RAKKAUS MATEMAATTISENA RELAATIONA HEIKKI PITKÄNEN
|
|
- Sanna-Kaisa Pesonen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 RAKKAUS MATEMAATTISENA RELAATIONA HEIKKI PITKÄNEN
2 RAKKAUS MATEMAATTISENA RELAATIONA 1 Johdanto Matematiikka mielletään usein hyvin kuivaksi ja kaavoihinsa kangistuneeksi tieteenalaksi. Tämän tekstin tarkoitus on kuitenkin osoittaa, että puhdas matematiikka voi olla mielenkiintoista, ehkä jopa hauskaakin. Tarkoitus ei suinkaan ole määritellä tai mitata 1 rakkautta matemaattisesti. Päinvastoin! Koko vitsi perustuu siihen, ettemme varsinaisesti määrittele, mitä rakkaus on. Puhtaassa matematiikassa lähdetään liikkeelle yksinkertaisista ja hyvin intuitiivisista perusolettamuksista (aksioomat). Esimerkiksi eräs geometriaan liittyvä aksiooma on: Jokaiseen suoraan sisältyy ainakin kaksi pistettä. Kun aksioomat on valittu, keksitään yksinkertaisia nimiä hieman monimutkaisemmille asioille (määritelmät) ja lopulta muodostetaan näistä väitteitä (lauseet), jotka pyritään todistamaan oikeiksi. Myös tässä tutkielmassa lähdemme liikkeelle yksinkertaisista asioista, keksimme nimiä ja teemme muutaman lauseen, jotka voimme todistaa tosiksi näiden määritelmien nojalla. Rakkauden aksioomiin emme sekaannu, sillä se veisi meidät hyvin, hyvin pitkälle matkalle rakkauden monimutkaiseen maailmaan, jossa logiikan lait eivät aina päde. Vaikka painotus on pitkälti viihteellisellä puolella, on jokainen lause myös matemaattisesti täysin pätevä. Tarkoitus on, että kaikki lauseet todistuksineen olisivat ymmärrettävissä ilman syvempää tuntemusta matematiikasta. Yleisimmät tekstissä esiintyvät merkinnät on selitetty liitteessä A. Jos tekstin lukeminen onnistuu herättämään sinussa mielenkiintoa matematiikkaa kohtaan, suosittelen tutustumaan johonkin diskreetin matematiikan opukseen [[1],[5]]. Matematiikan opiskelijalle toivon tämän tuovan hieman vaihtelua harmaaseen analyysiin. 1 Valitettavasti usein myös erehdytään kuvittelemaan, että matematiikka olisi vain lukuja. Kuinka monta lukua löydät tästä tekstistä?
3 2 HEIKKI PITKÄNEN 1. Rakkausrelaatio Määritelmä 1. Olkoon I kaikkien ihmisten joukko ja a, b I. Määritellään relaatio : a b a rakastaa b:tä. Huomautus 2. Määritelmässä esiintyvälle käsitteelle a rakastaa b:tä on monta keskenään ekvivalenttia määritelmää. Määritelmien keksiminen ja ekvivalenteiksi todistaminen HT 2. Huomautus 3. ei ole ekvivalenssirelaatio. Todistus. Todistukseksi riittäisi joko refleksiivisyyden, symmetrisyyden tai transitiivisuuden puutteen toteaminen, mutta teemme ne kaikki korostaaksemme siteä, kuinka hankalasta ralaatiosta on kyse. ei ole refleksiivinen: Selvästi a a jollakin itsetuhoisella a I. ei ole symmetrinen: Ehdosta a b ei välttämättä seuraa b a. Mieti. ei ole transitiivinen: Ehdoista a b ja b c ei seuraa a c, sillä jos näin olisi, olisimme miltei kaikki biseksuaaleja. Huomautus 4. Transitiivisuuden puutteesta seuraa myös se, ettei relaatio ole järjestys. Toimiakseen käytännössä kunnolla relaatio vaatisi ainakin symmetrisyyden ja transitiivisuuden. Refleksiivisyys ei ole välttämätön, mutta varsin suotava ominaisuus. Kuitenkin, kuten yleensä matematiikassa, voimme unohtaa käytännön ja tutkia joukkojen jaottelua relaation avulla. Huomaamme pian, että symmetriivisyyden puute mahdollistaa hyvin erilaisia joukkoja. 2. Sisäänpäinlämpiävät joukot Aloitetaan joukkojen tutkiminen tarkastelemalla sisäänpäinlämpiäviä joukkoja. Tällöin voidaan rajoittua tutkimaan joukkoja joiden koko on suurempi kuin kaksi 3. Määritelmien yksinkertaistamiseksi oletetaan, ettei kukaan rakasta itseään. Toisin sanoen, oletetaan piilossa, että jokainen rakastaa itseään, jolloin se voidaan jättää erikseen merkitsemättä. Sopimus 5. Oletetaan jatkossa, että A I ja #A 3, ellei toisin mainita. Lisäksi oletetaan, että kaikille a A pätee a a. Jos tämän kappaleen merkinnät vaikuttavat monimutkaisilta, lue kappale 3 ja vilkaise sitten uudestaan. Kuvien piirtäminen auttaa usein. Matematiikassa on kyse kuitenkin vain monimutkaisten asioiden merkitsemisestä yksinkertaisilla merkinnöillä, joiden ymmärtämiseen vaaditaan kuitenkin usean vuoden opiskelu. 2 Vihje: Neuvoa voi hakea vaikka rock-lyriikoista tai keskioluesta. 3 Joukot, joiden koko on joko kaksi tai yksi jätämme (parisuhde)terapeuteille.
4 RAKKAUS MATEMAATTISENA RELAATIONA 3 Määritelmä 6. Sanotaan, että joukko A on (1) sisäänpäinlämpiävä, jos joukolle B = {b I : a A s.e. a b ja a b} pätee A B. (2) vahvasti sisäänpäinlämpiävä, jos joukko B = {b I : a A s.e. a b ja a b} on joukon A epätyhjä osajoukko. (3) ynnä (adjektiivina), jos kaikille a A on olemassa b A siten, että a b ja a b ja lisäksi joukko B = {b I : a A s.e. a b ja a b} on joukon A osajoukko. (4) hippikommuuni, jos kaikille a, b A pätee a b. Huomautus 7. i) Ynnä joukko on vahvasti sisäänpäinlämpiävä. Vastaavasti vahvasti sisäänpäinlämpiävä joukko on sisäänpäinlämpiävä. ii) Hippikommuunissa relaatio on ekvivalenssirelaatio. 3. Peruskäsitteet Edellisen kohdan määritelmät vaikuttavat kieltämättä hieman monimutkaisilta. Tätä varten kehitämme hieman käsitteistöä: Sopimus 8. Oletetaan lisäksi jatkossa että a, b A ja a b, ellei muuta mainita. Määritelmä 9. Sanotaan, että a on (1) kylmä joukossa A, jos ei ole olemassa yhtään b A siten, että a b. (2) yksinäinen joukossa A, jos ei ole olemassa yhtään b A siten, että b a. (3) suosittu joukossa A, jos on olemassa b A siten, että b a. (4) lämmin joukossa A, jos on olemassa b A siten, että a b. (5) erakko joukossa A, jos se on kylmä ja yksinäinen joukossa A. (6) pelimies joukossa A, jos se on suosittu ja lämmin joukossa A. (7) lortto joukossa A, jos on olemassa b, c A siten, että b c ja pätee a b sekä a c. (8) hippi joukossa A, jos a b kaikilla b A. (9) lojaali joukossa A, jos on olemassa täsmälleen yksi b A, siten, että a b. Tällöin sanotaan, että a on lojaali b:lle. (10) b:n pari joukossa A, jos a b ja b a. Tällöin sanotaan, että (a, b) on pari ja A sisältää parin. Pari (a, b) on vahva pari joukossa A, jos a on lojaali b:lle joukossa A ja b on lojaali a:lle joukossa A. Huomautus 10. Jokainen hippi on lortto. Näitä määritelmiä käyttäen voidaan edelliset käsitteet kirjoittaa uudestaan: Lause 11. Joukko A on (1) sisäänpäinlämpiävä, jos on olemassa ainakin yksi a A siten, että a on lämmin joukossa A.
5 4 HEIKKI PITKÄNEN (2) vahvasti sisäänpäinlämpiävä, jos kaikki a A ovat kylmiä joukossa I \ A ja on olemassa vähintään yksi a A siten, että a on lämmin joukossa A. (3) ynnä, jos kaikki a A ovat lämpimiä joukossa A ja kylmiä joukossa I \ A. (4) hippikommuuni, jos (a, b) on pari joukossa A kaikilla a, b A. Todistus. HT. Lause 12. Olkoon A ynnä. Tällöin jokin b A on pelimies joukossa A. Todistus. Koska oletuksen nojalla jokainen a A on lämmin joukossa A, on oltava b A siten, että a b. Edelleen oletuksen nojalla on olemassa c A siten, että b c. Tällöin b on sekä lämmin, että suosittu joukossa A ja siten pelimies joukossa A. Todistuksesta huomataan, että vahvemman tuloksen todistaminen on helppoa. Lause 13. Olkoon A ynnä. Tällöin joukossa A on ainakin kaksi pelimiestä. Todistus. HT 4. Huomautus 14. Tästä vahvempaa tulosta ei voida johtaa. Todistus HT: Konstruoi kaikilla n 3 joukko A siten, että #A = n ja A on ynnä, mutta ei sisällä yli kahta pelimiestä. 4. Kolmiodraamat Määritelmä 15. Sanotaan, että a, b A ovat kilpailijoita, jos on c A siten, a c ja b c. Tällöin sanotaan, että joukko A sisältää kilpailua. Määritelmä 16. Olkoon #A = 3. Sanotaan, että joukko A on (1) kolmiodraama, jos jokainen a A on lämmin joukossa A. (2) vahva kolmiodraama, jos jokainen a A on lämmin joukossa A ja A sisältää yhden parin. (3) erittäin vahva kolmiodraama, jos A sisältää kaksi paria. Olkoon #A 3. Sanotaan, että joukko A (1) sisältää kolmiodraaman, jos on olemassa joukko B A siten, että B on kolmiodraama. (2) sisältää vahvan kolmiodraaman, jos on olemassa joukko B A siten, että B on vahva kolmiodraama. (3) sisältää erittäin vahvan kolmiodraaman, jos on olemassa joukko B A siten, että B on erittäin vahva kolmiodraama. Huomautus 17. Kolmiodraama ei välttämättä sisällä kilpailua. Sen sijaan vahva ja erittäin vahva kolmiodraama sisältävät aina kilpailua. Lause 18. Hippikommuuni sisältää kolmiodraaman, vahvan kolmiodraaman ja erittäin vahvan kolmiodraaman. Todistus. Riittää osoittaa, että hippikommuuni sisältää erittäin vahvan kolmiodraaman. Muut väitteet seuraavat määritelmistä. Olkoon A I hippikommuuni siten, että #A 3. Tällöin voidaan valita B := {a, b, c} A. Koska lauseen 11 nojalla (a, b) ja (b, c) ovat pari, on B erittäin vahva kolmiodraama ja tällöin A sisältää erittäin vahvan kolmiodraaman. 4 Vinkki: Jatka edellisen todistuksen ideaa.
6 RAKKAUS MATEMAATTISENA RELAATIONA 5 5. Avoimet ja suljetut joukot Määritelmä 19. Sanotaan, että joukko A on (1) avoin, jos on olemassa a A, joka on on lämmin joukossa I \ A. (2) vahvasti avoin, jos on a A, joka on kylmä joukossa A ja lämmin joukossa I \ A. (3) suljettu, jos jokainen a A on kylmä joukossa I \ A. (4) vahvasti suljettu, jos jokainen a A on lämmin joukossa A ja kylmä joukossa I \ A. Huomautus 20. Joukko ei voi olla yhtä aikaa sekä (vahvasti) avoin että (vahvasti) suljettu. Lause 21. Joukko on ynnä jos ja vain jos se on vahvasti suljettu. Todistus. Seuraa suoraan lauseesta 11. Määritelmä 22. Sanotaan, että joukko A on (1) eduskunta, jos jokainen a A on suosittu joukossa I \ A. (2) isolaatio, jos jokainen a A on erakko joukossa I \ A. 6. Terveet ja kierot joukot Määritelmä 23. Sanotaan että joukko A on (1) terve, jos se on suljettu ja sisältää vain erakkoja tai vahvoja pareja. (2) vino, jos se on vahvasti suljettu, mutta ei sisällä yhtään paria. (3) kiero, jos se sisältää pareja, mutta ei yhtään vahvaa paria. Esimerkki 24. Erittäin vahva kolmiodraama on kiero joukko. Lause 25. Terve joukko ei sisällä lorttoja. Todistus. Olkoon A terve joukko siten, että #A 3. Tehdään antiteesi: A sisältää lorton l. Tällöin l ei ole erakko, joten on oltava vahva pari (l, a) joukossa A. Koska l on lortto, on olemassa b a siten, että l b. Tällöin l ei ole lojaali a:lle, joten pari (l, a) ei ole vahva pari. Tämä on ristiriita. Koska antiteesi johtaa ristiriitaan, on alkuperäinen väite tosi. Lause 26. Kiero joukko sisältää lorton. Todistus. Koska kiero joukko sisältää pareja, on olemassa ainakin yksi pari (a, b). Koska pari ei ole vahva, on olemassa c, siten, että (mahdollisesti merkintöjä vaihtamalla) a c ja c b. Tällöin a on lortto Erittäin terveet ja kierot joukot. Kirjallisuudessa esiintyy muutamia erikoisempia joukkoja, joihin emme tämän tutkielman puitteissa tutustu tarkemmin. Esittelemme tässä niistä muutaman. Asiasta kiinnostuneet voivat tutustua viitteistä löytyvään materiaaliin. Määritelmä 27. Sanotaan, että joukko A on (1) munkkiluostari, jos jokainen a A on erakko. Katso [6]. (2) kristillisesti terve, jos se sisältää vain vahvoja heteropareja. Katso [7].
7 6 HEIKKI PITKÄNEN (3) pyhäjärvi (adjektiivina), jos A on vahvasti suljettu ja a b a ja b ovat serkkuja. Katso [4]. (4) erittäin kiero, jos jokainen a A on lämmin joukossa I c. Katso [2]. (5) vino kunta, jos se on pyhäjärvi ja ei sisällä yhtään paria. Katso [3]. 7. Yhteys verkkoteoriaan Erilaisten joukkojen hahmottaminen helpottuu, kun joukon alkioiden väliset suhteet esitetään verkkoina. Kutsutaan joukkojen alkioita verkkojen kärjiksi ja sanotaan, että verkon kärkien a ja b välillä kulkee reuna, jos a b. Koska relaatio ei ole symmetrinen, tulee verkoista suunnattuja. Näin joukon alkiot voidaan piirtää pisteinä ja reunat nuolina. Tällöin tilanteessa a b piirretään nuoli osoittamaan kärjestä a kärkeen b. Kuvassa 1 on esitetty yksinkertainen tilanne, jossa a rakastaa b:tä ja kuvassa 2 on esitetty luvun 3 määritelmiä ja muutamia monimutkaisempia tilanteita. Sopimus 28. Kutsutaan relaation avulla muodostettuja verkkoja jatkossa yksinkertaisesti verkoiksi. Kuva 1. a rakastaa b:tä Määritelmä 29. Olkoon G rakkausverkko ja a G sen kärki. Märitellään kärjelle a joukossa G (1) panetus p(a) asettamalla (2) saanti s(a) asettamalla ja lopuksi (3) aste d(a) asettamalla p(a) := #{b G : a b}, s(a) := #{b G : b a} d(a) = s(a) p(a). Huomautus 30. Koska verkot ovat suunnattuja, poikkeaa asteen määritelmä yleensä kirjallisuudessa esiintyvästä määritelmästä. Esimerkki 31. Huomataan, että (1) lortolle a pätee p(a) 2, (2) pelimiehelle b pätee s(b) 1 sekä p(b) 1 ja (3) erakolle e pätee s(e) = p(e) = d(e) = 0. Lause 32. Olkoon G rakkausverkko. Tällöin d(a) = 0. a G
8 RAKKAUS MATEMAATTISENA RELAATIONA 7 Kuva 2. Rakkausverkkoja Todistus. HT (Koska kirjoittaja totesi todistuksen tekemisen yllättävän vaikeaksi ja laiskuus iski.) Vinkki: Huomaa ensin, että p(a), mistä määritelmien nojalla saadaan a G d(a) = a G s(a) p(a) = a G s(a) a G a G d(a) = a G #{b G : b a} a G #{b G : a b}. Tämän jälkeen unohda edellinen, esitä verkko matriisina ja laske sen alkioiden summa. 8. Verkkojen väritykset, sukupuolet ja heterous Useissa tapauksissa on havainnollistamisen vuoksi mielekästä värittää verkkojen kärjet eri väreillä, siten että naapurit ovat aina keskenään eri värisiä. Koska sininen on poikien väri ja punainen tyttöjen, halutaan verkot värittää vain kahdella värillä. Määritelmä 33. Kärki b on kärjen a naapuri, jos a b. Määritelmä 34. Kärki a G on hetero, jos kaikki sen naapurit ovat sen kanssa eri sukupuolta. Edelleen pari (a, b) on heteropari, jos a ja b ovat eri sukupuolta. Määritelmä 35. Sanotaan, että verkko G on sateenkaari, jos se sisältää kärjen, joka ei ole hetero. Huomautus 36. Nimi sateenkaari tulee siitä, että verkkoa, joka on sateenkaari, ei ole mahdollista värittää kahdella värillä siten, että naapurit ovat aina erivärisiä. Määritelmä 37. Verkon G polku (a 1 :stä a n :nään) on järjestetty joukko {a 1,..., a n }, jonka alkioille pätee a i a i+1 tai a i+1 a i kaikilla i = 1, 2,..., n 1. Sanotaan, että polku on sykli, jos a 1 = a n. Tällöin sanotaan, että polun/syklin pituus on n. Lause 38. Jos verkko sisältää syklin, jonka pituus on pariton, se sisältää kärjen, joka ei ole hetero.
9 8 HEIKKI PITKÄNEN Kuva 3. Yksinkertainen sukupuu Todistus. Todistus HT. Todistuksen tekemisestä kiinnostuneet voivat tutustua lähteisiin [1] ja [5]. 9. Puut, suvut ja sukurutsaus Ihmisten välisiä sukulaissuhteita on totuttu esittämään sukupuina. Sukupuu on esimerkki verkosta, jossa jokaisesta kärjestä on polku toisiin kärkiin. Sukupuiden tutkimista varten tarvitsemme toisen relaation. Määritelmä 39. Olkoon S sukulaisten joukko ja a, b S. Määritellään relaatio : a b a on b:n vanhempi Huomautus 40. i) Ihmisen vanhemmiksi ei lasketa hänen isovanhempiaan jne. ii) Relaatio ei ole refleksiivinen, symmetrinen eikä transitiivinen. iii) Määritelmässä esiintyvä sukulaisten joukko S määritellään ihmisten joukosta sukulaisuusrelaation avulla. HT: Määrittele relaatio a on b:n sukulainen. Muodostetaan sukulaisista verkko relaation avulla samalla tavalla kuin teimme rakkausrelaation kanssa. Tälläkin kertaa verkosta tulee suunnattu, mutta tavallaan hierarkinen, koska ei ole mahdollista muodostua pareja kuten rakkausrelaation kanssa. 5 Kuvassa 3 on esitetty melko yksinkertainen sukupuu. Sukupuiden polut ja syklit määritellään samalla tavalla kuin rakkausrelaation tapauksessa. Huomattavaa on, että polun muodostaminen on tässäkin tapauksessa suuntauksen suhteen neutraali: polku voi kulkea isältä pojalle ja päinvastoin. Määritelmä 41. Sukupuu G sisältää sukurutsausta, jos on olemassa kärjet a, b G, siten, että a b. Määritelmä 42. Olkoon G sukupuu, joka sisältää sukurutsausta ja kärjet a, b G siten, että a b. Sukurutsauksen taso määritellään seuraavasti: L(a, b) = min{n : {a = a 0,..., a n = b} on polku}. Esimerkki 43. Sisaruksille L(a, b) = 2, serkuksille L(a, b) = 4, miehelle ja hänen tädilleen L(a, b) = 3. Huomautus 44. Suomen lainsäädäntö sallii jo tason 4 tapauksen. Tämä on keskeneräinen versio! 5 Poikkeuksena Kauniit ja Rohkeat!
10 RAKKAUS MATEMAATTISENA RELAATIONA 9 Viitteet [1] Ian Anderson A First Course in Discrete Mathematics. Springer-Verlag London Limited, [2] P. Ervo Viikkoni Japanissa. Sensuurin takia poistettu blogimerkintä, [3] Kari K. Kario Läheisyys sukulaissuhteissa. Humanistista liibalaabaa justjoo, [4] J. Kuula Lapsuuteni Pyhäjärvellä. Sivulause, [5] Jiří Matoušek & Jaroslav Nešetřil Invitation to discrete mathematics. Department of Applied Mathematics, Charles University, Praha, [6] J. Pietarinen Metallimusiikista, keskioluesta ja rakkaudesta. Facebook-keskustelu, [7] P. Räsänen Homoilta. YLE, 2010.
11 10 HEIKKI PITKÄNEN Liite A. Matemaattisia merkintöjä a A: a kuuluu joukkoon A. a, b A: a ja b kuuluvat joukkoon A. {a A : ehto}: ne alkiot joukossa A, joille ehto pätee. #A: joukon A alkoiden lukumäärä. s.e.: siten, että A B: A ja B ovat yhtäpitäviä. HT: harjoitustehtävä. : on olemassa. : joukko joka on tyhjä. A I: A on joukon I osajoukko. Katso kuva 4 liitteessä B. A B: joukkojen A ja B yhteiset alkiot. Katso kuva 5 liitteessä B. I \A: Joukon A (relatiivinen) komplementti, eli ne joukon I alkiot, jotka eivät kuulu joukkoon A. Katso kuva 6 liitteessä B. A B: A:sta seuraa B. Liite B. Venn-diagrammeja Joukkojen, niiden leikkausten ja komplementtien havainnoillistaminen on helppoa Venn-diagrammeilla. Kuvattu joukko on kuvissa harmaana. Kuva 4. A on joukon I osajoukko, A I Kuva 5. Joukkojen A ja B leikkaus, A B
12 RAKKAUS MATEMAATTISENA RELAATIONA 11 Kuva 6. Joukon A komplementti, I \ A
RAKKAUS MATEMAATTISENA RELAATIONA
RAKKAUS MATEMAATTISENA RELAATIONA HEIKKI PITKÄNEN 1. Johdanto Määritelmä 1. Olkoon I ihmisten joukko ja a, b I. Määritellään relaatio : a b a rakastaa b:tä. Huomautus 2. Määritelmässä esiintyvälle käsitteelle
Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015
Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015 1. Onko olemassa yhtenäistä verkkoa, jossa (a) jokaisen kärjen aste on 6, (b) jokaisen kärjen aste on 5, ja paperille piirrettynä sivut eivät
Induktio kaavan pituuden suhteen
Induktio kaavan pituuden suhteen Lauselogiikan objektikieli määritellään kurssilla Logiikka 1B seuraavasti: 1. Lausemuuttujat p 1, p 2, p 3,... ovat kaavoja. 2. Jos A on kaava, niin A on kaava. 3. Jos
Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.
Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta
Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on
Diskreetit rakenteet
Diskreetit rakenteet 811120P 5 op 7. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 Mikä on verkko? verkko (eli graafi) koostuu solmuista ja väleistä, jotka yhdistävät solmuja
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
Johdatus diskreettiin matematiikkaan Harjoitus 1,
Johdatus diskreettiin matematiikkaan Harjoitus 1, 15.9.2014 1. Hahmottele tasossa seuraavat relaatiot: a) R 1 = {(x, y) R 2 : x y 2 } b) R 2 = {(x, y) R 2 : y x Z} c) R 3 = {(x, y) R 2 : y > 0 and x 2
Luonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 2: Relaatiot 4.2 Relaatiot Relaatioilla mallinnetaan joukkojen alkioiden välisiä suhteita Joukkojen S ja T välinen binaarirelaatio
6 Relaatiot. 6.1 Relaation määritelmä
6 Relaatiot 6. Relaation määritelmä Määritelmä 6... Oletetaan, että X ja Y ovat joukkoja. Jos R µ X Y, sanotaan, että R on joukkojen X ja Y välinen relaatio. Jos R µ X X, sanotaan, että R on joukon X relaatio.
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
Matematiikan tukikurssi 3.4.
Matematiikan tukikurssi 3.4. Neliömuodot, Hessen matriisi, deiniittisyys, konveksisuus siinä tämän dokumentin aiheet. Neliömuodot ovat unktioita, jotka ovat muotoa T ( x) = x Ax, missä x = (x 1,, x n )
Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla
Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta
missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi
3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,
X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Olkoon perusjoukkona X := {,,,, } ja := {(, ), (, ), (, ), (, )}. Muodosta yhdistetyt (potenssi)relaatiot,,,. Entä mitä on yleisesti n, kun
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Joukot. Georg Cantor ( )
Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).
Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,
Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.
Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä
LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia
LUKU II HOMOLOGIA-ALGEBRAA 1. Joukko-oppia Matematiikalle on tyypillistä erilaisten objektien tarkastelu. Tarkastelu kohdistuu objektien tai näiden muodostamien joukkojen välisiin suhteisiin, mutta objektien
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan
5.2 Eulerin kehät ja -polut
5.2 Eulerin kehät ja -polut Königsbergin sillat: onko mahdollista tehdä (kuivin jaloin) kävelyretki siten, että jokainen silta kuljetaan tasan kerran Eulerin polku on verkon polku, joka kulkee jokaisen
Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Tehtäviä viikolle 2. (24.3-25.3) Jeremias Berg Tämän viikon tehtävien teemoina on tulojoukot, relaatiot sekä kuvaukset. Näistä varsinkin relaatiot ja kuvaukset ovat tärkeitä
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:
(2n 1) = n 2
3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa
Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista
Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )
Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.
Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.
Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa
Määritelmä 1 Olkoot x ja y joukon A alkioita. Jos R on jokin ominaisuus/ehto, joka määritellään yksikäsitteisesti joukon A kaikkien alkioiden välille siten, että se joko toteutuu tai ei toteudu alkioiden
Matematiikan mestariluokka, syksy 2009 7
Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty
d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla
MAT21007 Mitta ja integraali Harjoitus 2 viikko 25.3-29.3 2019) Palauta mieleen: monisteen luku 0; Topologia I) avaruuden d euklidinen etäisyys, avoimet kuulat ja joukot. Ohjausta laskuharjoitusten tekoon:
Todistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
MS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö
Aluksi Matemaattisena käsitteenä lineaarinen optimointi sisältää juuri sen saman asian kuin mikä sen nimestä tulee mieleen. Lineaarisen optimoinnin avulla haetaan ihannearvoa eli optimia, joka on määritelty
DISKREETTIÄ MATEMATIIKKAA.
Heikki Junnila DISKREETTIÄ MATEMATIIKKAA. LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset..... 3 2. Luonnolliset luvut. Induktio.... 9 3. Äärelliset joukot.... 14 4. Joukon ositukset.
Matematiikan tukikurssi, kurssikerta 2
Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan
Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195
Johdatus yliopistomatematiikkaan JYM, Syksy2015 1/195 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava
ja s S : ϕ Υ : M,s ϕ, mutta M,s Q. Erityisesti M, t P kaikilla t S, joten
T-79.50 kevät 007 Laskuharjoitus 4. Vastaesimerkiksi kelpaa malli M = S, R,v, missä S = {s}, R = { s,s }, ja v(s,p) = false. P s M = P P pätee (koska M,s P), ja M,s P pätee myös, koska s,s R, M,s P, eikä
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx
x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää
Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,
Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 30.
Tehtävä 8 : 1. Tehtävä 8 : 2
Tehtävä 8 : 1 Merkitään kirjaimella G tarkasteltavaa Petersenin verkkoa. Olkoon A joukon V(G) niiden solmujen joukko, joita vastaavat solmut sijaitsevat tehtäväpaperin kuvassa ulkokehällä. Joukon A jokaisella
Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.
3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä
Yhtenäisyydestä. Johdanto. Lähipisteavaruus. Tuomas Korppi
Solmu 2/2012 1 Yhtenäisyydestä Tuomas Korppi Johdanto Tarkastellaan kuvassa 1 näkyviä verkkoa 1 ja R 2 :n (eli tason) osajoukkoa. Kuvan 2 verkko voidaan jakaa kolmeen osaan niin, että osien välillä ei
keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 1 b 3 a 5
Johdatus diskreettiin matematiikkaan Harjoitus 6, 21.10.2015 1. Ovatko verkot keskenään isomorfiset? (Perustele!) Ratkaisu. Ovat. Tämän näkee indeksoimalla kärjet kuvan osoittamalla tavalla: a 2 b 4 a
MS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf
MS-A0004 - Matriisilaskenta Laskuharjoitus 3
MS-A0004 - Matriisilaskenta Laskuharjoitus 3 atkaisut Tehtävä Merkitään matriisin rivejä, 2 ja 3. Gaussin eliminoinnilla saadaan 3 5 4 7 3 5 4 7 3 2 4 2+ 0 3 0 6 6 8 4 3+2 2 0 3 0 6 3 5 4 7 0 3 0 6 3+
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
Vastaoletuksen muodostaminen
Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset
Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai
Ensimmäinen induktioperiaate
Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
Topologia Syksy 2010 Harjoitus 9
Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,
Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,
Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio
Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?
Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)
Cantorin joukon suoristuvuus tasossa
Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja
Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on
Ensimmäinen induktioperiaate
1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
Luento 6. June 1, 2015. Luento 6
June 1, 2015 Normaalimuodon pelissä on luontevaa ajatella, että pelaajat tekevät valintansa samanaikaisesti. Ekstensiivisen muodon peleissä pelin jonottaisella rakenteella on keskeinen merkitys. Aluksi
Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,
Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, (s) symmetrinen, jos xry yrx, (as) antisymmetrinen, jos xry yrx x =
(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2.
Derivaatta kuvaa funktion hetkellistä kasvunopeutta. Geometrisesti tulkittuna funktion derivaatta kohdassa x 0 on funktion kuvaajalle kohtaan x 0 piirretyn tangentin kulmakerroin. Funktio f on derivoituva
Puiden karakterisointi
Puiden karakterisointi LuK-tutkielma Airta Ella 2502661 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2018 Sisältö Johdanto 2 1 Johdatus verkkoteoriaan 3 1.1 Verkko käsitteenä.........................
1.1 Funktion määritelmä
1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Heidi Luukkonen. Sahlqvistin kaavat
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Luukkonen Sahlqvistin kaavat Informaatiotieteiden yksikkö Matematiikka Maaliskuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö LUUKKONEN, HEIDI: Sahlqvistin
Johdatus L A TEXiin. 6. Omat komennot ja lauseympäristöt Markus Harju. Matemaattiset tieteet
Johdatus L A TEXiin 6. Omat komennot ja lauseympäristöt Markus Harju Matemaattiset tieteet Omat komennot I a L A TEXin valmiiden komentojen lisäksi kirjoittaja voi itse määritellä omia komentojaan. Tämä
Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. (24.3-25.3) Jeremias Berg 1. Olkoot A 1 = {1, 2, 3}, A 2 = {A 1, 5, 6}, A 3 = {A 2, A 1, 7}, D = {A 1, A 2, A 3 } Kirjoita auki seuraavat joukot:
Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
Tietojenkäsittelyteorian alkeet, osa 2
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään
Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.
Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen
a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon
Matematiikan johdantokurssi, syksy 08 Harjoitus 3, ratkaisuista. Kokonaisluvut määriteltiin luonnollisten lukujen avulla ekvivalenssiluokkina [a, b], jotka määrää (jo demoissa ekvivalenssirelaatioksi osoitettu)
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat
Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.
Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Kaksi järjestettyä paria ovat samat, jos niillä on samat ensimmäiset alkiot ja samat toiset alkiot:
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.
verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari
Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on
6. Tekijäryhmät ja aliryhmät
6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,
HUOM! Sinisellä taustavärillä on merkitty tarjoajan täytettäväksi tarkoitetut sarakkeet/kohdat/solut.
1 (12) TARJOUS- JA HINNOITTELULOMAKE 2012 Viestintä- ja markkinointisuunnitelman tekeminen ja toteuttaminen Tarjoaja tekee tarjouksen täyttämällä ja allekirjoittamalla tämän tarjous- ja hinnoittelulomakkeen.
Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi
2. OSA: GEOMETRIA Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Montako tasokuviota voit muodostaa viidestä neliöstä siten, että jokaisen neliön vähintään
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä.
Tehtävä 6 : 1 Oletetaan ensin joukon X olevan sisältymisen suhteen minimaalinen solmut a ja b toisistaan erotteleva joukon V(G)\{a, b} osajoukko. Olkoon x joukon X alkio. Oletuksen nojalla joukko X\{x}
Johdatus matemaattiseen päättelyyn (5 op)
Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi
FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto
FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.
Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa
Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain
MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I
MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetyhteenveto, 3. osahuhtikuuta
1.5 Suljetulla välillä jatkuva funktio. Perusominaisuudet.
1.5 Suljetulla välillä jatkuva funktio. Perusominaisuudet. Differentiaalilaskennassa on aika tavallinen tilanne päästä tutkimaan SULJETUL- LA VÄLILLÄ JATKUVAA FUNKTIOTA. Oletuksena on tällöin funktion