Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.
|
|
- Helena Kivelä
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Aineistoihin tutustutaan mm. erilaisten kuvioiden avulla. Joitakin kuvioita on tarkoitus muokata muokkaus- eli Chart Editor -ikkunassa, jonne pääset näpäyttämällä kuvaa kahdesti. Tarkastellaan ensin aineistoa KUNNAT. Koska kyseessä on kokonaistutkimusaineisto, riittää, että tutkit kuvioita ja tunnuslukujen arvoja ja teet niiden perusteella päätelmiä. Tilastollisen päättelyn menetelmiä ei ole siis tarpeen käyttää. Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä. 23. MUODOSTETAAN FREKVENSSIHISTOGRAMMIKUVIO JA MUOKATAA KUVIOTA: Muodosta frekvenssihistogrammi (Graphs - -Histogram) muuttujasta veroaste. Sitten muokkaa kuvaa niin, että pylväitä on vähemmän kuin mitä SPSS automaattisesti tekee: avaa kuvanmuokkaus ja kaksoisnäpäytä pylväitä ja avautuvassa Properties-ikkunassa valitse välilehti Binning ja valitse X Axis -kohdasta Custom ja valitse joko pylväiden määrä (Number of intervals) ja kirjoita sopiva pylväsmäärä ruutuun tai luokkavälin pituus (Interval width) ja kirjoita sopiva luokkavälin pituus ruutuun. Voit kokeilla muita muokkauksia. Sulje lopuksi kuvanmuokkausikkuna. 24. KUVAILLAAN YKSITTÄISEN MÄÄRÄLLISEN MUUTTUJAN JAKAUMAA: Tarkastele muuttujasta veroaste jakaumaa tilastollisten tunnuslukujen ja kuvioiden avulla (Analyze-Descriptive Statistics-Explore, valitse veroaste kohtaan Dependent List ja valitse Statistics-lisävalinnoista vielä Percentiles oletusvalinnan lisäksi.) Tutki tuloksista vinouden (=skewness) avulla, onko jakauma symmetrinen. Millä keskiluvulla kannattaa nyt kuvata jakauman keskikohtaa? Kuvaile vielä muuttuja-arvojen hajaantumista. TIETOISKUJA: 1) Jakaumaa voidaan pitää symmetrisenä silloin, kun vinous jaettuna keskivirheellään (=standard error for skewness) on itseisarvoltaan pienempi kuin 2. Jakauma on negatiivisesti vino eli vasemmalle loiveneva, jos vinous jaettuna keskivirheellään on pienempi kuin -2 Jakauma on positiivisesti vino eli oikealle loiveneva, jos vinous jaettuna keskivirheellään on suurempi kuin 2. 2) Jakaumaa voidaan pitää mesokurtisena (eli huipukkuudeltaan normaalijakauman kaltaisena silloin, kun huipukkuus (=kurtosis) jaettuna keskivirheellään (=standard error for kurtosis) on itseisarvoltaan pienempi kuin 2. Jakauma on leptokurtinen eli normaalijakaumaa huipukkaampi, jos huipukkuus jaettuna keskivirheellään on suurempi kuin 2 Jakauma on platykurtinen eli normaalijakaumaa laakeampi, jos huipukkuus jaettuna keskivirheellään on pienempi kuin -2. 3) Jos määrällisen muuttujan jakauma on symmetrinen, voidaan jakauman keskikohtaa kuvata esim. aritmeettisella keskiarvolla (=mean). Jos jakauma ei ole symmetrinen,
2 kannattaa yksittäisenä keskilukuna käyttää mediaania (=median). Keskiluvun valintaan toki vaikuttaa sekin, mitä menetelmiä aikoo jatkossa käyttää muuttujaa analysoitaessa. 4) Määrällisen muuttujan arvojen absoluuttista hajaantumista kuvaa keskihajonta (=standard deviation), joka kertoo, kuinka kaukana havainnot ovat keskimäärin keskiarvosta. Hajaantumisen voimakkuutta kannattaa yrittää ymmärtää kvartiilien (=quartiles) avulla (esim. kvartiilivälin pituuden IQR (= yläkvartiili - alakvartiili) suhde vaihteluvälin pituuteen (Range)). 5) Usein määrällisen muuttujan raportoinnissa esitetään pienin arvo, suurin arvo, mediaani, keskiarvo ja keskihajonta. Alakvartiilin ja yläkvartiilin käyttö on jakauman kuvaamisessa jo melko yleistä. Vinoutta ja huipukkuutta raportoidaan lähinnä silloin, kun tiedetään, että näiden tunnuslukujen avulla jakauman muotoa yritetään hahmottaa jonkin tilastollisen päättelyn menetelmän käyttöä varten. 25. MUODOSTETAAN LAADULLISEN MUUTTUJAN ERI RYHMILLE LAATIKKO- VIIKSET-KUVIO MÄÄRÄLLISESTÄ MUUTTUJASTA, JOTTA RYHMIÄ VOIDAAN VERTAILLA (HALUTAAN SAADA VASTAUS KYSYMYKSEEN: ONKO MÄÄRÄLLISEN MUUTTUJAN JAKAUMA SAMANLAINEN ERI RYHMISSÄ? ) Muodosta laatikko-viikset-kuvio (Graphs - - Boxplot) muuttujista veroaste (pystyakselille tai variable-ruutuun) ja laani (vaaka-akselille tai category-ruutuun) siten, että voit vertailla veroprosentin jakaumaa eri lääneissä. Vertaile ja kuvaile sanallisesti läänien eroja/samanlaisuuksia veroprosentin suhteen. 26. Esitä muuttujan kuntamuoto jakauma sopivalla kuviolla. 27. Muodosta aineistoon naiset- ja asukkaat -muuttujien avulla muuttuja naistenlkm, joka kuvaa kunkin kunnan naisten lukumäärää. Pyöristä muuttuja-arvot kokonaisluvuksi. (HUOM! Pelkkä Decimals-määrittelyn muutoshan ei pyöristä muuttuja-arvoja, vaan tarvitset RNDfunktiota!) Talleta muutos aineistoosi. 28. Muodosta muuttujasta naistenlkm frekvenssihistogrammi ja tulkitse tulos. 29. MUODOSTETAAN PISTEPARVIKUVIO KAHDESTA MÄÄRÄLLISESTÄ MUUTTUJASTA. (HALUTAAN SAADA VASTAUS KYSYMYKSEEN: ONKO KAHDELLA MÄÄRÄLLISELLÄ MUUTTUJALLA RIIPPUVUUTTA? JA JOS ON, NIIN MINKÄLUONTEISTA RIIPPUVUUS ON? ) Muodosta pisteparvikuvio (Graphs Scatter/Dot Simple Scatter) muuttujista tulotaso (pystyakselille) ja koulutus (vaaka-akselille). Mitä voit havaita kuvion perusteella riippuvuuden luonteesta? 30. LASKETAAN LINEAARISEN KORRELAATIOKERTOIMEN ARVO, KOSKA PISTEPARVIKUVIOSTA HAVAITTIIN POSITIIVINEN LINEAARINEN RIIPPUVUUS. (HALUTAAN SAADA VASTAUS KYSYMYKSEEN: KUINKA VOIMAKASTA JA MINKÄ SUUNTAISTA LINEAARINEN RIIPPUVUUS ON? )
3 (Määritä muuttujista tulotaso ja koulutus välinen lineaarinen (eli Pearsonin eli tulomomentti-) korrelaatiokerroin (Analyze-Correlate-Bivariate) ja tulkitse tulos. (Pearsonin korrelaatio sopii vain määrällisille muuttujille ja se mittaa lineaarisen riippuvuuden voimakkuutta eli sitä, kuinka pitkulainen on muuttujien välinen pisteparvi. Mitä lähempänä korrelaation itseisarvo on lukua 1, sitä voimakkaampaa on muuttujien välinen lineaarinen riippuvuus. Korrelaatiokertoimen arvo 0 kuvaa lineaarista riippumattomuutta.) 31. MUODOSTETAAN LAADULLISEN MUUTTUJAN ERI RYHMILLE PYLVÄSKUVIO KUVAAMAAN MÄÄRÄLLISESTÄ MUUTTUJASTA LASKETTUA TILASTOLLISTA TUNNUSLUKUA, JOTTA RYHMIÄ VOIDAAN VERTAILLA. Muodosta sellainen pylväskuvio (Graphs - - Bar), josta näkee kunkin läänin kuntien kokonaispinta-alan. Valitse pintaala pystyakselille tai Other Statistic: variable-ruutuun ja vaihda Statistic-kohtaan tunnusluvuksi Sum ja valitse laani vaaka-akselille tai categoryruutuun. Kuvaile tulos sanallisesti. Sitten tarkastellaan aineistoa kyselya. Todetaan ensin, että pituus, paino, kengännumero, vaaksa ovat määrällisiä muuttujia (Measure: scale). Tarkista ennen seuraavia tehtäviä, että aineistosi on OK, eli esimerkiksi kengän numerot on esitetty yhdenmukaisesti. Nyt oletetaan, että tämän aineiston (ja myös kyselyb-aineistossa) opiskelijat ovat otos kaikista Vaasan yliopiston opiskelijoista. Kyseessä on siis otantatutkimus, joten tilastolliset merkitsevyystarkastelut ja testit voidaan ottaa käyttöön tarpeen tullen eli silloin, kun halutaan otoksen avulla tehdä päätelmiä populaation tilanteesta. Tällä harjoituskerralla teemme vielä aineiston kuvailua, mutta tilastollista päättelyä tullaan harrastamaan 4. ja 5. harjoituksissa. 32. Muodosta pituuden frekvenssihistogrammi niin, että kuviossa on mukana myös normaalijakaumakäyrä (Display/Show normal curve). Muodosta histogrammikuviot myös painosta, kengännumerosta ja vaaksasta. Muokkaa histogrammikuvioita tarvittaessa niin, että pylväitä on 8-9 kpl. Muodosta myös laatikko-viikset-kuvio jokaisesta em. muuttujasta. Määritä muuttujista myös seuraavat tilastolliset tunnusluvut: keskiarvo, mediaani, pienin arvo, suurin arvo, keskihajonta, alakvartiili, yläkvartiili, vinous ja huipukkuus sekä vinouden ja huipukkuuden keskivirheet. Täydennä seuraavat kohdat tutkimalla sekä kuvioita ja taulukoiden tunnuslukuja. Pituuden jakauma on symmetrinen/oikealle loiveneva/vasemmalle loiveneva. Jakauma on yksihuippuinen/monihuippuinen. Jos jakauma on yksihuippuinen: jakauma on laakeampi (eli platykurtinen)/huipukkaampi (eli leptokurtinen)/samalla tavalla huipukas (eli mesokurtinen) kuin normaalijakauma. Poikkeavia tilastoyksiköitä ei ole/on. keskiarvo, mediaani, pienin arvo, suurin arvo, keskihajonta, alakvartiili, yläkvartiili, vinous
4 Painon jakauma on symmetrinen/oikealle loiveneva/vasemmalle loiveneva. Jakauma on yksihuippuinen/monihuippuinen. Jos jakauma on yksihuippuinen: jakauma on laakeampi/huipukkaampi/samalla tavalla huipukas kuin normaalijakauma. Poikkeavia tilastoyksiköitä ei ole/on. keskiarvo, mediaani, pienin arvo, suurin arvo, keskihajonta, alakvartiili, yläkvartiili, vinous Kengännumeron jakauma on symmetrinen/oikealle loiveneva/vasemmalle loiveneva. Jakauma on yksihuippuinen/monihuippuinen. Jos jakauma on yksihuippuinen: jakauma on laakeampi/huipukkaampi/samalla tavalla huipukas kuin normaalijakauma. Poikkeavia tilastoyksiköitä ei ole/on. keskiarvo, mediaani, pienin arvo, suurin arvo, keskihajonta, alakvartiili, yläkvartiili, vinous Vaaksan jakauma on symmetrinen/oikealle loiveneva/vasemmalle loiveneva. Jakauma on yksihuippuinen/monihuippuinen. Jos jakauma on yksihuippuinen: jakauma on laakeampi/huipukkaampi/samalla tavalla huipukas kuin normaalijakauma. Poikkeavia tilastoyksiköitä ei ole/on. keskiarvo, mediaani, pienin arvo, suurin arvo, keskihajonta, alakvartiili, yläkvartiili, vinous 33. Muodosta pisteparvikuvio pituuden (vaaka-akselille) ja painon välille. Muuttujien välillä on/ei ole lineaarista riippuvuutta. Jos lineaarista riippuvuutta on, onko se positiivista vai negatiivista? Jos lineaarista riippuvuutta ei ole, niin onko muuttujien välillä minkäänlaista riippuvuutta? Näkyykö kuvassa poikkeavia tilastoyksiköitä? Määritä myös muuttujien välinen Pearsonin korrelaatio. 34. LISÄTÄÄN PISTEPARVIKUVIOON REGRESSIOSUORA (, JOKA KUVASTAA PARHAITEN KAHDEN MÄÄRÄLLISEN MUUTTUJAN LINEAARISTA RIIPPUVUUTTA): Muokkaa edellä muodostamaasi pisteparvikuviota niin, että sijoitat kuvioon regressiosuoran. (Kuvanmuokkauksessa työkalu Add Fit Line at Total.). Kuvaile regressiosuoraa sanallisesti.
