YKYY2 Yhteiskunnan mittaaminen Kertauskuulustelu
|
|
- Pirkko Mikkonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tampereen yliopisto / YKY / Tero Mamia YKYY2 Yhteiskunnan mittaaminen Kertauskuulustelu Nimi: Opiskelijanumero: Tutkinto-ohjelma / pääaine: OHJE: Täytä ensin omat tietosi lomakkeen yläreunaan. Lue kysymykset huolellisesti ja vastaa ohjeiden mukaan vastaukselle varattuun tilaan. Erillistä vastauspaperia ei käytetä. Vastausten pitäisi pääsääntöisesti mahtua vastaukselle varatuille viivoille. Kunkin tehtävän yhteydessä on esitetty maksimipistemäärä, joka tehtävästä on mahdollista saada. Huomaa, että oikein-väärin tehtävässä väärä vastaus vähentää pisteitä. Tehtävästä ei kuitenkaan voi saada nollaa pienempää pistemäärää (eli miinukset eivät vähennä muiden tehtävien pistemääriä). Koko tentin maksimipistemäärä on 60 p. 1) Eräässä tutkimuksessa ollaan kiinnostuneita siitä, ovatko urheilun seuratoiminnassa mukana olevat pojat taipuvaisempia humalahakuiseen alkoholinkäyttöön kuin muut teini-ikäiset pojat? Määrittele tutkimuksen tilastoyksikkö, perusjoukko ja välttämättömät muuttujat. (max 4 p) Tilastoyksikkö: Perusjoukko: Muuttujat: 2) Indeksilasku. Kahvipaketin hinta perusajankohtana on 4,00 euroa. Hinta nousee laskenta-ajankohtana 4,20 euroon. Kun perusajankohdan hintaindeksi on 100, niin mikä on kahvipaketin hintaindeksiksi laskenta-ajankohtana? (max 3 p) 3) Mikä on lukujoukon {3, 3, 4, 5, 15}: (max 3 p) a) Aritmeettinen keskiarvo? b) Mediaani? c) Moodi?
2 4) Oikein-väärin väittämät: Lue esitetyt väittämät huolella. Merkitse rastilla (X) onko esitetty väittämä mielestäsi oikein vai väärin. Oikeasta vastauksesta saa pisteen - väärä vähentää pisteen. Jos siis et todellakaan jotain asiaa tiedä, niin välttämättä ei kannata arvailla. Väittämät on järjestetty pääsääntöisesti niin, että helpommat ovat alussa ja vaativammat lopussa. (max 30 p) VÄITTÄMÄ Oikein Väärin 1. Pienituloisuuden (köyhyyden) absoluuttinen mittaaminen tarkoittaa, että pienituloisuus määritellään suhteessa tyypilliseen tulotasoon. 2. Ristiintaulukoinnissa tarkastellaan yhden muuttujan jakaumia erikseen toisen muuttujan luokkien sisällä. 3. Keskihajonta on jakaumaa kuvaava tilastollinen muuttuja. 4. Avoimien Internet-kyselyjen ongelma on, että vastaajat valitsevat itse itsensä, jolloin tulokset vinoutuvat eikä niiden yleistettävyyttä voida arvioida. 5. Aineiston edustavuus tarkoittaa että otos on reliaabeli ja validi. 6. Psykologisessa tutkimuksessa tavallisin mittaustapa on ns. psykologisten testien käyttö. 7. Analyysitaulukoissa (esim. ristiintaulukointi) on tärkeää esittää %-jakaumat mahdollisimman tarkasti. Lukuja ei tulisi pyöristää kokonaisluvuiksi. 8. Numerolukutaito tarkoittaa, että ihminen tuntee numerot ja osaa tehdä peruslaskutoimituksia kokonaisluvuilla. 9. Tutkimuksessa populaatio eli perusjoukko on kaikkien mahdollisten tutkimusyksiköiden joukko, josta tutkimuksessa halutaan tehdä päätelmiä. 10. Viralliset tilastot ovat välttämätön osa demokraattista yhteiskuntaa. 11. Dummy-muuttujaksi kutsutaan kyselytutkimuksessa epäonnistuneesti muotoiltua kysymystä, joka on siis hieman "tyhmä". 12. Kokonaistutkimus on tutkimus, jossa tutkittava ilmiö pyritään kuvaamaan mahdollisimman kokonaisvaltaisesti. 13. Kolmiulotteisuus tekee tilastokuviot näyttävämmiksi ja auttaa siten tilastotiedon välittämisessä. 14. Viivakuvio on sopiva tilastokuvio kun halutaan esittää kvantitatiivisten ilmiöiden kehityssuuntaa tai muutosta ajassa. 15. Mittaaminen on luotettavaa silloin kun mittaustulosten vaihtelu vastaa mittauksen kohteena olevan ilmiön todellista vaihtelua. 16. Rekisteriaineistojen tutkimuskäyttöä Suomessa rajoittaa lainsäädäntö, joka kieltää eri rekisterien tietojen yhdistämisen yksilötasolla. 17. Kaikissa maissa on valtiollinen tilastolaitos- tai virasto. 18. Tutkijan ammattitaitoon kuuluu, että kykenee muodostamaan tilastoaineistosta sellaiset tilastokuviot, jotka parhaiten tukevat teoriasta johdettua hypoteesia. 19. Ositetussa otannassa perusjoukko jaetaan osiin ja otanta tehdään erikseen näissä osaryhmissä.
3 VÄITTÄMÄ Oikein Väärin 20. Kun tutkimuksessa erotetaan analyysi ja tulkinta, halutaan korostaa, että empiiriset tulokset saavat tutkimuksessa merkityksensä vasta, kun niitä tarkastellaan yleisemmallä ja teoreettisemmalla tasolla suhteessa aiempaan tutkimukseen ja teoriaan. 21. Agenda setting -teorian mukaan medialla on suuri vaikutus siihen mitä ihmiset asioista ajattelevat ja myös merkittävä vaikutus poliittiseen päätöksentekoon. 22. Tulojakauma on esimerkki positiivisesti (eli oikealle) vinosta jakaumasta. 23. Inflaatiolla tarkoitetaan rahan arvon heikkenemistä, jota mitataan kuluttajahintaindeksin 12 kuukauden prosenttimuutoksella. 24. Lainsäädäntö määrää, että hankittaessa tietoja tilastojen laatimista varten, tulee ensi sijassa hyödyntää rekisteriaineistoja. 25. BKT ei ole vertailukelpoinen eri tavalla kehittyneiden maiden välillä muun muassa sen vuoksi, että BKT jättää kokonaan huomiotta ns. harmaan talouden tuotannon arvon. 26. Paneeliaineisto on niin kutsuttu prospektiivinen pitkittäisaineisto, jossa eri mittauksissa on mukana aina samat havaintoyksiköt eli tapaukset. 27. Otantajakauma ei koskaan jakaudu normaalisti, koska otoksessa on aina satunnaista virhettä. 28. Variaatiosuhde on ainoa luokitteluasteikkoisille muuttujille soveltuva hajontaluku. 29. "Yleinen mielipide" voidaan ymmärtää joko yksittäisten mielipiteiden kokonaisuutena (enemmistön mielipiteenä) tai kollektiivisempana yleishenkenä tai -tahtona. 30. Korrelaatiokerroin kuvaa käytännössä sitä kuinka hyvin regressiosuora mallintaa kahden kvantitatiivisen muuttujan lineaarista riippuvuutta.
4 5) Vastaa lyhyesti seuraaviin kysymyksiin. (max 10 p) a) Mitä tarkoittaa kun sanotaan, että kyselytutkimuksessa monivalintakysymysten vastausvaihtoehtojen tulee olla "kattavia" ja "toisensa poissulkevia"? (2 p) b) Millaisia asioita valtiollinen tilastolaitos tyypillisesti tilastoi eli mitkä ovat virallisten tilastojen kolme päätyyppiä? (3 p) c) Millaisia etuja rekisteriaineistot tarjoavat tutkimukselle otantaan perustuviin kyselyaineistoihin verrattuna? (3 p) d) Helsingin Sanomat otsikoi helmikuussa 2013: "Yli neljännes nuorista miehistä vailla työtä." Uutinen perustui Tilastokeskuksen työvoimatutkimukseen, jonka mukaan vuotiaiden miesten työttömyysaste oli vuoden 2013 tammikuussa 26,4 prosenttia. Miksi otsikko kuitenkin on virheellinen? (2 p)
5 6) Kuviossa alla on esitetty Gini-kertoimen kehitys EU-maissa vuosina Kertoimet on laskettu ns. markkinatulosta eli (tuotannontekijätulosta). Tutki kuviota ja vastaa kuvion alla oleviin tuloeroja koskeviin kysymyksiin. (max 5 p) Figure 5: The Gini coefficient for household market income, a) Missä EU-maassa gini-kertoimella mitatut tuloerot ovat tarkastelujaksolla selvimmin kasvaneet? b) Missä maassa tuloerot puolestaan ovat huomattavimmin kaventuneet? c) Missä maassa tulonjako vuonna 2010 oli kaikkein tasaisin? d) Miten Suomen tuloerojen taso ja kehitys suhteutuvat muihin EU-maihin?
6 7) Tutki alla olevaa kuviota avioerojen kertymästä eri vuosina solmituissa avioliitoissa ja vastaa kuvion alla oleviin kysymyksiin. (max 5 p) Liitekuvio 4. Avioerojen kertymä eri vuosina solmituissa avioliitoissa vuoden 2011 loppuun mennessä. Lähde: Väestö- ja kuolemansyytilastot. Tilastokeskus a) Kuinka suuri osuus vuonna 1985 avioituneista oli eronnut vuoden 2011 loppuun mennessä? b) Kuinka suuri osuus 1990-luvulla ja myöhemmin avioituneista keskimäärin eroaa kahden ensimmäisen avioliittovuoden aikana? c) Mitä kuvio kertoo avioliittojen kestävyyden kehityksestä 1960-luvun puolivälistä nykypäivään? Milloin tässä kehityksessä on havaittavissa selvä murroskohta?
1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.
Kvantitatiiviset menetelmät
Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden
Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4
TILTP1 Tilastotieteen johdantokurssin harjoitustyö Tampereen yliopisto 5.11.2007 Perttu Kaijansinkko (84813) perttu.kaijansinkko@uta.fi Pääaine matematiikka/tilastotiede Tarkastaja Tarja Siren 1 Johdanto...2
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
Til.yks. x y z
Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)
Otannasta ja mittaamisesta
Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,
b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.
806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta
Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)
1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise
Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, kevät 2019 https://coursepages.uta.fi/mtttp1/kevat-2019/ HARJOITUS 3 Joitain ratkaisuja 1. x =(8+9+6+7+10)/5 = 8, s 2 = ((8 8) 2 + (9 8) 2 +(6 8) 2 + (7 8) 2 ) +
Matemaatikot ja tilastotieteilijät
Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat
Ylimmät tulo osuudet,tuloerot ja verot. Marja Riihelä (VATT) & Matti Tuomala (TaY) Sosiaalipolitiikan päivät Tampere
Ylimmät tulo osuudet,tuloerot ja verot Marja Riihelä (VATT) & Matti Tuomala (TaY) Sosiaalipolitiikan päivät Tampere 25.10.2018 Taustaa Usein kuultu väite tuloerokeskustelussa tuloerot eivät ole enää kasvaneet
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
16.11.2017/1 MTTTP5, luento 16.11.2017 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla ~,, ~,,. 16.11.2017/2 Esim. Tutkittiin uuden menetelmän käyttökelpoisuutta
Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =
Tutkiva ja kehittävä osaaja (3 op) Kyselyaineisto keruumenetelmänä opinnäytetyössä Ismo Vuorinen
Tutkiva ja kehittävä osaaja (3 op) Kyselyaineisto keruumenetelmänä opinnäytetyössä Ismo Vuorinen 29.10.2009 Survey aineistot (lomaketutkimukset) Kyselyaineistot posti(kirje)kysely informoitu kysely tietokoneavusteinen
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa
Määrällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 24.4.2017 1 Kategoriset muuttujat Lukumääriä Prosentteja (muista n-arvot) Pylväitä 2 Yhteenvetotaulukko (frekvenssitaulukko) TAULUKKO 1. Asunnon tyyppi
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä
Teema 3: Tilastollisia kuvia ja tunnuslukuja
Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin
Hallintotieteen ja soveltavan psykologian sekä johtamisen valintakoe 2016
Hallintotieteen ja soveltavan psykologian sekä johtamisen valintakoe 2016 Kokeen osat Kirjallisuusosio (enimmäispistemäärä 45) Tehtävä I Prosessikonsultoinnin uusi aalto (enimmäispistemäärä 15) Tehtävä
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi
Monitasomallit koulututkimuksessa
Metodifestivaali 9.5.009 Monitasomallit koulututkimuksessa Mitä ihmettä? Antero Malin Koulutuksen tutkimuslaitos Jyväskylän yliopisto 009 1 Tilastollisten analyysien lähtökohta: Perusjoukolla on luonnollinen
Viestinnän mentelmät I: sisällön erittely. Sisällönanalyysi/sisällön erittely. Sisällön erittely. Juha Herkman
Viestinnän mentelmät I: sisällön erittely Juha Herkman 10.1.008 Helsingin yliopisto, viestinnän laitos Sisällönanalyysi/sisällön erittely Sisällönanalyysi (SA), content analysis Veikko Pietilä: Sisällön
1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta...
JHS 160 Paikkatiedon laadunhallinta Liite III: Otanta-asetelmat Sisällysluettelo 1. Johdanto... 2 2. Todennäköisyysotanta... 2 2.1 Yksinkertainen satunnaisotanta... 3 2.2 Ositettu otanta... 3 2.3 Systemaattinen
Tehtävä 1. Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä.
Tehtävä 1 Hypoteesi: Liikuntaneuvonta on hyvä keino vaikuttaa terveydentilaan. Onko edellinen hypoteesi hyvä tutkimushypoteesi? Kyllä Ei Hypoteesi ei ole hyvä tutkimushypoteesi, koska se on liian epämääräinen.
Ohjeita kvantitatiiviseen tutkimukseen
1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 1 Sisältö: 1. Kvantitatiivisen tutkimuksen perusteita.2 2. Määrällisen tutkimusprosessin vaiheet..3
Tehtävät 1/11. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin)
1/11 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise
r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
Kvantitatiiviset tutkimusmenetelmät maantieteessä
Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi
Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.
5.10.2017/1 MTTTP1, luento 5.10.2017 KERTAUSTA Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla todennäköisyydellä,
Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012
Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko
Kvantitatiivisen aineiston analyysi
Kvantitatiivisen aineiston analyysi Liiketalouden tutkimusmenetelmät SL 2014 Kvantitatiivinen vs. kvalitatiivinen? tutkimuksen lähtökohtana ovat joko tiedostetut tai tiedostamattomat taustaoletukset (tieteenfilosofiset
ERIARVOISUUS VANHUUDESSA JA TERVEYDESSÄ
ERIARVOISUUS VANHUUDESSA JA TERVEYDESSÄ Eero Lahelma, professori Helsingin yliopisto Hjelt-instituutti Kansanterveystieteen osasto eero.lahelma@helsinki.fi Kohti parempaa vanhuutta, Konsensuskokous Hanasaari
Sosiaalipolitiikkaan pyrkivien on lisäksi vastattava kysymyksiin teoksesta Anttonen & Sipilä, Suomalaista sosiaalipolitiikkaa (2000).
tunnus SOSIAALIPOLITIIKKA AINEISTOKOE Sosiaalipolitiikkaan pyrkivien on lisäksi vastattava kysymyksiin teoksesta Anttonen & Sipilä, Suomalaista sosiaalipolitiikkaa (2000). Perehdy aineistoon ja vastaa
MTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
pisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
HALLINTOTIETEIDEN KANDIDAATTIOHJELMA (HTK/HTM) Valintakoe Pisteet yhteensä (tarkastaja merkitsee)
HALLINTOTIETEIDEN KANDIDAATTIOHJELMA (HTK/HTM) Valintakoe 6.6.2016 Pisteet yhteensä (tarkastaja merkitsee) VALINTAKOKEEN PISTEYTYS Valintakokeesta on mahdollisuus saada maksimissaan 60 pistettä. Tehtävät
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin
Panu Kalmi, Vaasan yliopisto & Olli- Pekka Ruuskanen, Tampereen yliopisto
Taloudellinen lukutaito Suomessa: alustavia tuloksia edustavasta otoksesta suomalaisia Panu Kalmi, Vaasan yliopisto & Olli- Pekka Ruuskanen, Tampereen yliopisto Mitä on taloudellinen lukutaito? OECD:n
/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:
4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2
Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.
6.10.2015/1 MTTTP1, luento 6.10.2015 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
Harjoittele tulkintoja
Harjoittele tulkintoja Syksy 9: KT (55 op) Kvantitatiivisen aineiston keruu ja analyysi SPSS tulosteiden tulkintaa/til Analyysit perustuvat aineistoon: Haavio-Mannila, Elina & Kontula, Osmo (1993): Suomalainen
Psykologia tieteenä. tieteiden jaottelu: TIETEET. EMPIIRISET TIETEET tieteellisyys on havaintojen (kr. empeiria) tekemistä ja niiden koettelua
Psykologia tieteenä tieteiden jaottelu: FORMAALIT TIETEET tieteellisyys on tietyn muodon (kr. forma) seuraamista (esim. logiikan säännöt) matematiikka logiikka TIETEET LUONNON- TIETEET fysiikka kemia biologia
4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:
Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...
Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011
Kuvioita, taulukoita ja tunnuslukuja Aki Taanila 2.2.2011 1 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää
Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.
6.10.2016/1 MTTTP1, luento 6.10.2016 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla
Määrällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 7.11.2011 1 Muuttujat Aineiston esittämisen kannalta muuttujat voidaan jaotella kolmeen tyyppiin: Kategoriset (esimerkiksi sukupuoli, koulutus) Asteikolla
Kandidaatintutkielman aineistonhankinta ja analyysi
Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi
MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
/1. MTTTP1, luento Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:
2.10.2018/1 MTTTP1, luento 2.10.2018 7.4 Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 2.10.2018/2
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156
Tehtävät 1/10. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin)
1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Tehtävien
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
pitkittäisaineistoissa
Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf
Tulonjaon ja pienituloisuuden kehityksestä Martti Hetemäki
Tulonjaon ja pienituloisuuden kehityksestä 26.9.2017 Martti Hetemäki Sisällys Tuloerojen kehitys Suomessa (dia 3) Verojen ja etuuksien tuloeroja tasaava vaikutus eri maissa (dia 4) Työssäkäyvien pienituloisuus
PSY181 Psykologisen tutkimuksen perusteet, kirjallinen harjoitustyö ja kirjatentti
PSY181 Psykologisen tutkimuksen perusteet, kirjallinen harjoitustyö ja kirjatentti Harjoitustyön ohje Tehtävänäsi on laatia tutkimussuunnitelma. Itse tutkimusta ei toteuteta, mutta suunnitelman tulisi
1. Fysiikan ylioppilaskokeessa jaettiin keväällä 2017 oheisen taulukon mukaisesti arvosanoja. Eri arvosanoille annetaan taulukon mukaiset lukuarvot.
MAB5-Harjoituskoe RATKAISUT 1. Fysiikan ylioppilaskokeessa jaettiin keväällä 2017 oheisen taulukon mukaisesti arvosanoja. Eri arvosanoille annetaan taulukon mukaiset lukuarvot. Fysiikka, kevät 2017, arvosanajakauma
Hallintotieteen, johtamisen ja soveltavan psykologian valintakoe 2017
Hallintotieteen, johtamisen ja soveltavan psykologian valintakoe 2017 Kokeen osat Kirjallisuusosio (enimmäispistemäärä 45) Tehtävä I Autenttinen johtaminen (enimmäispistemäärä 15) Tehtävä II Talouden eri
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Sata-hanke ALUEELLISEN HYVINVOINTIMITTARISTON KEHITTÄMINEN. Ari Karppinen & Saku Vähäsantanen
Sata-hanke ALUEELLISEN HYVINVOINTIMITTARISTON KEHITTÄMINEN Ari Karppinen & Saku Vähäsantanen 27.5.2014 2 SATA-HANKE SATA-HANKKEEN TAUSTAA RAHOITUS 2011-2013/2014 Satakuntaliiton myöntämä EAKR-avustus ja
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Ilman Ruotsia: r = 0.862 N Engl J Med 2012; 367:1562-1564. POIKKEAVAN HAVAINNON VAIKUTUS PAIRWISE VAI LISTWISE? Kun aineistossa on muuttujia, joilla
MONISTE 2 Kirjoittanut Elina Katainen
MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi
Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012
Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170
KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun
Lakisääteisiä eläkkeitä koskeva tilastollinen selvitys
1 (8) Lakisääteisiä eläkkeitä koskeva tilastollinen selvitys Tässä selvityksessä tarkastellaan vain lakisääteisiä eläkkeitä. Eläkkeensaajien muita tuloja, esimerkiksi ansiotuloja, yksityisistä eläkevakuutuksista
Kvantitatiiviset menetelmät
Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 V ls. Uusintamahdollisuus on rästitentissä.. ke 6 PR sali. Siihen tulee ilmoittautua WebOodissa 9. 8.. välisenä aikana. Soveltuvan
pitkittäisaineistoissa
Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon
MTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):
Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei
Tulkitse tulokset. Onko muuttujien välillä riippuvuutta? Jos riippuvuutta on, niin millaista se on?
Tilastollinen tietojenkäsittely / SPSS Harjoitus 4 Tarkastellaan ensin aineistoa KUNNAT. Koska kyseessä on kokonaistutkimus, riittää, että tutkit tunnuslukujen arvoja ja teet niiden perusteella päätelmiä.
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
Mittariston laatiminen laatutyöhön
Mittariston laatiminen laatutyöhön Perusopetuksen laatukriteerityö Vaasa 18.9.2012 Tommi Karjalainen Opetus- ja kulttuuriministeriö Millainen on hyvä mittaristo? Kyselylomaketutkimuksen vaiheet: Aiheen
ALUEELLISEN HYVINVOINTIMITTARISTON KEHITTÄMINEN. SATAKUNNAN LAPSI- JA NUORISOPOLIITTINEN FOORUMI 16.9.2014 Ari Karppinen & Saku Vähäsantanen
ALUEELLISEN HYVINVOINTIMITTARISTON KEHITTÄMINEN SATAKUNNAN LAPSI- JA NUORISOPOLIITTINEN FOORUMI 16.9.2014 Ari Karppinen & Saku Vähäsantanen 2 Koulukiusaaminen Satakunnan kunnissa 2013 3 Onko koulukiusauskokemuksella
Esimerkki 1: auringonkukan kasvun kuvailu
GeoGebran LASKENTATAULUKKO Esimerkki 1: auringonkukan kasvun kuvailu Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi aurinkoisina kesinä hyvissä kasvuolosuhteissa Suomessakin
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
P5: Kohti Tutkivaa Työtapaa Kesä Aritmeettinen keskiarvo Ka KA. Painopiste Usein teoreettinen tunnusluku Vähintään välimatka-asteikko.
Aritmeettinen keskiarvo Ka KA Painopiste Usein teoreettinen tunnusluku Vähintään välimatka-asteikko x N i 1 N x i x s SD ha HA Kh KH Vaihtelu keskiarvon ympärillä Käytetään empiirisessä tutkimuksessa Vähintään
Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden
1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma
Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.
Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Aineistoihin tutustutaan mm. erilaisten
Tieliikenteen tavarankuljetukset
Liikenne ja matkailu 2018 Tieliikenteen tavarankuljetukset 2018, 1. neljännes Kuorma-autoilla kuljetettu tavaramäärä kasvoi vuoden 2018 ensimmäisellä neljänneksellä Vuoden 2018 ensimmäisellä neljänneksellä
Luottamusvälit. Normaalijakauma johnkin kohtaan
Luottamusvälit Normaalijakauma johnkin kohtaan Perusjoukko ja otanta Jos halutaan tutkia esimerkiksi Suomessa elävien naarashirvien painoa, se voidaan (periaatteessa) tehdä kahdella tavalla: 1. tutkimalla
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
TESTINVALINTATEHTÄVIEN VASTAUKSET
TESTINVALINTATEHTÄVIEN VASTAUKSET Vastaukset on merkitty keltaisella, muuttujien mittaustasot muuttujan kuvauksen perässä ja muu osa vastauksesta kysymyksen perässä. Tehtävä 1. Talousmatematiikan kurssin
Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)
1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi
MTTTP1 Tilastotieteen johdantokurssi Luento JOHDANTO
8.9.2016/1 MTTTP1 Tilastotieteen johdantokurssi Luento 8.9.2016 1 JOHDANTO Tilastotiede menetelmätiede, joka käsittelee - tietojen hankinnan suunnittelua otantamenetelmät, koejärjestelyt, kyselylomakkeet
Viestinnän mentelmät I: sisällön erittely. Sisällönanalyysi/sisällön erittely. Sisällön erittely. Juha Herkman
Viestinnän mentelmät I: sisällön erittely Juha Herkman 25.11.2010 Helsingin yliopisto, viestinnän laitos Sisällönanalyysi/sisällön erittely Sisällönanalyysi (SA), content analysis Veikko Pietilä: Sisällön
Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3
HALLINTOTIETEIDEN MAISTERIN TUTKINTO Valintakoe 8.6.2012 Pisteet yhteensä (tarkastaja merkitsee)
HALLINTOTIETEIDEN MAISTERIN TUTKINTO Valintakoe 8.6.2012 Pisteet yhteensä (tarkastaja merkitsee) VALINTAKOKEEN PISTEYTYS Valintakokeesta on mahdollisuus saada maksimissaan 60 pistettä. Tehtävät perustuvat
https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat:
Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,
Populaatio tutkimusobjektien muodostama joukko, johon tilastollinen tutkimus kohdistuu, koko N
11.9.2018/1 MTTTP1, luento 11.9.2018 KERTAUSTA Populaatio tutkimusobjektien muodostama joukko, johon tilastollinen tutkimus kohdistuu, koko N Populaation yksikkö tilastoyksikkö, havaintoyksikkö Otos populaation
Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)
Tieliikenteen tavarankuljetukset
Liikenne ja matkailu 2014 Tieliikenteen tavarankuljetukset 2014, 3. neljännes Kuorma-autoilla kuljetettu tavaramäärä kasvoi vuoden 2014 kolmannella neljänneksellä Vuoden 2014 kolmannella neljänneksellä