Peilatun kuvion ominaisuudet
|
|
- Maria Mäki
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Peilatun kuvion ominaisuudet Piirretään GeoGebralla koordinaatistoon kuvan mukainen nelikulmio Peilataan kuvio x-akselin suhteen origon suhteen. miten pisteiden koordinaatit muuttuvat, kun piste peilataan origon suhteen?
2 Kuvien kanssa työskentely GeoGebrassa Paitsi, että GeoGebrassa piirrettyjä kuvia voidaan viedä tekstitiedostoon, myös kuvia voidaan tuoda GeoGebran piirtoalustalle. tätä varten löytyy työväline Lisää kuva Kuva on samanlainen objekti kuin muutkin piirtoalueella olevat objektit. Kuvantuontimahdollisuus on hyödyllinen ainakin kun opetetaan ja opiskellaan symmetrioita, yhdenmuotoisuutta ja mittakaavamuunnoksia (näistä esimerkkejä seuraavassa). GeoGebrasta löytyy symmetria-aiheeseen liittyen useita hyödyllisiä työvälineitä: peilaus pisteen/suoran/ympyrän suhteen, kierto, siirto, venytys,
3 Symmetrioita Missä kulkee symmetria-akseli? Mistä löytyy symmetriakeskus? Tutkitaan kuvan symmetrioita: talleta Moodlesta löytyvä kuva symmetria1.jpg tietokoneen työpöydälle avaa GeoGebra, valitse näkymäksi Geometria tuo kuva piirtoalustalle ja tee siitä taustakuva tutki, missä kuvan symmetria-akseli kulkee! tutki, mistä löytyy kuvan symmetriakeskus! hyödynnä Peilaus suoran/pisteen suhteen työvälineitä ja jälkeä
4 Pisteen etäisyys suorasta Tutkimuksia kartalla Tehtävä etsi suoralta piste, joka on yhtä kaukana kahdesta annetusta pisteestä voidaan muotoilla todenmukaiseen viitekehykseen, esimerkiksi: Etsi Hki-Lahti moottoritieltä kohta, joka on yhtä kaukana Orimattilasta ja Hyvinkäältä tallenna Moolesta löytyvä kuva kartta1.jpg tietokoneen työpöydälle avaa GeoGebra, valitse Näkymät->Geometria valitse Lisää kuva ja napauta piirtoalustaa sijoita kuva piirtoalueella sopivaan kohtaan luo uudet pisteet Orimattilan ja Hyvinkään kohdalle, merkitse yhdysjana ja piirrä janalle keskinormaali kohta, joka on yhtä kaukana näistä kahdesta kaupungista, on tunnetusti keskinormaalin ja moottoritien leikkauspiste miten tällainen tehtävä toimisi koulussa?
5 Kattoja ja suoria Tutkitaan suorien yhtälöitä: talleta Moodlesta löytyvä kuva katot.jpg tietokoneen työpöydälle avaa GeoGebra, valitse näkymäksi Algebra ja grafiikka tuo kuva piirtoalustalle ja kiinnitä sen vasen alanurkka origoon ja vasen ylänurkka pisteeseen (0,20) tee kuvasta taustakuva ja muuta kuvan peittävyyttä pienemmäksi (esim. 75%) tutki, mitä suoria kuvasta löytyy!
6 Tehtävä 1 Kuvan koon muuttaminen, kiertäminen, venyttäminen ja peilaaminen pisteen ja suoran suhteen tallenna Moolesta löytyvä kuva Palmupuut.jpg työpöydälle tai omiin tiedostoihisi avaa GeoGebra ja valitse Näkymät->Geometria lisää kuva piirtoalustalle kuvaa voidaan skaalata ja kiertää kiinnittämällä kaksi nurkkaa: luo piirtoalueelle kaksi pistettä avaa palmukuvan Ominaisuudet-ikkuna ->Paikka->kiinnitä kuva nurkka1 ja nurkka2 luomiisi pisteisiin nyt voit muuttaa kuvan kokoa mieleiseksesi siirtelemällä pisteitä kuvaa voidaan venyttää kiinnittämällä kolmas nurkka: luo piirtoalueelle kolmas piste kuvan Ominaisuudet-ikkuna->Paikka->kiinnitä nurkka4 nyt voit venyttää kuvaa mielesi mukaan
7 Peilataan kuva suoran ja pisteen suhteen piirrä piirtoalueen poikki suora (yllä kuvassa punainen) peilaa palmukuva suoran suhteen pienennä peilikuvan Peittävyyttä Ominaisuudet-ikkunan Väri-välilehdellä täydennä kuviota peilaamalla nurkkapisteet ja/tai muita kuvan pisteitä sekä lisäämällä pisteen ja sen peilikuvan yhdysjanat kuvioon lisää suoralle piste (yllä kuvassa vihreä) tee sama kuin edellä mutta peilaa pisteen suhteen lisää halutessasi valintaruutuja selkiyttämään esitystä! objektien Ominaisuuksissa Erikoista-välilehdeltä löytyy objektin TASO tutki miten yhdysjanojen tason muuttaminen vaikuttaa niiden näkyvyyteen!
