kenguru Écolier (4. ja 5. luokka) ratkaisut sivu 1/5
Kenguru Écolier (4. ja 5. luokka) ratkaisut sivu 1/5 3 pisteen tehtävät 1) Miettisen perhe syö 3 ateriaa päivässä. Kuinka monta ateriaa he syövät viikon aikana? A) 7 B) 18 C) 21 D) 28 E) 37 2) Aikuisten
Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2012
Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2012 MFKA-Kustannus Oy Rautatieläisenkatu 6, 00520 HELSINKI, puh. (09) 1502 378 http://www.mfka.fi
PYÖRÄHDYSKAPPALEEN PINTA-ALA
PYÖRÄHDYSKAPPALEEN PINTA-ALA PYÖRÄHDYSKAPPALEEN PINTA-ALA Pyörädyskappaleen pinta syntyy, kun funktion kuvaaja pyörätää suoran ympäri., suomennos Matti Pauna LIERIÖ JA KARTIO Lieriöt ja kartiot ovat yksinkertiaisimpia
Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille!
5.4.013 Jussi Tyni 1. Selitä ja piirrä seuraavat lyhyesti: a) Kehäkulma ja keskikulma b) Todista, että kolmion kulmien summa on 180 astetta. Selitä päätelmiesi perustelut.. a) Suorakulmaisen kolmion kateetit
Betonimatematiikkaa
Betonimatematiikkaa.11.017 Kiviaineksen seulontatulokset ja läpäisyarvo Laske seuraavan seulontatuloksen rakeisuusluku ja piirrä rakeisuuskäyrä Seula # mm Seulalle jäänyt Läpäisyarvo g % % Pohja 60 9,0-0,15
MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
Kenguru 2012 Cadet (8. ja 9. luokka)
sivu 1 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä
Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =
Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?
b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen?
LASKUTOIMITUKSET Nimi: ) Muista laskutoimituksissa käytettävät nimet. a) Mikä on lukujen 650 ja 70 summa erotus b) Kun vähenevä on 000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava
y 1 x l 1 1 Kuva 1: Momentti
BMA58 Integraalilaskenta ja sovellukset Harjoitus 4, Kevät 17 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Integraalit eivät tosin ole niin vaikeita etteikö niitä suurimmassa
A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:
MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko
Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4
Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
Trestima Oy Puuston mittauksia
Trestima Oy Puuston mittauksia Projektissa tutustutaan puuston mittaukseen sekä yritykseen Trestima Oy. Opettaja jakaa luokan 3 hengen ryhmiin. Projektista arvioidaan ryhmätyöskentely, projektiin osallistuminen
A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:
MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:
yleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
Trigonometriaa ja solve-komento GeoGebralla
Trigonometriaa ja solve-komento GeoGebralla Valitse yläreunasta Näytä-valikosta CAS ja Piirtoalue. CAS-on laskinohjelma, piirtoalueen avulla saat kuviot näkyville tarvittaessa. Harjoitellaan ensiksi CAS-ikkunan
Luvun 12 laskuesimerkit
Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine
235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti
8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.
x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?
Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,
Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2013
Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen yhdeksännen luokan matematiikan koe 2013 MFKA-Kustannus Oy Rautatieläisenkatu 6, 00520 HELSINKI, puh. (09) 1502 378 http://www.mfka.fi
Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia
Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,
Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen 9. luokan matematiikan koe keväällä 2017
Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen 9. luokan matematiikan koe keväällä 017 MFKA Kustannus Oy Rautatieläisenkatu 6, 0050 HELSINKI, puh. 010 3 316 http://www.mfka.fi HUOMIO
AVOIN MATEMATIIKKA 9 Osio 3: Geometrian tietojen syventämistä
Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA 9 Osio : Geometrian tietojen syventämistä Sisältö on lisensoitu avoimella CC BY.0 -lisenssillä. 1 8. Kappaleiden pinta-aloja Kappaleiden kokonaispinta-alassa
Tilanjako-oven mittausohjeet
Tilanjako-oven mittausohjeet Tilanjako-oven oikea mitoitus näitä mittausohjeita noudattaen. Alla kolme yleisintä asennus- / mittausvaihtoehtoa. Mittausmalli Seinäkiinnitys oviaukon päälle Esimerkin oviaukon
Ryhmätyöprojekti, 9. luokka
Ryhmätyöprojekti, 9. luokka Opettajan määräämissä noin kolmen hengen ryhmissä toteutetaan projekti, jossa yhdistyy yhtälöiden ratkaiseminen hahmotuskyky ja luovuus annettujen resurssien käyttö tutustuminen
Vastaus: Komplementtikulma on 23 ja suplementtikulma on 113. 404. Nelikulmion kulmien summa on 360.
9. Särmiä pitkin matka on a. Avaruuslävistäjää pitkin matka on a + a + a a a Matkojen suhde on 0,577, eli avaruuslävistäjää pitkin kuljettu matka on a 00 % 57,7 % 4, % lyhyempi. Vastaus: 4, % 0. Tilavuus
Kenguru 2019 Student lukio
sivu 0 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Koodi (ope täyttää): Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta