DEE Suprajohtavuus

Koko: px
Aloita esitys sivulta:

Download "DEE-54011 Suprajohtavuus"

Transkriptio

1 DEE Suprajohtavuus Johdanto (mutkien kautta) aiheeseen 1 DEE Suprajohtavuus Risto Mikkonen

2 DEE Suprajohtavuus Luennot: III -periodi Harjoitukset: ke SE 100J pe SE 201 to SE 100J Risto Mikkonen, SH DEE Suprajohtavuus Risto Mikkonen

3 Määrehän predikoidaan jollekin subjektille, joten se, jolle oleva predikoidaan, ei ole, sillä se on erilainen kuin oleva; siis jokin, joka ei ole, on. - Aristoteles: Fysiikka 3 DEE Suprajohtavuus Risto Mikkonen

4 Valikoituja fysiikan suuria ajatuksia E f = E i Energian säilyminen P f = P i Liikemäärän säilyminen F = ma Newtonin lait The only reason for time is so that everything doesn t happen at once - A. Einstein 4 DEE Suprajohtavuus Risto Mikkonen

5 Newtonin lait Liikkeen jatkuvuuden laki Dynamiikan peruslaki Voiman ja vastavoiman laki 5 DEE Suprajohtavuus Risto Mikkonen

6 Einstein, 1905 m m 0 1 c v 2 2 L Lorentzin muunnos 2 L 0 1 c v 2 Lorentzin kontraktio Aikadilaatio t t 0 1 c v DEE Suprajohtavuus Risto Mikkonen

7 Einstein, 1905 F Nyt Newtonin II laki m dv dt v dm dt Kun hyväksymme energian säilymisen lain E 2 m c Put your hand on a hot stove for a minute, and it seems like an hour. Sit with a pretty girl for an hour and it seems like a minute. - A. Einstein 7 DEE Suprajohtavuus Risto Mikkonen

8 Massa on energiaa 8 DEE Suprajohtavuus Risto Mikkonen

9 Einsteinin suusta Jos matematiikka kuvaa todellisuutta, se ei ole puhdasta. Jos matematiikka on puhdasta, se ei kuvaa todellisuutta. Jos menestystä mitataan A:lla, saadaan kaava A = X+Y+Z. X merkitsee työtä, Y leikkiä ja Z sitä, että pitää suunsa kiinni. Jos tosiasiat ja teoria eivät sovi yhteen, muuta tosiasioita. Vain kaksi asiaa ovat äärettömiä universumi ja ihmisten typeryys, enkä ole ensimmäisestä aivan varma. 9 DEE Suprajohtavuus Risto Mikkonen

10 Johteet ja eristeet Resistiivisyys on mitta sille, kuinka hyvin tai huonosti materiaali johtaa sähköä. Materiaali Resistiivisyys ( m ) Kupari 1.7 x 10-8 Grafiitti 1 x 10-5 Pii 1 Kumi 1 x Kertaluokkaero hyvän johdin- ja eristemateriaalin välillä DEE Suprajohtavuus Risto Mikkonen

11 Metallit Mikä on yleinen käsityksemme metalleista? Kiinteitä aineita, jotka koostuvat atomeista ja liikkumaan pystyvistä elektroneista? Metalliatomit ovat sijoittuneet säännölliseen, symmetriseen järjestykseen. Vapaat elektronit pitävät massan koossa ja liikkuessaan johtavat sähköä. 11 DEE Suprajohtavuus Risto Mikkonen

12 Miten metallit johtavat sähköä? Elektroni omaa sähköisen varauksen (alkeisvaraus). Potentiaaliero (jännite) kohdistaa elektroniin voimavaikutuksen. Newtonin mekaniikan mukaan tämä voima antaa elektronille kiihtyvyyden a. Potentiaalieron johdosta elektronien pitäisi liikkua yhä nopeammin ja nopeammin. Näin ei kuitenkaan käy. Itse asiassa ne näyttävät kulkevan nopeudella, joka muistuttaa väsynyttä käärmettä. Miksi? Jonkin tekijän täytyy siis ehkäistä tätä prosessia. 12 DEE Suprajohtavuus Risto Mikkonen

13 Resistiivisyys klassinen teoria Potentiaalieron johdosta elektronien nopeus kasvaa, kunnes ne törmäävät kidehilan atomeihin (ja mahdollisesti toisiinsa), jolloin niiden liike-energia (nopeus) pienenee, ja kiihtyvyysprosessi alkaa alusta. Kvanttimekaniikka 13 DEE Suprajohtavuus Risto Mikkonen

14 Kvanttimekaniikka t 2 2m 2 j 2 x U Tämä on vain hauska tapa todentaa energian säilymisen laki. Kun tämä yhtälö ratkaistaan sähkökentässä liikkuvalle elektronille, voidaan havaita kaksi seikkaa: Metallissa liikkuvat elektronit eivät käyttäydy kuten partikkelit, vaan paremminkin kuin aallot sekä Koska elektroneilla on aaltoluonne, ne liikkuvat metallissa vapaasti ilman vuorovaikutusta kidehilan atomeihin. 14 DEE Suprajohtavuus Risto Mikkonen

15 Kvanttimekaniikka (Cont.) Jos elektronit eivät törmää kidehilan atomeihin mihin ne törmäävät? (Joka tapauksessa metalleilla on tietty resistiivisyys.) Vastaus: Ne törmäävät epäpuhtauksiin tai metalliatomeihin, jotka sattuvat värähtelemään väärässä paikassa elektroniaallon ohittaessa niitä. Kiinteiden aineiden atomien jaksollista värähtelyä kutsutaan fononiksi. Fononi on siis kidevärähtelyihin liittyvä energiakvantti. Ajattele näppäileväsi kitaran kieltä. Syntynyt aalto kulkeutuu kieltä pitkin. Kun näppäilet atomia, atomien väliset voimavaikutukset vetävät näppäillyn atomin takaisin sijaintiinsa. Näistä atomien värähtelyistä syntyy aalto, joka kulkeutuu materiaalin läpi. 15 DEE Suprajohtavuus Risto Mikkonen

16 Esimerkki 16 DEE Suprajohtavuus Risto Mikkonen

17 Eikö tarkoitus ollut keskustella suprajohtavuudesta Koska päästään itse asiaan!? 17 DEE Suprajohtavuus Risto Mikkonen

18 Mutta vielä sitä ennen Kaksi näkökulmaa ennen kuin siirrytään suprajohteisiin Ajattele täydellistä johdinta. Mitä tapahtuu, kun yrität tuoda magneetin lähelle johdinta? Mitä tapahtuu, kun yrität siirtää magneetin pois? Faraday n laki: Muuttuva magneettikenttä indusoi johtimeen jännitteen. Lenz in laki: Indusoitunut jännite synnyttää johtimeen virran, minkä luoma magneettikenttä vastustaa alkuperäisen kentän muutosta. 18 DEE Suprajohtavuus Risto Mikkonen

19 Viimeinkin Heike Kamerlingh Onnes Heliumin nesteytys Leidenin yliopistossa 1908 Suprajohtavuusilmiö elohopealle 1911 Vuonna 1910 Onnes saavutti 1.04 K:n lämpötilan epäonnistuessaan heliumin kiinteytyksessä, jota hän yritti laskemalla nestemäisen heliumin yläpuolella olevaa painetta. 19 DEE Suprajohtavuus Risto Mikkonen

20 Suprajohtavuus elohopealle 1911 Ongelma: Mikään teoria ei selitä ilmiötä. Mitä tälle mysteerille voidaan tehdä? Mitataan, mietitään, mietitään ja odotetaan, kunnes joku löytää hyväksyttävän teorian 20 DEE Suprajohtavuus Risto Mikkonen

21 Onko suprajohteen resistiivisyys todella nolla? Miten voimme mitata jotakin, joka on nolla? Voimme tehdä suprajohteesta johdinsilmukaan ja injektoida siihen virran. Sen jälkeen voimme mitata virran aiheuttamaa magneettikenttää pitkän ajan kuluessa. Näin aikanaan tehtiin ja minkäänlaista muutosta ei pystytty havaitsemaan usean vuoden kuluttua. Kokeen perusteella emme pysty sanomaan, että resistiivisyys on nolla, mutta voimme sanoa, että se on paljon pienempi kuin mittauksien kautta pystytään havainnoimaan. Teoria (mikä teoria ) kuitenkin sanoo, että resistiivisyys on nolla. 21 DEE Suprajohtavuus Risto Mikkonen

22 Nollaresistiivisyys Alhaiset lämpötilat LTS HTS 4.2 K 77 K Virta kulkee vaimenematta vuotta! 22 DEE Suprajohtavuus Risto Mikkonen

23 Mitä suprajohtavuudella voidaan tehdä. 23 DEE Suprajohtavuus Risto Mikkonen

24 Suprajohtavat alkuaineet 24 DEE Suprajohtavuus Risto Mikkonen

25 Mysteeri Aikavälin päähuomiot: Meissner -ilmiö (1933). Parhaimmat normaalit sähköjohteet (esimerkiksi kupari) eivät saavuta suprajohtavaa tilaa. Suprajohtavan tilan saavuttavista metalleista parhaimmat johdinmateriaalit ovat heikompia suprajohteita ja kääntäen isotooppi-efekti. Kevyt isotooppi (elohopea) muuttuu suprajohtavaksi korkeammassa lämpötilassa kuin raskaampi isotooppi. 25 DEE Suprajohtavuus Risto Mikkonen

26 Meissner-ilmiö Jäähdytetään suprajohde sen ollessa ulkoisessa magneettikentässä. Kun T < T c, = 0, joten suprajohteen yli oleva jännite = 0. Faraday n lain mukaan johteen sisällä magneettikenttä ei voi muuttua. Klassisen fysiikan mukaisesti magneettikenttä materiaalin sisällä täytyy olla vakio. Kuitenkin materiaalin sisällä B = 0. Miten tämä on mahdollista? Suprajohteen pintaan indusoituu ns. suojavirta, jonka luoma magneettikenttä on vastakkainen ulkoiseen kenttään nähden. 26 DEE Suprajohtavuus Risto Mikkonen

27 Meissner-ilmiö Case: Miksi ideaalinen, ääretön johtavuus ei selitä Meissner-ilmiötä? 27 DEE Suprajohtavuus Risto Mikkonen

28 I-lajin suprajohde B c < ~ 0.1 T Inside field B i ei käytännön sovelluksia Outside field B a Suprajohde B i = 0 Normal conductor B i =B a 28 DEE Suprajohtavuus Risto Mikkonen

29 II-lajin suprajohde 29 DEE Suprajohtavuus Risto Mikkonen

30 II-lajin suprajohde (Cont.) 30 DEE Suprajohtavuus Risto Mikkonen

31 Magnetic induction B II-lajin suprajohde (Cont.) Normal state Mixed phase Meissner phase Temperature T STM (Scanning Tunneling Microscopy). Abrikosov-lattice in NbSe 2 31 DEE Suprajohtavuus Risto Mikkonen

32 Pippardin koherenssipituus Koherenssipituus 0 tarkoittaa keskimääräistä etäisyyttä, jonka sisällä elektronit muodostavat ns. Cooperin pareja. e - 0 a 2 hv F kt c Phonon 32 DEE Suprajohtavuus Risto Mikkonen e -

33 Londonin tunkeutumissyvyys Tunkeutumissyvyys L ilmaisee syvyyden, jolle magneettikenttä tunkeutuu suprajohteessa vaimentuen samalla eksponentiaalisesti. L m n e 0 s 2 33 DEE Suprajohtavuus Risto Mikkonen

34 Missä sitten on se pihvi? Kaikki edellä kuvailtu on deskriptiivistä, fenomenologista. Empiirisiä yhtälöitä ja parametreja. Täytyy löytyä teoria! BCS-teoria, Bardeen, Cooper ja Schrieffer, Nobelin palkinto vuonna Avainhuomio oli isotooppiefekti, joka vie meidät takaisin fononien jäljille. 34 DEE Suprajohtavuus Risto Mikkonen

35 Fononien rooli Elektronit vetävät protoneja puoleensa. Syntyy alue, jonka positiivinen varaus lisääntyy. Kuten näppäiltäessä kitaran kieltä tämä häiriöalue kulkeutuu materiaalin läpi. Toisaalla oleva elektroni voi absorboida fononin liikemäärän. Sama suomeksi: tämä elektroni pyrkii hakeutumaan tälle lisääntyneen positiivisen varauksen alueelle. 35 DEE Suprajohtavuus Risto Mikkonen

36 Fononin rooli (Cont.) Kaksi elektronia voivat tällä tavalla olla vuorovaikutuksessa keskenään, koska ne molemmat pyrkivät hakeutumaan tälle positiivisen varauksen alueelle. Jos tämä vuorovaikutus ylittää elektronien toisiaan luotaan työntävän voiman, syntyy elektronipari, jota kutsutaan ns. Cooperin pariksi. 36 DEE Suprajohtavuus Risto Mikkonen

37 BCS-teorian avainnäkökohtia Elektronit liikkuvat vastinpareina, jotka eivät menetä liikeenergiaansa vuorovaikutuksesta kidehilan kanssa. Pariutuneiden elektronien ei tarvitse olla lähekkäin, etäisyys saattaa olla kertaa atomien välinen etäisyys. Elektronien spin-luku on ½. Cooperin parin muodostavilla elektroneilla on vastakkaiset spin-luvut ja ja samansuuruiset, mutta vastakkaissuuntaiset liikemäärät. Elektroniparin spin on täten nolla ja sen keskinäinen liikemäärä on nolla. Nämä nolla-spinin omaavat elektroniparit pyrkivät hakeutumaan samalle energiatilalle. 37 DEE Suprajohtavuus Risto Mikkonen

38 BCS-teorian avainnäkökohtia (Cont.) Kun T = 0 K, Cooperin parit ovat samalla energiatasolla. Suprajohtavassa tilassa Cooperin parit ovat siroutuneet toisiinsa nähden, mutta kokonaisliikemäärä pysyy vakiona. Mikäli jonkin Cooperin parin liikemäärä kasvaa, muiden vastaavasti pienenee. Täten virran suuruudessa ei tapahdu muutosta. Cooperin parien ollessa vuorovaikutuksessa keskenään, kidehilan atomit eivät pysty hajottamaan yksittäisiä pareja. Ainoastaan termisen energian lisääminen voi hajottaa parin. Tavalliset metallit johtavat hyvin sähköä, jos vuorovaikutus elektronien ja kidehilan välillä on heikko. 38 DEE Suprajohtavuus Risto Mikkonen

39 BCS-teoria Sen sijaan suprajohteilla vuorovaikutus elektronien ja kidehilan välillä on voimakas. Lämpötilan kasvaessa kidevärähtelyjen terminen energia riittää rikkomaan Cooperin pareja enenevässä määrin ja suprajohtava tila katoaa ja materiaali muuttuu resistiiviseksi. 39 DEE Suprajohtavuus Risto Mikkonen

40 BCS-teoria aukoton, mutta BCS-teoria selittää kauniisti suprajohtavan tilan luonteen, mutta teorian mukaan kriittisen lämpötilan yläraja olisi noin 30 K. Tämän jälkeen kidevärähtelyjen terminen energia on liian suuri. Vuonna 1986 IBM:n tutkijat Georg Bednorz ja Alex Müller ilmoittivat havainnoimansa suprajohtavuuden yhdisteessä, joka koostui lantaaniumista, bariumista, kuparista ja hapesta (siis keraami!), kriittisen lämpötilan ollessa noin 35 K!! Paul Chu Houstonin yliopistosta ilmoitti löytäneensä yhdisteen, joka oli suprajohtava 93 K:ssa (reilusti korkeampi kuin nestetypen höyrystymislämpötila). 40 DEE Suprajohtavuus Risto Mikkonen

41 Kenelle Nobelin palkinto? Georg Bednorz ja Alex Müller Paul Chu Aukotonta teoriaa HTS-materaalien suprajohtavuudelle ei ole. BCS-teoria on hyvä lähtökohta, mutta ei siis lopullinen vastaus. 41 DEE Suprajohtavuus Risto Mikkonen

42 Kenelle Nobel juonittelua Alkuvuodesta -87 Chu lähetti julkaistavaksi paperin Yb, Ba, Cu ja O yhdisteestä, jonka T c oli 93 K. Kun artikkeli julkaistiin Yb oli korvautunut Y:llä. Chu selitti asiaa kirjoitusvirheellä 42 DEE Suprajohtavuus Risto Mikkonen

43 Kenelle Nobel Bednorz ja Müller saivat Nobelin palkinnon vuonna Suprajohtavuuden kriittisen lämpötilan T c ennätys on tällä hetkellä 138 K yhdisteelle, joka koostuu elohopeasta, thaliumista, bariumista, kuparista ja hapesta. 43 DEE Suprajohtavuus Risto Mikkonen

Suprajohteet. 19. syyskuuta Syventävien opintojen seminaari Suprajohteet. Juho Arjoranta

Suprajohteet. 19. syyskuuta Syventävien opintojen seminaari Suprajohteet. Juho Arjoranta Suprajohteet Syventävien opintojen seminaari juho.arjoranta@helsinki. 19. syyskuuta 2013 Sisällysluettelo 1 2 3 4 5 1911 H. K. Onnes havaitsi suprajohtavuuden Kuva: Elohopean resistiivisyys sen kriittisen

Lisätiedot

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Passiiviset piirikomponentit 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Resistanssi on sähkövastuksen ominaisuus. Vastuksen yli vaikuttava jännite

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen

Lisätiedot

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen

Luento 2. SMG-2100 Sähkötekniikka Risto Mikkonen SMG-2100 Sähkötekniikka Luento 2 1 Sähköenergia ja -teho Hetkellinen teho p( t) u( t) i( t) Teho = työ aikayksikköä kohti; [p] = J/s =VC/s = VA = W (watti) Energian kulutus aikavälillä [0 T] W T 0 p( t)

Lisätiedot

Faradayn laki ja sähkömagneettinen induktio

Faradayn laki ja sähkömagneettinen induktio Faradayn laki ja sähkömagneettinen induktio Haarto & Karhunen Magneettivuo Magneettivuo Φ määritellään magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetuloksi Φ B A BAcos Acosθ θ θ

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn

Lisätiedot

MAA10 HARJOITUSTEHTÄVIÄ

MAA10 HARJOITUSTEHTÄVIÄ MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5

Lisätiedot

Luento 2. DEE Piirianalyysi Risto Mikkonen

Luento 2. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 2 1 Luento 1 - Recap Opintojakson rakenne ja tavoitteet Sähkötekniikan historiaa Sähköiset perussuureet Passiiviset piirikomponentit 2 Luento 2 - sisältö Passiiviset piirikomponentit