8 Tehtävä 2 symmetrioita tutki Moodlesta löytyviä symmetria-kuvia: mitä symmetrioita niistä löytyy?
9 Tehtävä 3 karttapohja Tehtävä etsi ympyrä, joka kulkee annettujen pisteiden kautta voidaan muotoilla todenmukaiseen viitekehykseen, esimerkiksi: Etsi paikkakunta, joka on yhtä kaukana Espoosta, Maskusta ja Valkeakoskelta tallenna Moolesta löytyvä kuva kartta2.png tietokoneen työpöydälle avaa GeoGebra, valitse Näkymät->Geometria valitse Lisää kuva ja napauta piirtoalustaa sijoita kuva piirtoalueella sopivaan kohtaan luo uudet pisteet Espoon, Maskun ja Valkeakosken kohdalle, merkitse yhdysjanat ja piirrä janoille keskinormaalit paikkakunta, joka on yhtä kaukana näistä kolmesta kaupungista, on tunnetusti keskinormaalien leikkauspiste löydetty paikkakunta on myös sen ympyrän keskipiste, joka kulkee annettujen kaupunkien kautta miten tällainen tehtävä toimisi koulussa?
10 Hyperbolisen kosinifunktion f x = ex +e x kuvaajaa kutsutaan ketjukäyräksi eli katenaariksi. Nimensä tämä käyrä on saanut siitä, että kahden tukipisteen varaan ripustettu ketju, köysi tai vaijeri asettuu tämän käyrän muotoiseksi. 2 Tehtävä 4 Ketjukäyrä tallenna Moolesta löytyvä kuva ketjukayra1.jpg tietokoneen työpöydälle avaa GeoGebra, valitse Näkymät->Geometria valitse Lisää kuva ja napauta piirtoalustaa luo x-akselille pisteet A=(-3,0) ja B=(3,0) ja tee näistä kuvan nurkkapisteet 1 ja 2 luo kaksi liukua a ja b; voit pitää liu un oletusasetukset piirrä funktio f(x)=(e^(ax)+e^(-ax))/2+b etsi liu uille arvot, joilla funktio parhaiten kuvaa kuvan ketjuja Voit tehdä saman tutkimuksen kuvan ketjukayra2.jpg osalta
11 Lisätehtävä kuvan geometristen ja analyyttisten ominaisuuksien tutkiminen tallenna Moodlesta löytyvä kuva Suihkulahde.jpg työpöydälle avaa GeoGebra ja valitse Näkymät->Algebra ja grafiikka valitse Lisää kuva ja tuo suihkulähde piirtoalustalle muuta kuvan ominaisuuksista peittävyyttä niin, että koordinaattiakselit näkyvät selkeästi sijoita kuva piirtoalueella sopivaan kohtaan niin, että suihkulähteen huippukohta osuu y-akselille ja kantapisteet x-akselille valitse sitten kuvan Ominaisuudet->Kiinnitä objekti lähdetään tutkimaan suihkulähteen muotoa ja etsitään yhtälö/funktio, joka parhaiten kuvaa suihkulähteen muotoa
12 1. Tutkitaan, mikä polynomifunktio parhaiten kuvaa suihkulähteen muotoa GeoGebran SovitaPolynomi[L,n]-komento etsii astetta n olevan polynomifunktion, joka parhaiten sopii pistelistassa L ilmoitettuihin pisteisiin merkitse kuvaan viisi pistettä A,B,C,D,E jotka mukailevat suihkulähteen muotoa tee syöttökentän kautta pisteistä lista, jonka nimeksi tulee L: L={A,B,C,D,E} luo piirtoalueelle kokonaislukuliuku n, jonka minimiarvo on 1 ja maksimiarvo 4 syöttökenttä: p(x)=sovitapolynomi[l,n] polynomin Ominaisuudet->Näytä nimi ja arvo etsi liu un arvoa muuttamalla suihkulähteen muotoa parhaiten kuvaava polynomi mitkä polynomin termeistä voisi jättää pois? Sievennä polynomin p lauseke mahdollisimman yksinkertaiseen muotoon syötä yksinkertaistettu lauseke syöttökenttään ja tarkista muoto!
13 2. Tutkitaan seuraavaksi, mikä kartioleikkaus (ellipsi, ympyrä, paraabeli tai hyperbeli) parhaiten kuvaa suihkulähteen muotoa etsi työväline Kartioleikkaus viiden pisteen kautta ja osoita merkitsemäsi pisteet A-E kartioleikkauksen Ominaisuudet->Näytä nimi ja arvo mikä kartioleikkaus mallintaa suihkulähteen muotoa parhaiten? tunnistatko GeoGebran antaman käyrän yhtälöstä, mistä kartioleikkauksesta (ellipsi, ympyrä, paraabeli vai hyperbeli) on kyse? mitkä termeistä voi jättää pois? sievennä yhtälö mahdollisimman yksinkertaiseen muotoon jättämällä osa termeistä pois syötä sievennetty yhtälö syöttökenttään ja tarkista muoto!
Kuvien kanssa työskentely GeoGebrassa
Kuvien kanssa työskentely GeoGebrassa Paitsi, että GeoGebrassa piirrettyjä kuvia voidaan viedä tekstitiedostoon, myös kuvia voidaan tuoda GeoGebran piirtoalustalle. tätä varten löytyy työväline Lisää kuva
LisätiedotSymmetrioiden tutkiminen GeoGebran avulla
Symmetrioiden tutkiminen GeoGebran avulla Tutustutaan esimerkkien kautta siihen, miten geometrista symmetriaa voidaan tutkia ja havainnollistaa GeoGebran avulla: peilisymmetria: peilaus pisteen ja suoran
Lisätiedot7. Kuvien lisääminen piirtoalueelle
7. Kuvien lisääminen piirtoalueelle Harjoitus 13: Symmetristen kuvioiden tutkiminen Takaisin koulun penkille... Avaa dynaaminen työtiedosto H13_symmetria.html. Se löytyy Työpöydälle luomastasi kansiosta
LisätiedotGeometriaa GeoGebralla Lisätehtäviä nopeasti eteneville
Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Tutki GeoGebralla Näkymät->Geometria a) Kuinka suuria ovat kolmion kulmat, jos sen sivut ovat 5, 7 ja 9. Vihje: Aloita kolmion piirtäminen yhdestä
LisätiedotGEOGEBRAN TYÖKALUT. Siirrä-työkalu. Siirrä
GEOGEBRAN TYÖKALUT Siirrä-työkalu Siirrä Valitse objekti ja siirrä objektia vetämällä sitä hiiren vasemmalla näppäimellä. Käyttämällä siirrä toimintoa voit myös poistaa objektin painamalla Deletenäppäintä.
Lisätiedot9. Harjoitusjakso III
9. Harjoitusjakso III Seuraavaksi harjoitellaan kuvien ja tekstin lisäämistä piirtoalueelle. Tarjolla on aikaisempien harjoittelujaksojen tapaan kahden tasoisia harjoituksia: perustaso ja edistynyt taso.
LisätiedotGeoGebran 3D paketti
GeoGebran 3D paketti vielä kehittelyvaiheessa joitakin puutteita ja virheitä löytyy! suomennos kesken parhaimmillaan yhdistettynä 3D-lasien kanssa tilattavissa esim. netistä (hinta noin euron/lasit) 3D-version
LisätiedotGeoGebra. ohjeita ja tehtäviä 2. Pohdin projekti 1
Pohdin projekti 1 GeoGebra ohjeita ja tehtäviä 2 1 Lukuvuosina 2008-2012 Tampereen normaalikoulun matematiikan opetusharjoittelijat ovat olleet rakentamassa joko Capri-oppaita ja niiden pohjalta nyt käsillä
LisätiedotTYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet
TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet Valitse Näkymät->Geometria PIIRRETÄÄN KOLMIOITA: suorakulmainen kolmio keksitkö, miten korostat suoraa kulmaa? tasakylkinen kolmio keksitkö,
Lisätiedot2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
LisätiedotMatematiikan ilmiöiden tutkiminen GeoGebran avulla
Johdatus GeoGebraan Matematiikan ilmiöiden tutkiminen GeoGebran avulla Harjoitus 1B. Konstruoi tasakylkinen kolmio ABC, jonka kyljen pituus on 5. Vihje: käytä Kiinteä jana työvälinettä kahdesti. Ota kolmion
LisätiedotGeogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen
Geogebra -koulutus Ohjelmistojen pedagoginen hyödyntäminen Geogebra Ilmainen dynaaminen matematiikkaohjelmisto osoitteessa http://www.geogebra.org Geogebra-sovellusversion voi asentaa tietokoneilla ja
LisätiedotVanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
LisätiedotGeoGebra Quickstart. Lyhyt GeoGebra 2.7 -ohje suomeksi
GeoGebra Quickstart Lyhyt GeoGebra 2.7 -ohje suomeksi Algebraikkuna GeoGebra on ilmainen matematiikan opetusohjelma. Siinä on työvälineitä dynaamiseen geometriaan, algebraan ja analyysiin. Voit piirtää
LisätiedotVektoreita GeoGebrassa.
Vektoreita GeoGebrassa 1 Miten GeoGebralla piirretään vektoreita? Työvälineet ja syöttökentän komennot Vektoreiden esittäminen GeoGebrassa on luontevaa: vektorien piirtämiseen on kaksi työvälinettä vektoreita
LisätiedotOppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8
Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Piirtoalue ja algebraikkuna Piirtoalueelle piirretään työvälinepalkista löytyvillä työvälineillä
LisätiedotAloitusohje versiolle 4.0
Mikä on Geogebra? Aloitusohje versiolle 4.0 dynaamisen matematiiikan työvälineohjelma helppokäyttöisessä paketissa oppimisen ja opetuksen avuksi kaikille koulutustasoille vuorovaikutteiset geometria, algebra,
LisätiedotParaabeli suuntaisia suoria.
15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki
LisätiedotTYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet
TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ a) jana, jonka pituus on 3 b) kulma, jonka suuruus on 45 astetta c)
Lisätiedot6. Harjoitusjakso II. Vinkkejä ja ohjeita
6. Harjoitusjakso II Seuraavaksi harjoitellaan algebrallisten syötteiden, komentojen ja funktioiden käyttöä GeoGebrassa. Tarjolla on ensimmäisen harjoittelujakson tapaan kahden tasoisia harjoituksia: perustaso
LisätiedotMAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5
Lisätiedot3. Harjoitusjakso I. Vinkkejä ja ohjeita
3. Harjoitusjakso I Tämä ensimmäinen harjoitusjakso sisältää kaksi perustason (a ja b) ja kaksi edistyneen tason (c ja d) harjoitusta. Kaikki neljä harjoitusta liittyvät geometrisiin konstruktioihin. Perustason
LisätiedotMAA15 Vektorilaskennan jatkokurssi, tehtävämoniste
MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.
Lisätiedot4. Algebraa, käskyjä ja funktioita
4. Algebraa, käskyjä ja funktioita Vinkkejä ja ohjeita Uusi objekti voidaan nimetä kirjoittamalla nimi = sen algebrallisen esitysmuodon eteen. Esimerkiksi P = (3, 2) luo pisteen P. Kertolasku syötetään
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
LisätiedotDerivaatta graafisesti, h- ja keskeisdifferenssimuodot GeoGebralla Valokuva-albumi
Derivaatta graafisesti, h- ja keskeisdifferenssimuodot GeoGebralla Valokuva-albumi Jussi Kytömäki Lisätiedot ja tekijä: PPT-tiedoston jussi tilaus Jussi.kytomaki@ylojarvi.fi 15.12.2015 GeoGebra-tiedosto
LisätiedotHarjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.
MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö
LisätiedotTasogeometriaa GeoGebran piirtoalue ja työvälineet
Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ (ja MITTAA) a) jana toinen jana, jonka pituus on 3 b) kulma toinen kulma, jonka
LisätiedotTyövälineistä komentoihin
Työvälineistä komentoihin Miten GeoGebralla piirretään funktioita? Kohtasitko ongelmia GeoGebran käytössä? Millaisia? Kohtaisitko tilanteita, joissa jonkin funktion piirtäminen GeoGebralla ei onnistunutkaan?
LisätiedotMAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.
MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise
LisätiedotTekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
LisätiedotPyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 8 Päivitetty 7.5.6 Pyramidi 4 Luku 5..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 56 vastaus Pyramidi 4 Analyyttinen geometria tehtävien
LisätiedotGeoGebra-harjoituksia malu-opettajille
GeoGebra-harjoituksia malu-opettajille 1. Ohjelman kielen vaihtaminen Mikäli ohjelma ei syystä tai toisesta avaudu toivomallasi kielellä, voit vaihtaa ohjelman käyttöliittymän kielen seuraavasti: 2. Fonttikoon
Lisätiedot3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
LisätiedotYmpyrän yhtälö
Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka
LisätiedotMatemaattista mallintamista
Johdatus GeoGebraan Matemaattista mallintamista Harjoitus 2A. Tutkitaan eksponentiaalista kasvua ja eksponenttifunktioita Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi
LisätiedotLaudatur 4 MAA4 ratkaisut kertausharjoituksiin
Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,
LisätiedotYleistä vektoreista GeoGebralla
Vektoreita GeoGebralla Vektoreilla voi laskea joko komentopohjaisesti esim. CAS-ikkunassa tai piirtämällä piirtoikkunassa. Ensimmäisen tavan etuna on, että laskujen tueksi muodostuu kuva. Tästä on varmasti
Lisätiedot4.1 Kaksi pistettä määrää suoran
4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,
Lisätiedoty=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
LisätiedotJohdanto. GeoGebraan. Judith Hohenwarter ja Markus Hohenwarter www.geogebra.org
Johdanto GeoGebraan Judith Hohenwarter ja Markus Hohenwarter www.geogebra.org Johdanto GeoGebraan Muokattu viimeksi 17.9.2010. Alkuperäistä tekstiä muokattu viimeksi 19.7.2008. Kirja sisältää johdannon
LisätiedotJohdanto. GeoGebraan. Judith Hohenwarter ja Markus Hohenwarter www.geogebra.org
Johdanto GeoGebraan Judith Hohenwarter ja Markus Hohenwarter www.geogebra.org Johdanto GeoGebraan Muokattu viimeksi 10.4.2010. Alkuperäistä tekstiä muokattu viimeksi 19.7.2008. Kirja sisältää johdannon
LisätiedotYhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
Lisätiedot11. Geometria Valikot ja näppäintoiminnot. Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa.
11. Geometria Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa. 11.1 Valikot ja näppäintoiminnot Kun valitset päävalikosta Geometry, näyttö tyhjenee ja näkyviin ilmestyy uusi painikevalikko
LisätiedotPeilaus pisteen ja suoran suhteen Pythonin Turtle moduulilla
Peilaus pisteen ja suoran suhteen Pythonin Turtle moduulilla ALKUHARJOITUS Kynän ja paperin avulla peilaaminen koordinaatistossa a) Peilaa pisteen (0,0) suhteen koordinaatistossa sijaitseva - neliö, jonka
Lisätiedot3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?
Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
LisätiedotLisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
LisätiedotKäy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit
LisätiedotEllipsit, hyperbelit ja paraabelit vinossa
Ellipsit, hyperbelit ja paraabelit vinossa Matti Lehtinen 1 Ellipsi, hyperbeli ja paraabeli suorassa Opimme lukion analyyttisen geometrian kurssilla ainakin, jos kävimme lukiota vielä muutama vuosi sitten
LisätiedotSovituskomennot GeoGebrassa
Versio Dimensiota varten Mikko Rahikka Vanhempi lehtori, Helsingin yhteislyseo Sovituskomennot GeoGebrassa Funktion sovittaminen pisteistöön on tyypillinen ongelma, jonka ratkaisemiseminen onnistuu mukavahkosti
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
Lisätiedotc) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
LisätiedotTekijä Pitkä matematiikka
Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin
LisätiedotFunktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?
Funktio. a) Mikä on funktion f (x) = x + lähtöjoukko eli määrittelyjoukko, kun 0 x 5? b) Mikä on funktion f (x) = x + maalijoukko eli arvojoukko? c) Selitä, mikä on funktion nollakohta. Anna esimerkki.
LisätiedotKaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!
MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki
LisätiedotKäyrien välinen dualiteetti (projektiivisessa) tasossa
Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä
Lisätiedot2 Raja-arvo ja jatkuvuus
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti
LisätiedotMAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!
MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele
LisätiedotSähköinen koe (esikatselu) MAA A-osio
MAA2 2018 A-osio Laske molemmat tehtävät! Tee tehtävät huolellisesti. Muodosta vastaukset abitin kaavaeditoriin. Kysy opettajalta tarvittaessa neuvoa teknisissä ja ohjelmien käyttöön liittyvissä ongelmissa.
Lisätiedotorigo III neljännes D
Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä
Lisätiedot11 MATEMAATTINEN ANALYYSI
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 MATEMAATTINEN ANALYYSI ALOITA PERUSTEISTA 444A. a) Funktion arvot ovat positiivisia silloin, kun kuvaaja on x-akselin yläpuolella.
LisätiedotMATEMATIIKKA 5 VIIKKOTUNTIA
EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,
Lisätiedot3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden neljään osaan.
KOKEIT KURSSI 2 Matematiikan koe Kurssi 2 () 1. Nimeä kulmat ja mittaa niiden suuruudet. a) c) 2. Mitkä kuvion kulmista ovat a) suoria teräviä c) kuperia? 3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden
LisätiedotLauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:
Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs
Lisätiedotyleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
Lisätiedot1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.
ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.
Lisätiedot* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat
Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa
Lisätiedot102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.
Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja
LisätiedotMAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
LisätiedotPiste ja jana koordinaatistossa
607 Piste ja jana koordinaatistossa ANALYYTTINEN GEOMETRIA MAA5 Kertausta kurssi Eri asioiden välisten riippuvuuksien havainnollistamiseen kätetään usein koordinaatistoesitstä Pstakselilla riippuvan muuttujan
LisätiedotVASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN
Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa
LisätiedotGeometriaa kuvauksin. Siirto eli translaatio
Geometriaa kuvauksin Siirto eli translaatio Janan AB kuva on jana A B ja ABB A on suunnikas. Suora kuvautuu itsensä kanssa yhdensuuntaiseksi suoraksi. Kulmat säilyvät. Kuva ja alkukuva ovat yhtenevät.
LisätiedotMATEMATIIKKA 5 VIIKKOTUNTIA
EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa
Lisätiedotx 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)
MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon
LisätiedotGeoGebra. 1 Geogebra. Petri Salmela Tehtäviä:
GeoGebra Petri Salmela 13.5.2014 1 Geogebra Dynaamista matematiikkaa. Sopii hyvin matematiikan ja luonnontieteiden opettamiseen ja oppimiseen. Geometriaa, algebraa, kuvaajien piirtämistä, CAS-laskin, taulukkolaskin.
LisätiedotJuuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(
Lisätiedot1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.
Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti
LisätiedotClassPad 330 plus ylioppilaskirjoituksissa apuna
ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys
LisätiedotGeoGebra- opas Virallinen käsikirja 3.2
GeoGebra- opas Virallinen käsikirja 3.2 Markus Hohenwarter and Judith Hohenwarter www.geogebra.org GeoGebra- opas 3.2 Viimeksi muokattu: 16. helmikuuta 24, 2011 Tekijät Markus Hohenwarter, markus@geogebra.org
Lisätiedot4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
LisätiedotKokelaan sukunimi ja kaikki etunimet selväsi kirjoitetuna. Kaava 1 b =2a 2 b =0,5a 3 b =1,5a 4 b = 1a. 4 5 b =4a 6 b = 5a
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 28.9.2016 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
LisätiedotMATEMATIIKKA 3 VIIKKOTUNTIA
EB-TUTKINTO 010 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4 kesäkuuta 010 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa olla
LisätiedotAloita Ratkaise Pisteytä se itse Merkitse pisteet saanut riittävästi pisteitä voit siirtyä seuraavaan osioon ei ole riittävästi
Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)
LisätiedotLukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]
Lukuväleistä MB Funktio - < < tai ]-,] < tai ]-,] Yksikäsitteisyys Täytyy tuntea/arvata tyyppi T 0. (sivu ) f() = a) f () = = 9 = 4 T 0. (sivu ) T 0. (sivu ) f() = f() = b) f(k) = k c) f(t + ) = (t + )
LisätiedotOta tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta
MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit
LisätiedotTehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
Lisätiedot1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400
LisätiedotMATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009
EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa
LisätiedotMAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x
MAA0 A-osa. Ratkaise. a) x + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x a) Kirjoitetaan summa x + 6x yhteisen tekijän avulla tulomuotoon ja ratkaistaan yhtälö tulon nollasäännön avulla. x + 6x = 0 x(x + 6) =
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
LisätiedotKERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +
LisätiedotLataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!
Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa
Lisätiedot