5 35. Muodosta uusi pisteparvi pituuden ja painon välille, mutta erota kuviosta sopivalla tavalla miehet ja naiset (Chart Builder: Scatter/Dot: Grouped Scatter tai Legacy Dialogs: Scatter/Dot: Simple Scatter). Kun saat kuvan tulosikkunaan, muokkaa kuviota niin, että sijoitat kuvioon kummallekin ryhmälle oman regressiosuoran (kuvanmuokkauksessa Add Fit Line at Subgroups. ) Lisäksi muokkaa kuviota siten, että saat ryhmät erotettua erilaisten merkkien avulla (kuvanmuokkauksessa Properties-ikkunan Marker-välilehti). 36. Muodosta kaikista määrällisistä muuttujista (ei kuitenkaan vuosi) kahden muuttujan väliset pisteparvikuviot matriisikuviona. Onko muuttujien välillä lineaarista riippuvuutta? Jos lineaarista riippuvuutta on, onko se positiivista vai negatiivista? Jos lineaarista riippuvuutta ei ole, niin onko muuttujien välillä minkäänlaista riippuvuutta? Näkyykö kuvissa poikkeavia tilastoyksiköitä? Määritä myös muuttujien väliset Pearsonin korrelaatiokertoimet ja kuvaile tulokset: Korrelaatiot pituus paino pituus kenka pituus - vaaksa paino kenka paino vaaksa kenka - vaaksa 37. Pituuden ja kotipaikan välistä pisteparvikuviota ei kannata tehdä. Miksi? Millä tavalla voit esittää pituuden ja kotipaikan yhteisjakauman? Kokeile kaikkia seuraavia vaihtoehtoja. Kokeilu 1: JATKUVAN MUUTTUJAN ARVOJEN LUOKITTELU: Muodosta aineistoon (joko Transform Recode Into Different Variables: käytä pituusarvojen esittämisessä sopivaa Range-valintaa tai Transform Visual Binning) uusi muuttuja, johon luokittelet pituuden seuraavasti: pituus pituusluokka kork tai yli 5
6 TEHDÄÄN PYLVÄSRYHMÄKUVIO, KUN HALUTAAN SAADA VASTAUS KYSYMYKSEEN: ONKO KAHDELLA LAADULLISELLA TAI LUOKITELLULLA MUUTTUJALLA RIIPPUVUUTTA? JA JOS ON, NIIN MINKÄLUONTEISTA RIIPPUVUUS ON? ): Muodosta myös uuden muuttujan arvoihin selitykset. Talleta muutokset aineistoon kyselya. Muodosta pylväsryhmäkuvio (Graphs Bar Clustered), missä esität pituusluokkien frekvenssit eri kotipaikkaryhmissä. (Tämä kuvio sopii havainnollistamaan ristiintaulukointia ja voit selvittää, onko pituuden frekvenssijakauma erilainen eri kotipaikoilla.) Kokeilu 2: TEHDÄÄN LUOTTAMUSVÄLIKUVIO: Muodosta luottamusvälikuvio (Graphs (Error) Bar Simple), jolla esität alkuperäisen pituus-muuttujan keskiarvon ja keskiarvon luottamusvälin kotipaikkaryhmittäin. (Tällä kuvallahan hahmottuu hyvin varianssianalyysin tilanne, jolla vertaillaan ryhmien keskiarvoja.) Kuvaile sanallisesti tuloksiasi. Kokeilu 3: Muodosta laatikko-viikset-kuvio pituudesta jokaiselle kotipaikkaryhmälle. (Tällä kuvalla taas voidaan havainnollistaa yksisuuntaisen varianssianalyysin epäparametrista versiota, ns. Kruskal-Wallis -testiä.) Kuvaile sanallisesti tuloksiasi. Lopuksi siirrytään aineistoon kyselyb. Nyt muuttujat ovat pääasiassa laadullisia siten, että mielipide- ja asennemuuttujat ovat järjestysasteikollista mittaustasoa. 38. Esitä koulutus-muuttujan prosentuaalinen frekvenssijakauma piirakkakuviona (Graphs Pie). Muokkaa kuviota niin, että lisäät kuvioon sektoreiden kokoa osoittavat prosenttiluvut Show Data Labels työkalulla. Nyt siis kuvailet koulutus-muuttujan jakaumaa. 39. TEHDÄÄN OSAJOUKON VALINTA: Valitse osajoukoksi ne opiskelijat, jotka olivat kurssilla vuonna 1985 tai vuonna 1993 tai vuonna 2009 (Data Select cases ja käytä IF-ehtoa). Muodosta pylväs(ryhmä)kuvio(i)ta, joiden avulla voit vertailla vuosien 1985, 1993 ja 2009 opiskelijoiden eroja mielipidekysymyksissä. Nyt siis tutkit, riippuuko mielipide vuodesta eli ovatko eri vuosien mielipidejakaumat olleet erilaisia ( on riippuvuutta ) vai samankaltaisia ( ei ole riippuvuutta ). 40. TEHDÄÄN RYHMIINJAKO: Jaa aineisto ryhmiin (Data - Split File) kyselyvuoden perusteella. Muodosta jokaiselle kuudelle kyselyvuodelle oma kuvio siten, että voit vertailla miehiä ja naisia feministiliike-muuttujan suhteen. Nyt siis tutkit, NIIN MITÄ?
Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.
Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Jos epäilet, että aineistosi eivät
Lisätiedot1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
Lisätiedot1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
LisätiedotKURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun
LisätiedotTulkitse tulokset. Onko muuttujien välillä riippuvuutta? Jos riippuvuutta on, niin millaista se on?
Tilastollinen tietojenkäsittely / SPSS Harjoitus 4 Tarkastellaan ensin aineistoa KUNNAT. Koska kyseessä on kokonaistutkimus, riittää, että tutkit tunnuslukujen arvoja ja teet niiden perusteella päätelmiä.
Lisätiedot54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):
Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei
Lisätiedot(Jos et ollut mukana viime viikolla, niin kopioi myös SPSS-havaintoaineistotiedostot Yritys2 ja neljän kunnan tiedot.)
Tilastollinen tietojenkäsittely / SPSS Harjoitus 2 Kopioi (ÄLÄ SIIS AVAA TIEDOSTOJA VIELÄ!) U-palvelimen hakemiston STAT2100 SPSS kansiosta Aineistoja harjoituksiin 2 tiedosto loputkunnat (SPSS-havaintoaineisto)
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
LisätiedotVIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten.
Tilastollinen tietojenkäsittely / SPSS Harjoitus 1 VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten. 1. Avaa SPSS-ohjelma. Tarkoitus olisi muodostaa tämän sivun
Lisätiedot3. a) Mitkä ovat tilastolliset mitta-asteikot? b) Millä tavalla nominaaliasteikollisen muuttujan jakauman voi esittää?
Seuraavassa muutamia lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4,
Lisätiedot4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:
Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,
LisätiedotTil.yks. x y z
Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)
LisätiedotLeikkijunan kunto toimiva ei-toimiva Työvuoro aamuvuoro päivävuoro iltavuoro
Lisätehtäviä 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15, 4, 0,, 4, 3, 3, 8, 3, 9, 11, 19,
LisätiedotHarjoittele tulkintoja
Harjoittele tulkintoja Syksy 9: KT (55 op) Kvantitatiivisen aineiston keruu ja analyysi SPSS tulosteiden tulkintaa/til Analyysit perustuvat aineistoon: Haavio-Mannila, Elina & Kontula, Osmo (1993): Suomalainen
LisätiedotSPSS ohje. Metropolia Business School/ Pepe Vilpas
1 SPSS ohje Page 1. Perusteita 2 2. Frekvenssijakaumat 3 3. Muuttujan luokittelu 4 4. Kaaviot 5 5. Tunnusluvut 6 6. Tunnuslukujen vertailu ryhmissä 7 9. Ristiintaulukointi ja Chi-testi 8 10. Hajontakaavio
LisätiedotNäistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, kevät 2019 https://coursepages.uta.fi/mtttp1/kevat-2019/ HARJOITUS 3 Joitain ratkaisuja 1. x =(8+9+6+7+10)/5 = 8, s 2 = ((8 8) 2 + (9 8) 2 +(6 8) 2 + (7 8) 2 ) +
LisätiedotKandidaatintutkielman aineistonhankinta ja analyysi
Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi
LisätiedotNäistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =
LisätiedotKvantitatiiviset tutkimusmenetelmät maantieteessä
Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi
LisätiedotTilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
LisätiedotEsim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4
18.9.2018/1 MTTTP1, luento 18.9.2018 KERTAUSTA Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4 pyöristetyt todelliset luokka- frekvenssi luokkarajat luokkarajat keskus 42 52 41,5
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas f 332 = 3 Kvartiilit(302, 365, 413) Kvartiilit: missä sijaitsee keskimmäinen 50 % aineistosta? Kvartiilit(302, 365, 413) Keskiarvo (362.2) Keskiarvo
Lisätiedotpisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
LisätiedotKorrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012
Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170
LisätiedotTil.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.
Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa
LisätiedotTilastomenetelmien lopputyö
Tarja Heikkilä Tilastomenetelmien lopputyö Lopputyössä on esimerkkejä erilaisista tilastomenetelmistä. Datatiedosto Harjoitusdata.sav on muokattu tätä harjoitusta varten, joten se ei vastaa kaikkien muuttujien
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas MUITA HAJONNAN TUNNUSLUKUJA Varianssi, variance (s 2, σ 2 ) Keskihajonnan neliö Käyttöä enemmän osana erilaisia menetelmiä (mm. varianssianalyysi),
LisätiedotTUTKIMUSOPAS. SPSS-opas
TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien
LisätiedotKuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011
Kuvioita, taulukoita ja tunnuslukuja Aki Taanila 2.2.2011 1 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää
LisätiedotMat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Diskreetit muuttujat,
LisätiedotTilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
LisätiedotII Tilastollisen aineiston ja analyysin edellytysten tarkistaminen
II Tilastollisen aineiston ja analyysin edellytysten tarkistaminen - Tietojen syöttö - Karma&Komulainen aineisto (tutustuminen) - Muuttujien jakauman tarkistus - Puuttuva tieto ja sen käsittely - Muunnokset,
LisätiedotJohdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2005) 1 Tilastollisten aineistojen kuvaaminen Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten muuttujien tunnusluvut
LisätiedotMTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
LisätiedotTilastollisten aineistojen kuvaaminen
Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2007) 1 Tilastollisten aineistojen kuvaaminen >> Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten
LisätiedotTilastolliset ohjelmistot 805340A. Pinja Pikkuhookana
Tilastolliset ohjelmistot 805340A Pinja Pikkuhookana Sisältö 1 SPSS 1.1 Yleistä 1.2 Aineiston syöttäminen 1.3 Aineistoon tutustuminen 1.4 Kuvien piirtäminen 1.5 Kuvien muokkaaminen 1.6 Aineistojen muokkaaminen
LisätiedotTilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
LisätiedotEsimerkki 1: auringonkukan kasvun kuvailu
GeoGebran LASKENTATAULUKKO Esimerkki 1: auringonkukan kasvun kuvailu Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi aurinkoisina kesinä hyvissä kasvuolosuhteissa Suomessakin
LisätiedotTeema 3: Tilastollisia kuvia ja tunnuslukuja
Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin
LisätiedotHAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
LisätiedotOhjeita kvantitatiiviseen tutkimukseen
1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2
LisätiedotSPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö
SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin
LisätiedotSPSS OPAS. Metropolia Liiketalous
1 Metropolia Liiketalous SPSS OPAS Aihe sivu 1. Ohjelman periaate 2 2. Aineistoikkuna 3 3. Frekvenssit 4 4. Muuttujien arvojen luokittelu 5 5. Tunnusluvut 6 6. Ristiintaulukointi 7 7. Hajontakaavio 8 8.Korrelaatio
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi
LisätiedotMTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
LisätiedotI Tilastollisen aineiston ja analyysin edellytysten tarkistaminen. - Muunnokset, uudelleen koodaaminen, summamuuttujien luominen
I Tilastollisen aineiston ja analyysin edellytysten tarkistaminen - Muuttujien jakauman tarkistus - Muunnokset, uudelleen koodaaminen, summamuuttujien luominen - Puuttuva tieto ja sen käsittely - Kuvaileva
Lisätiedot1 TILASTOJEN KÄYTTÖ 7. Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10
SISÄLTÖ 1 TILASTOJEN KÄYTTÖ 7 Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 Tilastoaineisto 11 Peruskäsitteitä 11 Tilastoaineiston luonne 13 Mittaaminen
LisätiedotMäärällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 24.4.2017 1 Kategoriset muuttujat Lukumääriä Prosentteja (muista n-arvot) Pylväitä 2 Yhteenvetotaulukko (frekvenssitaulukko) TAULUKKO 1. Asunnon tyyppi
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Itse arvioidun terveydentilan ja sukupuolen välinen riippuvuustarkastelu. Jyväskyläläiset 75-vuotiaat miehet ja naiset vuonna 1989.
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156
LisätiedotMäärällisen aineiston esittämistapoja. Aki Taanila
Määrällisen aineiston esittämistapoja Aki Taanila 7.11.2011 1 Muuttujat Aineiston esittämisen kannalta muuttujat voidaan jaotella kolmeen tyyppiin: Kategoriset (esimerkiksi sukupuoli, koulutus) Asteikolla
LisätiedotOhjeita tilastollisen tutkimuksen toteuttamiseksi opintojaksolla. TILTP1 (http://www.uta.fi/~strale/tiltp1.html) SPSS for Windows -ohjelmiston avulla
Ohjeita tilastollisen tutkimuksen toteuttamiseksi opintojaksolla TILTP1 (http://www.uta.fi/~strale/tiltp1.html) SPSS for Windows -ohjelmiston avulla Raija Leppälä (raija.leppala@uta.fi) ALUKSI Tämä opas
LisätiedotSPSS-perusteet. Sisältö
SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn
LisätiedotTeema 5: Ristiintaulukointi
Teema 5: Ristiintaulukointi Kahden (tai useamman) muuttujan ristiintaulukointi: aineiston analysoinnin ja tulosten esittämisen perusmenetelmä usein samat tiedot esitetään sekä taulukkona että kuvana mahdollisen
LisätiedotTilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
Lisätiedot2. Aineiston kuvailua
2. Aineiston kuvailua Avaa (File/Open/Data ) aineistoikkunaan tiedosto tilp150.sav. Aineisto on koottu Tilastomenetelmien peruskurssilla olleilta. Tiedot osallistumisesta demoihin, tenttipisteet, tenttien
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
Lisätiedot7. laskuharjoituskierros, vko 10, ratkaisut
7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,
LisätiedotGeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
Lisätiedot... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset)
LIITE Vinkkejä lopputyön raportin laadintaan Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) 1. Johdanto Kerro johdannossa lukijalle, mitä jatkossa
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotFoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
LisätiedotSummamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta 1
Summamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta 1 Summamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta I Summamuuttujien muodostus Olemassa olevista muuttujista voidaan laskea
Lisätiedot1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi
Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,
LisätiedotRISTIINTAULUKOINTI JA Χ 2 -TESTI
RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN
LisätiedotLuento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
LisätiedotMTTTP1, luento KERTAUSTA
19.3.2019/1 MTTTP1, luento 19.3.2019 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
LisätiedotSPSS* - tilastoanalyyttinen ohjelma, vrs 9.0
SPSS* - tilastoanalyyttinen ohjelma, vrs 9.0 = monipuolinen ohjelma, jolla voi tilastollisesti analysoida tieteellistä aineistoa ja se tuottaa myös graafisia tulosteita. SPSS:n oma avustus (help) SPSS:ssä
LisätiedotLisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?
MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään
Lisätiedottilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
LisätiedotHannu mies LTK 180 Johanna nainen HuTK 168 Laura nainen LuTK 173 Jere mies NA 173 Riitta nainen LTK 164
86118P JOHDATUS TILASTOTIETEESEEN Harjoituksen 3 ratkaisut, viikko 5, kevät 19 1. a) Havaintomatriisissa on viisi riviä (eli tilastoyksikköä) ja neljä saraketta (eli muuttujaa). Hannu mies LTK 18 Johanna
LisätiedotKAHDEN RYHMÄN VERTAILU
10.3.2015 KAHDEN RYHMÄN VERTAILU Jouko Miettunen Center for Life-Course and Systems Epidemiology jouko.miettunen@oulu.fi Luennon sisältö Luokitellut muuttujat Ristiintaulukko, prosentit Khiin neliötesti
LisätiedotData-analyysi II. Sisällysluettelo. Simo Kolppo [Type the document subtitle]
Data-analyysi II [Type the document subtitle] Simo Kolppo 26.3.2014 Sisällysluettelo Johdanto... 1 Tutkimuskysymykset... 1 Aineistojen esikäsittely... 1 Economic Freedom... 1 Nuorisobarometri... 2 Aineistojen
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä
LisätiedotVALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
Lisätiedot806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
LisätiedotTilastolliset toiminnot
-59- Tilastolliset toiminnot 6.1 Aineiston esittäminen graafisesti Tilastollisen aineiston tallentamisvälineiksi TI-84 Plus tarjoaa erityiset listamuuttujat L1,, L6, jotka löytyvät 2nd -toimintoina vastaavilta
LisätiedotIBM SPSS Statistics 21 (= SPSS 21)
Tarja Heikkilä IBM SPSS Statistics 21 (= SPSS 21) SPSS = Statistical Package for Social Sciences Ohjelman käynnistys Aloitusikkuna Päävalikot Työkalut Muuttujat (Variables) Tapaukset (Cases) Tyhjä datataulukko
LisätiedotLuentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012
Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko
Lisätiedot4 Riippuvuus 1. Esimerkki 4. Korrelaation laskeminen SPSS-ohjelmalla rajatusta aineistosta
4 Riippuvuus 1 Esimerkki 4. Korrelaation laskeminen SPSS-ohjelmalla rajatusta aineistosta x 2 = sisaruksien luku- Tarkastellaan äidin ja lapsen pituuden välistä riippuvuutta havaintomatriisilla, joka on
LisätiedotPylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.
Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien
Lisätiedotr = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
LisätiedotMTTTP1, luento KERTAUSTA JA TÄYDENNYSTÄ. Tunnusluvut. 1) Sijainnin tunnuslukuja. Keskilukuja moodi (Mo) mediaani (Md) keskiarvo, kaava (1)
20.9.2018/1 MTTTP1, luento 20.9.2018 KERTAUSTA JA TÄYDENNYSTÄ Tunnusluvut 1) Sijainnin tunnuslukuja Keskilukuja moodi (Mo) mediaani (Md) keskiarvo, kaava (1) Muita sijainnin tunnuslukuja ala- ja yläkvartiili,
Lisätiedot1. Tilastollinen malli??
1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen
Lisätiedot5. Keskiluvut. luokan väliin, ei sen määrääminen tuota vaikeuksia. Näin on seuraavissa esimerkeissä:
22 5. Keskiluvut Kaikkein pisimmälle on informaation tiivistämisessä menty silloin, kun otosta kuvataan vain yhdellä luvulla, joka mahdollisimman hyvin edustaa kaikkia otoksen arvoja. Tällaisia lukuja
LisätiedotTarkista vielä ennen analysoinnin aloittamista seuraavat seikat:
Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,
Lisätiedot4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla
4 Aineiston kuvaaminen numeerisesti 1 4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla Tarkastellaan lasten syntymäpainon frekvenssijakauman (kuva 1, oikea sarake) muodostamista Excel- ja SPSS-ohjelmalla.
LisätiedotMatemaatikot ja tilastotieteilijät
Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat
LisätiedotHARJOITUSKERTA 1: SPSS-OHJELMAN PERUSKÄYTTÖ JA MUUTTUJAMUUNNOKSET
HARJOITUSKERTA 1: SPSS-OHJELMAN PERUSKÄYTTÖ JA MUUTTUJAMUUNNOKSET OHJELMAN KÄYNNISTÄMINEN Käynnistääksesi ohjelman valitse All Programs > > IBM SPSS Statistics 2x, tai käynnistä ohjelma työpöydän kuvakkeesta.
LisätiedotSisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...
LisätiedotRatkaisuja luvun 15 tehtäviin
Tarja Heikkilä 1. Luettele hyvän tutkimuksen perusvaatimukset ja riskitekijät. Katso Hyvän tutkimuksen perusvaatimukset luvusta 1 ja Tutkimusraporttien arviointi luvusta 4. Esimerkkejä riskitekijöistä
Lisätiedot