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,

Lisätiedot

sähköverkossa Suprajohtavan käämin suunnitteluperiaatteita eri käämigeometriat (Cont,) 1 Suprajohtavuus sähköverkossa Risto Mikkonen

sähköverkossa Suprajohtavan käämin suunnitteluperiaatteita eri käämigeometriat (Cont,) 1 Suprajohtavuus sähköverkossa Risto Mikkonen DEE-54010 Suprajohtavuus sähköverkossa Suprajohtavan käämin suunnitteluperiaatteita eri käämigeometriat (Cont,) 1 Suprajohtavuus sähköverkossa Risto Mikkonen Solenoidimagneetti, B 0 H z (0,0) a N I ( ln

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

DEE Suprajohtavuus Harjoitus 1(6): suprajohtavuuden teoriaa Ratkaisuehdotukset. Resistiivisyyden katoaminen

DEE Suprajohtavuus Harjoitus 1(6): suprajohtavuuden teoriaa Ratkaisuehdotukset. Resistiivisyyden katoaminen DEE-54011 Suprajohtavuus Harjoitus 1(6): suprajohtavuuden teoriaa Ratkaisuehdotukset Resistiivisyyden katoaminen Suprajohtavuusilmiön havaitsemisen jälkeen alettiin rakentaa suprajohtavuuden teoriaa. Toisin

Lisätiedot

Sähköstaattisen potentiaalin laskeminen

Sähköstaattisen potentiaalin laskeminen Sähköstaattisen potentiaalin laskeminen Potentiaalienegia on tuttu mekaniikan kussilta eikä se ole vieas akielämässäkään. Sen sijaan potentiaalin käsite koetaan usein vaikeaksi. On hyvä muistaa, että staattisissa

Lisätiedot

TASASUUNTAUS JA PUOLIJOHTEET

TASASUUNTAUS JA PUOLIJOHTEET TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

LIITE 11A: VALOSÄHKÖINEN ILMIÖ LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,

Lisätiedot

Luento 2. 1 DEE Piirianalyysi Risto Mikkonen

Luento 2. 1 DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 2 1 DEE-11000 Piirianalyysi Risto Mikkonen Passiiviset piirikomponentit - vastus Vastus on komponentti, jossa sähköenergiaa muuttuu lämpöenergiaksi (esim. sähkökiuas, silitysrauta,

Lisätiedot

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen 4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

suunta kuvassa alaspäin. Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun

suunta kuvassa alaspäin. Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen Vuorovaikutus on yksi keskeisimmistä fysiikan peruskäsitteistä

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Vyöteoria. Orbitaalivyöt

Vyöteoria. Orbitaalivyöt Vyöteoria Elektronirakenne ja sähkönjohtokyky: Metallit σ = 10 4-10 6 ohm -1 cm -1 (sähkönjohteet) Epämetallit σ < 10-15 ohm -1 cm -1 (eristeet) Puolimetallit σ = 10-5 -10 3 ohm -1 cm -1 σ = neµ elektronien

Lisätiedot

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta 8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-0: SÄHKÖTEKNIIKAN PEUSTEET Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö

Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö Aluksi Matemaattisena käsitteenä lineaarinen optimointi sisältää juuri sen saman asian kuin mikä sen nimestä tulee mieleen. Lineaarisen optimoinnin avulla haetaan ihannearvoa eli optimia, joka on määritelty

Lisätiedot

Atomimallit. Tapio Hansson

Atomimallit. Tapio Hansson Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista

Lisätiedot

Atomien rakenteesta. Tapio Hansson

Atomien rakenteesta. Tapio Hansson Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

Analyyttinen mekaniikka I periodi 2012

Analyyttinen mekaniikka I periodi 2012 Analyyttinen mekaniikka I periodi 2012 Luennot: Luennoitsija: Kurssin kotisivu: ma & to 10-12 (E204) Rami Vainio, Rami.Vainio@helsinki.fi http://theory.physics.helsinki.fi/~klmek/ Harjoitukset: to 16-18

Lisätiedot

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA KERTAUSTA REAKTIOT JA TASAPAINO, KE5 Aineiden ominaisuudet voidaan selittää niiden rakenteen avulla. Aineen rakenteen ja ominaisuuksien väliset riippuvuudet selittyvät kemiallisten sidosten avulla. Vahvat

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto

Tampere 14.12.2013. Higgsin bosoni. Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Tampere 14.12.2013 Higgsin bosoni Hiukkasen kiinnostavaa? Kimmo Tuominen! Helsingin Yliopisto Perustutkimuksen tavoitteena on löytää vastauksia! yksinkertaisiin peruskysymyksiin. Esimerkiksi: Mitä on massa?

Lisätiedot

Elektrodynamiikka 2010 Luennot 22.2.2010 Elina Keihänen. Sähkömagneettinen induktio

Elektrodynamiikka 2010 Luennot 22.2.2010 Elina Keihänen. Sähkömagneettinen induktio Elektrodynamiikka 2010 Luennot 22.2.2010 Elina Keihänen Sähkömagneettinen induktio Torstaina 25.2. ei ole luentoa. Laskarit pidetään normaalisti. Magneettikenttä väliaineessa käsitellään seuraavalla viikolla.

Lisätiedot

Sähkötekiikka muistiinpanot

Sähkötekiikka muistiinpanot Sähkötekiikka muistiinpanot Tuomas Nylund 6.9.2007 1 6.9.2007 1.1 Sähkövirta Symboleja ja vastaavaa: I = sähkövirta (tasavirta) Tasavirta = Virran arvo on vakio koko tarkasteltavan ajan [ I ] = A = Ampeeri

Lisätiedot

RAK-31000 Statiikka 4 op

RAK-31000 Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä.

monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä. .. Käänteisunktio.. Käänteisunktio Mikäli unktio : A B on bijektio, niin joukkojen A ja B alkioiden välillä vallitsee kääntäen yksikäsitteinen vastaavuus eli A vastaa täsmälleen yksi y B, joten myös se

Lisätiedot

Teoreetikon kuva. maailmankaikkeudesta

Teoreetikon kuva. maailmankaikkeudesta Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten

Lisätiedot

Klassisssa mekaniikassa määritellään liikemäärä p kl näin:

Klassisssa mekaniikassa määritellään liikemäärä p kl näin: Relativistinen liikemäärä Luento 3 Klassisssa mekaniikassa määritellään liikemäärä p kl näin: pkl = mv. Mekaniikan ilmiöissä on todettu olevan voimassa liikemäärän säilymisen laki: eristetyn systeemin

Lisätiedot

RAK Statiikka 4 op

RAK Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo Valosähköinen ilmiö Vuonna 1887 saksalainen fyysikko Heinrich Hertz havaitsi sähkövarauksen purkautuvan metallikappaleen pinnalta, kun siihen kohdistui valoa. Tarkemmissa tutkimuksissa todettiin, että

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää 3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

Luku Ohmin laki

Luku Ohmin laki Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää

Lisätiedot

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = = TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005

Lisätiedot

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

DEE Suprajohtavuus

DEE Suprajohtavuus DEE-54011 Suprajohtavuus Stabiilisuus 1 DEE-54011 Suprajohtavuus Risto Mikkonen Perspetive Doesti fuse burns around 10 A/ Superondutor an arry losslessly 1000 A/ at 4. K. What would happen if superonduting

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

sähköverkossa Yksikön toiminta, suprajohtavat materiaalit Suprajohtavuus sähköverkossa Risto Mikkonen

sähköverkossa Yksikön toiminta, suprajohtavat materiaalit Suprajohtavuus sähköverkossa Risto Mikkonen DEE-54010 Suprajohtavuus sähköverkossa Yksikön toiminta, suprajohtavat materiaalit 1 Suprajohtavuus sähköverkossa Risto Mikkonen The Role of Superconductivity for Power Sector 2 Suprajohtavuus sähköverkossa

Lisätiedot

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset

Lisätiedot

Fysiikan ja kemian pedagogiset perusteet Kari Sormunen Syksy 2014

Fysiikan ja kemian pedagogiset perusteet Kari Sormunen Syksy 2014 Fysiikan ja kemian pedagogiset perusteet Kari Sormunen Syksy 2014 Aine koostuu atomeista Nimitys tulee sanasta atomos = jakamaton (400 eaa, Kreikka) Atomin kuvaamiseen käytetään atomimalleja Pallomalli

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

KELAN INDUKTANSSI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Miika Manninen, n85754 Tero Känsäkangas, m84051

KELAN INDUKTANSSI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Miika Manninen, n85754 Tero Känsäkangas, m84051 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Miika Manninen, n85754 Tero Känsäkangas, m84051 SATE.2010 Dynaaminen kenttäteoria KELAN INDUKTANSSI Sivumäärä: 21 Jätetty tarkastettavaksi: 21.04.2008

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Yleisimmät käämigeometriat. 1 DEE Suprajohtavuus Risto Mikkonen

Yleisimmät käämigeometriat. 1 DEE Suprajohtavuus Risto Mikkonen DEE-54011 Suprajohtavuus Yleisimmät käämigeometriat 1 DEE-54011 Suprajohtavuus Risto Mikkonen Luvata SC28 K, 28158 NbTi filaments Dimension, bare mm 1.290 Tolerance m ± 4 Filament Diameter, m 4.75 Cu crosssection

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

MUUTOKSET ELEKTRONI- RAKENTEESSA

MUUTOKSET ELEKTRONI- RAKENTEESSA MUUTOKSET ELEKTRONI- RAKENTEESSA KEMIAA KAIK- KIALLA, KE1 Ulkoelektronit ja oktettisääntö Alkuaineen korkeimmalla energiatasolla olevia elektroneja sanotaan ulkoelektroneiksi eli valenssielektroneiksi.

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

Atomimallit. Tapio Hansson

Atomimallit. Tapio Hansson Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

Vyöteoria. σ = neμ. Orbitaalivyöt

Vyöteoria. σ = neμ. Orbitaalivyöt Vyöteoria Elektronirakenne ja sähkönjohtokyky: Metallit σ = 10 4-10 6 ohm -1 cm -1 (sähkönjohteet) Epämetallit σ < 10-15 ohm -1 cm -1 (eristeet) Puolimetallit σ = 10-5 -10 3 ohm -1 cm -1 σ = neμ elektronien

Lisätiedot

SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä:

SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä: Magneettikentät 2 SISÄLTÖ: Ampèren laki Menetelmän valinta Vektoripotentiaali Ampèren laki Ampèren lain avulla voidaan laskea maneettikenttiä tietyissä symmetrisissä tapauksissa, kuten Gaussin lailla laskettiin

Lisätiedot

3.1 Varhaiset atomimallit (1/3)

3.1 Varhaiset atomimallit (1/3) + 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti

Lisätiedot

SMG-4300: Yhteenveto toisesta luennosta. Miten puolijohde eroaa johteista ja eristeistä elektronivyörakenteen kannalta?

SMG-4300: Yhteenveto toisesta luennosta. Miten puolijohde eroaa johteista ja eristeistä elektronivyörakenteen kannalta? SMG-4300: Yhteenveto toisesta luennosta Miten puolijohde eroaa johteista ja eristeistä elektronivyörakenteen kannalta? Puolijohteesta tulee sähköä johtava, kun valenssivyön elektronit saavat vähintään

Lisätiedot

2.7 Neliöjuuriyhtälö ja -epäyhtälö

2.7 Neliöjuuriyhtälö ja -epäyhtälö 2.7 Neliöjuuriyhtälö ja -epäyhtälö Neliöjuuren määritelmä palautettiin mieleen jo luvun 2.2 alussa. Neliöjuurella on mm. seuraavat ominaisuudet. ab = a b, a 0, b 0 a a b =, a 0, b > 0 b a2 = a a > b, a

Lisätiedot

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot