Liite A : Kuvat. Kuva 1.1: Periaatekuva CLIC-kiihdyttimestä. [ 1 ]

Koko: px
Aloita esitys sivulta:

Download "Liite A : Kuvat. Kuva 1.1: Periaatekuva CLIC-kiihdyttimestä. [ 1 ]"

Transkriptio

1 Liite A : Kuvat Kuva 1.1: Periaatekuva CLIC-kiihdyttimestä. [ 1 ] Kuva 2.1: Jännityksen vaihtelu ajan suhteen eri väsymistapauksissa. Kuvaajissa x-akselilla aika ja y-akselilla jännitys. Kuvien merkinnöissä σ = keskijännitys, σ = jännityksen amplitudi, m σ r = maksimi- ja minimijännityksen erotus, σ min = minimijännitys ja σ max = maksimijännitys. a) Käänteinen jännityssykli, b) toistuva jännityssykli ja c) satunnainen jännityssykli. [ 5 ] a

2 Kuva 2.2: Jännitys-syklimäärä kuvaajat kahdelle eri tapaukselle. Kuvaajissa x-akselilla murtumiseen vaadittava syklimäärä N ja y-akselilla jännitysamplitudi S. Kuviin merkitty väsymisraja ( "Fatigue limit" ), väsymislujuus ( "Fatigue strength" ) ja väsymiselinaika ( "Fatigue life" ). a) Metalli, jolla on väsymisraja. b) Metalli, jolla ei väsymisrajaa. [ 5 ] Kuva 2.3: Jännitys-syklimäärä-käyrät ( S-N-käyrät ) ilmaistuna todennäköisyyskäyrien avulla, missä P on murtumisen todennäköisyys. Kuvaajan x-akselilla murtumiseen vaadittava syklimäärä N ja y-akselilla jännitys S. [ 5 ]

3 Kuva 2.4: Reunadislokaatio ja sen liikkumismekanismi. Kuvaan merkitty leikkausjännitys ( " Shear stress" ), siirrostaso ( "Slip plane" ), reunadislokaatiolinja ( "Edge dislocation line" ) sekä siirrosaskel ( "Unit step of slip" ). [ 5 ] Kuva 2.5: Kaaviokuva ulkoisen jännityksen tuottamasta siirroksesta. a ) Staattinen kuormitus. b ) Syklinen kuormitus. c ) Syklisen kuormituksen tuottama ekstruusio-intruusio-pari. [ 7 ]

4 Kuva 2.6: Siirroskaistan tehostuminen nikkelin pinnassa. A) 10 4, b) jälkeen. [ 7 ] ja c) syklin Kuva 2.7: Mikrohalkeaman muodostuminen metallin pinnalla sekä halkeaman kasvun eri vaiheet. [ 7 ]

5 Kuva 2.8: Halkeaman etenemismekanismi 2. vaiheen aikana, kun sen kärki vuoronperään tylpistyy ja terävöityy. a) Ei kuormitusta tai suurin puristava jännitys ( min ), b) pieni venyttävä jännitys, c) suurin venyttävä jännitys ( max ), d) pieni puristava jännitys ja e) ei kuormitusta tai suurin puristava jännitys ( min ). [ 5 ] Kuva 2.9: Kaaviokuva väsymisprosessin tyypillisistä vaiheista. Kuvassa x-akselilla syklimäärä N ja y-akselilla jännitys. [ 7 ]

6 Kuva 3.1: Vasemmalla teräksen, messingin ja kuparin vetolujuus ( "Tensile strength" ) kylmätyöstön ( "Percent cold work" ) funktiona. Oikealla puolestaan samojen metallien muokattavuus ( " Ductility" ) kylmätyöstön funktiona. Vetolujuuden yksikkönä MPa, kylmätyöstön kylmätyöstöprosentti %CW ja muokattavuuden venymäprosentti %EL ( "percent elongation" ). [ 5 ] Kuva 3.2: Hypotettinen faasidiagrammi erkauttamiskarkaistavalle seokselle, jonka koostumus on C 0. Kuvaajan x-akselilla B-metallin massaosuus prosentteina ( "Composition wt% B" ) ja y-akselilla lämpötila. [ 5 ]

7 Kuva 3.3: Lämpötila-aika-kuvaaja, joka havainnollistaa kuvan 3.2 esimerkkitapausta. Kuvassa on esitetty sekä liuottamis- että erkauttamisvaiheen lämpökäsittelyt. Kuvaajan x-akselilla aika ja y- akselilla lämpötila [ 5 ] Kuva 3.4: Cu-Zr-seoksen faasidiagrammi. Kuvaajan x-akselilla zirkoniumin massaosuus ja y- akselilla lämpötila. [ 11 ]

8 Kuva 4.1: 68 ns:n radiotaajuuspulssin tuottama Cu-Zr-kappaleen ( C15000 ) lämpeneminen etäisyyden funktiona sen pinnalta lukien. [ 4 ] Kuva 4.2: Cu-Zr-kappaleen ( C15000 ) pinnan lämpötila ajan funktiona, kun se on altistettu 68 ns kestävälle radiotaajuuspulssille. [ 4 ]

9 Kuva 4.3: Cu-Zr-kappaleen ( C15000 ) jäähtyminen radiotaajuuspulssien välissä. [ 4 ] Kuva 4.4: CLIC-kiihdytysrakenteiden kokema syklinen jännitys ajan funktiona, kun materiaalina Cu-Zr ( C15000 ). [ 4 ]

10 Kuva 4.5: Cu-Zr-kappaleen ( C15000 ) kokema jännitys etäisyyden funktiona kappaleen pinnasta. [ 4 ] Kuva 5.1: Cu-Zr-kappaleen ( C15000 ) pinnan lämpötilan vaihtelu ajan funktiona, kun se on 2 altistettu 130 ns:n radiotaajuuspulssille ja XeCl-laserin valolle, jonka vuontiheys on 0.1 J / cm. Kaksihuippuinen käyrä on laserin ja yksihuippuinen vastaavasti radiotaajuuspulssin. [ 8 ]

11 Kuva 5.2: Lämpötilaprofiili Cu-Zr-kappaleen sisällä syvyyden funktiona, kun lämpötila on saavuttanut huippuarvonsa eli kun aikaa on kulunut 60 ns laserin - ja 130 ns radiotaajuuspulssin tapauksessa. Käyrä, joka saa suuremman arvon pinnassa ( syvyys = 0 ) on laserin. [ 8 ] Kuva 5.3: Laser- ja radiotaajuuspulssin tuottamat lämmitysprofiilit. Lämpötila sekä ajan että syvyyden funktiona. Vasemmalla laser- ja oikealla radiotaajuuspulssin kuvaaja. [ 4 ]

12 Kuva 5.4: Pyyhkäisevällä elektronimikroskoopilla ( SEM ) otettu kuva, jossa vasemmalla CuZrpinta ennen laukauksia, toisena kun se on altistettu J/cm 2 :n laserlaukaukselle. Kolmantena Cu-pinta J/cm 2 :n laukauksen jälkeen ja oikealla sama pinta laukauksen jälkeen laserin vuontiheyden ollessa edelleen sama. [ 8 ] Kuva 5.5: Pinnan keskimääräinen epätasaisuus laserpulssien lukumäärän funktiona. Eri vuontiheydet on merkitty kuvaan. [ 8 ]

13 Kuva 5.6: CuZr-näytteen pinnan keskimääräinen epätasaisuus laserlaukausten lukumäärän funktiona. Väsymisvaurion kynnysarvoksi valittu R a =20 nm. [ 4 ] Kuva 5.7: Ultraäänikokeissa käytettyjä timanttisorvattuja testikappaleita. [ 12 ]

14 Kuva 5.8: Vasemmalla CuZr-kappaleen pinta ennen kuin se on altistettu jännitykselle. Oikealla 6 sama pinta, kun se on kokenut 3 10 sykliä jännityksen amplitudin ollessa 200 MPa. [ 12 ] Kuva 5.9: Laser- ja ultraäänikokeiden yhdistäminen. Kummankin kokeen ympyröidyt pisteet ovat kalibroimalla saatuja. Kuvaaajan x-akselilla syklien lukumäärä ja y-akselilla väsymislujuus.

15 Kuva 5.10: Eri materiaaleille saadut tulokset. [ 12 ] Kuva 5.11: Suurennos kuvasta CuCrZr-seoksen pinta muuttui epätasaiseksi syklien määrän 10 ollessa noin 2 10, kun jännitys oli 167 MPa. Kun jännitysamplitudi pienennettiin 151 MPa:iin, huomattiin että epätasaisuutta ei enää ilmestynytkään, vaikka syklimäärää oli kasvatettu : een. [ 12 ]

16

Vauriomekanismi: Väsyminen

Vauriomekanismi: Väsyminen Vauriomekanismi: Väsyminen Väsyminen Väsyminen on vaihtelevan kuormituksen aiheuttamaa vähittäistä vaurioitumista. Erään arvion mukaan 90% vaurioista on väsymisen aiheuttamaa. Väsymisikää voidaan kuvata

Lisätiedot

Murtumismekanismit: Väsyminen

Murtumismekanismit: Väsyminen KJR-C2004 Materiaalitekniikka Murtumismekanismit: Väsyminen 11.2.2016 Väsyminen Väsyminen on dynaamisen eli ajan suhteen aiheuttamaa vähittäistä vaurioitumista. Väsymisvaurio ilmenee särön, joka johtaa

Lisätiedot

Vaurioiden tyypilliset syyt

Vaurioiden tyypilliset syyt Vaurioituminen II Vaurioiden tyypilliset syyt 18.9.2013 2 Loppumurtuma Hauras tai sitkeä murtuma Ei juurisyy, vaan viimeinen vaihe pitkässä tapahtumaketjussa. 18.9.2013 3 Väsyminen (Fatigue) 1998 Eschede

Lisätiedot

Laskuharjoitus 2 Ratkaisut

Laskuharjoitus 2 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 7.3. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 2 Ratkaisut 1.

Lisätiedot

Väsymissärön ydintyminen

Väsymissärön ydintyminen Väsymissärön ydintyminen 20.11.2015 1 Vaurio alkaa särön muodostumisella Extruusio Intruusio Deformoitumaton matriisi S-N käyrät Testattu sauvan katkeamiseen Kuvaavat aikaa "engineering särön muodostumiseen"

Lisätiedot

MEKAANINEN AINEENKOETUS

MEKAANINEN AINEENKOETUS MEKAANINEN AINEENKOETUS KOVUUSMITTAUS VETOKOE ISKUSITKEYSKOE 1 Kovuus Kovuus on kovuuskokeen antama tulos! Kovuus ei ole materiaaliominaisuus samalla tavalla kuin esimerkiksi lujuus tai sitkeys Kovuuskokeen

Lisätiedot

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali-

Lisätiedot

VÄSYMISMITOITUS Pasila. Antti Silvennoinen, WSP Finland

VÄSYMISMITOITUS Pasila. Antti Silvennoinen, WSP Finland TIESILTOJEN VÄSYMISMITOITUS Siltaeurokoodikoulutus- Teräs-, liitto- ja puusillat 29.-30.3.2010 Pasila Antti Silvennoinen, WSP Finland TIESILTOJEN VÄSYMISMITOITUS Väsymisilmiö Materiaaliosavarmuuskertoimet

Lisätiedot

Raerajalujittuminen LPK / Oulun yliopisto

Raerajalujittuminen LPK / Oulun yliopisto Raerajalujittuminen 1 Erkautuslujittuminen Epäkoherentti erkauma: kiderakenne poikkeaa matriisin rakenteesta dislokaatiot kaareutuvat erkaumien väleistä TM teräksissä tyypillisesti mikroseosaineiden karbonitridit

Lisätiedot

Chem-C2400 Luento 3: Faasidiagrammit Ville Jokinen

Chem-C2400 Luento 3: Faasidiagrammit Ville Jokinen Chem-C2400 Luento 3: Faasidiagrammit 16.1.2019 Ville Jokinen Oppimistavoitteet Faasidiagrammit ja mikrorakenteen muodostuminen Kahden komponentin faasidiagrammit Sidelinja ja vipusääntö Kolmen faasin reaktiot

Lisätiedot

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.

Lisätiedot

Hitsaustekniikkaa suunnittelijoille koulutuspäivä Hitsattujen rakenteiden lujuustarkastelu Tatu Westerholm

Hitsaustekniikkaa suunnittelijoille koulutuspäivä Hitsattujen rakenteiden lujuustarkastelu Tatu Westerholm Hitsaustekniikkaa suunnittelijoille koulutuspäivä 27.9.2005 Hitsattujen rakenteiden lujuustarkastelu Tatu Westerholm HITSAUKSEN KÄYTTÖALOJA Kehärakenteet: Ristikot, Säiliöt, Paineastiat, Koneenrungot,

Lisätiedot

CHEM-A1410 Materiaalitieteen Perusteet Luento 3: Mekaaniset ominaisuudet Ville Jokinen

CHEM-A1410 Materiaalitieteen Perusteet Luento 3: Mekaaniset ominaisuudet Ville Jokinen CHEM-A1410 Materiaalitieteen Perusteet Luento 3: Mekaaniset ominaisuudet 24.09.2019 Ville Jokinen Mitä seuraavat ominaisuudet tarkalleen kuvaavat? Luja? Kova? Pehmeä? Venyvä? Elastinen? Sitkeä? Hauras?

Lisätiedot

Murtumissitkeyden arvioimisen ongelmia

Murtumissitkeyden arvioimisen ongelmia Master käyrä Murtumissitkeyden arvioimisen ongelmia Charpy kokeissa suuri hajonta K Ic kokeet kalliita ja vaativat isoja näytteitä Lämpötilariippuvuuden huomioiminen? (pitääkö testata kaikissa lämpötiloissa)

Lisätiedot

KUPARISAUVOJEN KOVUUS-, VETO-, JA VÄSYTYSKOKEET ANU VÄISÄNEN, JARMO MÄKIKANGAS, MARKKU KESKITALO, JARI OJALA

KUPARISAUVOJEN KOVUUS-, VETO-, JA VÄSYTYSKOKEET ANU VÄISÄNEN, JARMO MÄKIKANGAS, MARKKU KESKITALO, JARI OJALA KUPARISAUVOJEN KOVUUS-, VETO-, JA VÄSYTYSKOKEET 18.12.2008 ANU VÄISÄNEN, JARMO MÄKIKANGAS, MARKKU KESKITALO, JARI OJALA 1 Johdanto Muovauksen vaikutuksesta metallien lujuus usein kasvaa ja venymä pienenee.

Lisätiedot

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

CHEM-A1410 Materiaalitieteen perusteet

CHEM-A1410 Materiaalitieteen perusteet CHEM-A1410 Materiaalitieteen perusteet Laskuharjoitus 18.9.2017, Materiaalien ominaisuudet Tämä harjoitus ei ole arvioitava, mutta tämän tyyppisiä tehtäviä saattaa olla tentissä. Tehtävät perustuvat kurssikirjaan.

Lisätiedot

Murtumismekaniikka III LEFM => EPFM

Murtumismekaniikka III LEFM => EPFM Murtumismekaniikka III LEFM => EPFM LEFM Rajoituksia K on validi, kun plastisuus rajoittuu pienelle alueelle särön kärkeen mitattavat TMMT-tilassa Hauraille materiaaleille Validiteetti Standardin kokeellinen

Lisätiedot

SISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten ja hauraitten materiaalien jännitysvenymäkäyttäytyminen

SISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten ja hauraitten materiaalien jännitysvenymäkäyttäytyminen TAVOITTEET Jännitysten ja venymien yhteys kokeellisin menetelmin: jännitysvenymäpiirros Teknisten materiaalien jännitys-venymäpiirros 1 SISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten

Lisätiedot

AKSIAALIVUOSÄHKÖMOOTTORIN VALURUNGON VÄSYMISTARKASTELU

AKSIAALIVUOSÄHKÖMOOTTORIN VALURUNGON VÄSYMISTARKASTELU LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0400 Kandidaatintyö ja seminaari AKSIAALIVUOSÄHKÖMOOTTORIN VALURUNGON VÄSYMISTARKASTELU Lappeenrannassa 3.2.2011

Lisätiedot

Laskuharjoitus 1 Ratkaisut

Laskuharjoitus 1 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin ke 28.2. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 1 Ratkaisut 1.

Lisätiedot

Valetun valukappaleelle on asetettu usein erilaisia mekaanisia ominaisuuksia, joita mitataan aineenkoestuksella.

Valetun valukappaleelle on asetettu usein erilaisia mekaanisia ominaisuuksia, joita mitataan aineenkoestuksella. K. Aineen koestus Pekka Niemi Tampereen ammattiopisto Valetun valukappaleelle on asetettu usein erilaisia mekaanisia ominaisuuksia, joita mitataan aineenkoestuksella. K. 1 Väsyminen Väsytyskokeella on

Lisätiedot

Murtumismekaniikka II. Transitiokäyttäytyminen ja haurasmurtuma

Murtumismekaniikka II. Transitiokäyttäytyminen ja haurasmurtuma Murtumismekaniikka II Transitiokäyttäytyminen ja haurasmurtuma Kertauskysymyksiä: Miksi säröt ovat vaarallisia? Miksi säröllinen kappale ei murru pienellä jännityksellä? Mikä on G? Yksikkö? Mikä on K?

Lisätiedot

Tuukka Yrttimaa. Vaurioituminen. Sitkeä- ja haurasmurtuma. Brittle and Ductile Fracture

Tuukka Yrttimaa. Vaurioituminen. Sitkeä- ja haurasmurtuma. Brittle and Ductile Fracture Tuukka Yrttimaa Vaurioituminen Sitkeä- ja haurasmurtuma Brittle and Ductile Fracture Sitkeä- ja haurasmurtuma Metallin kyky plastiseen deformaatioon ratkaisee murtuman luonteen (kuva 1) [3] Murtumaan johtaa

Lisätiedot

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa:

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa: Lämpötila (Celsius) Luento 9: Termodynaamisten tasapainojen graafinen esittäminen, osa 1 Tiistai 17.10. klo 8-10 Termodynaamiset tasapainopiirrokset Termodynaamisten tasapainotarkastelujen tulokset esitetään

Lisätiedot

Koneenosien lujuuslaskenta

Koneenosien lujuuslaskenta Koneenosien lujuuslaskenta Tavoitteet Koneiden luotettavuuden parantaminen Materiaalin säästö Rakenteiden keventäminen Ongelmat Todellisen kuormituksen selvittäminen Moniakselinen jännitys ja muodonmuutos

Lisätiedot

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv 2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten

Lisätiedot

Laskuharjoitus 3 Ratkaisut

Laskuharjoitus 3 Ratkaisut Vastaukset palautetaan yhtenä PDF-tieostona MyCourses:iin 14.3. klo 14.00 mennessä. Maholliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 3 Ratkaisut 1. Kuvien

Lisätiedot

Väsyminen. Amanda Grannas

Väsyminen. Amanda Grannas Väsyminen Amanda Grannas Väsyminen Materiaalin struktuurin heikentyminen vaihtelevan kuormitusten tai jännitysten seurauksena Lähtee usein säröstä leviää kasvaa (syklinen jännityskuormitus jatkuu) murtuma

Lisätiedot

JÄNNEVIRRAN SILLAN VÄSYMISMITOITUS MITATULLA LIIKENNEKUORMALLA

JÄNNEVIRRAN SILLAN VÄSYMISMITOITUS MITATULLA LIIKENNEKUORMALLA JÄNNEVIRRAN SILLAN VÄSYMISMITOITUS MITATULLA LIIKENNEKUORMALLA DIPLOMITYÖN SISÄLTÖ Teoria osuus Väsymismitoitus Eurokoodin mukaan Väsymisluokka Hitsin jälkikäsittelymenetelmät Mitatut liikennekuormat Jännevirran

Lisätiedot

Kon Teräkset Harjoituskierros 6.

Kon Teräkset Harjoituskierros 6. Kon-67.3110 Teräkset Harjoituskierros 6. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Viikkoharjoitus #6 - kysymykset Mitä on karkaisu? Miten karkaisu suunnitellaan?

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2010 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan

Lisätiedot

Visibiliteetti ja kohteen kirkkausjakauma

Visibiliteetti ja kohteen kirkkausjakauma Visibiliteetti ja kohteen kirkkausjakauma Interferoteriassa havaittava suure on visibiliteetti V (u, v) = P n (x, y)i ν (x, y)e i2π(ux+vy) dxdy kohde Taivaannapa m Koordinaatisto: u ja v: B/λ:n projektioita

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN RATKAISUT

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN RATKAISUT AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN RATKAISUT TEHTÄVÄT 1.a) Oheisessa kuviossa janat ja janoihin liittyvät luvut kuvaavat pisteiden välisiä reittejä

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2010 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan

Lisätiedot

Vaatimukset. Rakenne. Materiaalit ja niiden ominaisuudet. Timo Kiesi

Vaatimukset. Rakenne. Materiaalit ja niiden ominaisuudet. Timo Kiesi Vaurioituminen I Vaatimukset Rakenne Materiaalit ja niiden ominaisuudet Timo Kiesi 18.9.2013 2 Vaurioituminen Miksi materiaalit murtuvat? Miten materiaalit murtuvat? Timo Kiesi 18.9.2013 3 Miksi insinöörin

Lisätiedot

Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!

Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)! LUT-Kone Timo Björk BK80A2202 Teräsrakenteet I: 17.12.2015 Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!

Lisätiedot

KOVAJUOTTEET 2009. Somotec Oy. fosforikupari. hopea. messinki. alumiini. juoksutteet. www.somotec.fi

KOVAJUOTTEET 2009. Somotec Oy. fosforikupari. hopea. messinki. alumiini. juoksutteet. www.somotec.fi KOVAJUOTTEET 2009 fosforikupari hopea messinki alumiini juoksutteet Somotec Oy www.somotec.fi SISÄLLYSLUETTELO FOSFORIKUPARIJUOTTEET Phospraz AG 20 Ag 2% (EN 1044: CP105 ). 3 Phospraz AG 50 Ag 5% (EN 1044:

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

Metallien plastinen deformaatio on dislokaatioiden liikettä

Metallien plastinen deformaatio on dislokaatioiden liikettä Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaation jännitystila Dislokaatioiden vuorovaikutus Jännitystila aiheuttaa dislokaatioiden vuorovaikutusta

Lisätiedot

1 Ensimmäisen asteen polynomifunktio

1 Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f

Lisätiedot

Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!

Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)! LUT-Kone Timo Björk BK80A2202 Teräsrakenteet I: 31.3.2016 Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!

Lisätiedot

JÄNNERAUDOITTEET. Sisältö 5.2.2014. Jännityskorroosio rakenteellinen näkökulma 5.2.2014 TkT Anssi Laaksonen

JÄNNERAUDOITTEET. Sisältö 5.2.2014. Jännityskorroosio rakenteellinen näkökulma 5.2.2014 TkT Anssi Laaksonen JÄNNERAUDOITTEET Jännityskorroosio rakenteellinen näkökulma 5.2.2014 TkT Anssi Laaksonen Sisältö 1) Jännitetyistä betonirakenteista 2) Jännityskorroosiosta 3) Rakenteen toiminta 4) Arviointimenettely 5)

Lisätiedot

Laskuharjoitus 7 Ratkaisut

Laskuharjoitus 7 Ratkaisut Vastaukset palautetaan yhtenä PDF-tiedostona MyCourses:iin 25.4. klo 14 mennessä. Mahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. Laskuharjoitus 7 Ratkaisut 1. Kuvan

Lisätiedot

8. Yhdistetyt rasitukset

8. Yhdistetyt rasitukset TAVOITTEET Analysoidaan ohutseinäisten painesäiliöiden jännitystilaa Tehdään yhteenveto edellisissä luennoissa olleille rasitustyypeille eli aksiaalikuormalle, väännölle, taivutukselle ja leikkausvoimalle.

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Advanced Materials Araldite 2015 TUOTESELOSTE

Advanced Materials Araldite 2015 TUOTESELOSTE Advanced Materials Araldite 2015 TUOTESELOSTE Araldite 2015 Kaksikomponenttinen epoksiliima Ominaispiirteet Sitkistetty, tahnamainen epoksi Erinomainen lasikuitukomposiitin ja SMC liimaamiseen Pieni kutistuma

Lisätiedot

Q Q 3. [mm 2 ] 1 1 = L

Q Q 3. [mm 2 ] 1 1 = L EDE-00 Elementtimenetelmän perusteet. Harjoitus 5r Syksy 03. 400 mm 0 kn 600 mm A 400 mm B 8 kn 300 mm 5 kn 000 mm 8 kn 300 mm 300 mm 00 mm. Määritä pisteiden A ja B siirtymät elementtimenetelmällä, kun

Lisätiedot

Todennäköisyysteoriaan pohjautuva väsymisanalyysi

Todennäköisyysteoriaan pohjautuva väsymisanalyysi Todennäköisyysteoriaan pohjautuva väsymisanalyysi Seminaari Oulun yliopistossa, toukokuu 2014 Roger Rabb Osa I: VAKIOAMPLITUDINEN YKSIAKSIAALINEN JÄNNITYS kirjan luvut 1...6 Todennäköisyysteoriaan pohjautuva

Lisätiedot

Esimerkki 1: auringonkukan kasvun kuvailu

Esimerkki 1: auringonkukan kasvun kuvailu GeoGebran LASKENTATAULUKKO Esimerkki 1: auringonkukan kasvun kuvailu Auringonkukka (Helianthus annuus) on yksivuotinen kasvi, jonka varren pituus voi aurinkoisina kesinä hyvissä kasvuolosuhteissa Suomessakin

Lisätiedot

Todennäköisyysteoriaan pohjautuva väsymisanalyysi. Seminaari Oulun yliopistossa, toukokuu 2014 Roger Rabb

Todennäköisyysteoriaan pohjautuva väsymisanalyysi. Seminaari Oulun yliopistossa, toukokuu 2014 Roger Rabb Todennäköisyysteoriaan pohjautuva väsymisanalyysi Seminaari Oulun yliopistossa, toukokuu 2014 Roger Rabb Osa II: Muuttuva-amplitudinen jännitys Kirjan luvut 16...21 Todennäköisyysteoriaanpohjautuva väsymisanalyysi,

Lisätiedot

HITSATUN LIITOKSEN VÄSYMISKESTÄVYYDEN MÄÄRITTÄMINEN SÄRÖN KASVUN SIMULOINNILLA

HITSATUN LIITOKSEN VÄSYMISKESTÄVYYDEN MÄÄRITTÄMINEN SÄRÖN KASVUN SIMULOINNILLA LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta LUT Metalli Teräsrakenteiden laboratorio BK10A0400 Kandidaatintyö ja seminaari HITSATUN LIITOKSEN VÄSYMISKESTÄVYYDEN MÄÄRITTÄMINEN SÄRÖN KASVUN

Lisätiedot

Lapin alueen yritysten uudet teräsmateriaalit Raimo Ruoppa

Lapin alueen yritysten uudet teräsmateriaalit Raimo Ruoppa Rikasta pohjoista 10.4.2019 Lapin alueen yritysten uudet teräsmateriaalit Raimo Ruoppa Lapin alueen yritysten uudet teräsmateriaalit Nimi Numero CK45 / C45E (1.1191) 19MnVS6 / 20MnV6 (1.1301) 38MnV6 /

Lisätiedot

x = 6 x = : x = KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 229.a) Funktio f ( x) = 2x+ Nollakohta f x b) Funktio gx ( ) = x

x = 6 x = : x = KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 229.a) Funktio f ( x) = 2x+ Nollakohta f x b) Funktio gx ( ) = x KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 9.a) Funktio f ( ) = + 6 Nollakohta f bg= + 6= = 6 :( ) = 6 = y 5 6 y = + 6 b) Funktio g ( ) = 5 Nollakohta g bg= = 5 = : 5 5 5 5 = : = = = 5 5 5 9 9

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

Toiminnallinen testaus

Toiminnallinen testaus 1 / 7 Toiminnallinen testaus Asiakas: Okaria Oy Jousitie 6 20760 Piispanristi Tutkimussopimus: ref.no: OkariaTakomo ta021013hs.pdf Kohde: Holvi- ja siltavälike, Tuotenumero 1705 Kuvio 1. Holvi- ja siltavälike

Lisätiedot

esitellä omia kokemuksia PTW uudesta timantti-ilmaisimesta

esitellä omia kokemuksia PTW uudesta timantti-ilmaisimesta Timantti-ilmaisimen ilmaisimen käyttöön- ottotestaus HUS:ssa 2014 Agenda ja tavoite: esitellä omia kokemuksia PTW uudesta timantti-ilmaisimesta Antti Kulmala, Fyysikko HUS-sädehoito 10/06/2015 NEUVOTTELUPÄIVÄT

Lisätiedot

A on sauvan akselia vastaan kohtisuoran leikkauspinnan ala.

A on sauvan akselia vastaan kohtisuoran leikkauspinnan ala. Leikkausjännitys Kuvassa on esitetty vetosauvan vinossa leikkauksessa vaikuttavat voimat ja jännitykset. N on vinon tason normaalivoima ja on leikkausvoima. Q Kuvan c perusteella nähdään N Fcos Q Fsin

Lisätiedot

FERRIITTISET RUOSTUMATTOMAT TERÄKSET. www.polarputki.fi

FERRIITTISET RUOSTUMATTOMAT TERÄKSET. www.polarputki.fi FERRIITTISET RUOSTUMATTOMAT TERÄKSET www.polarputki.fi Polarputken valikoimaan kuuluvat myös ruostumattomat ja haponkestävät tuotteet. Varastoimme saumattomia ja hitsattuja putkia, putkenosia sekä muototeräksiä.

Lisätiedot

KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti

KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti Apulaisprofessori Konetekniikan laitos Statiikan välikoe 12.3.2018 Ajankohta ma 12.3.2018 klo 14:00 17:00 Salijako

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

Fysikaaliset ominaisuudet

Fysikaaliset ominaisuudet Fysikaaliset ominaisuudet Ominaisuuksien alkuperä Mistä materiaalien ominaisuudet syntyvät? Minkälainen on materiaalin rakenne? Onko rakenteellisesti samankaltaisilla materiaaleilla samankaltaiset ominaisuudet?

Lisätiedot

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa

Lisätiedot

PUHDAS, SUORA TAIVUTUS

PUHDAS, SUORA TAIVUTUS PUHDAS, SUORA TAIVUTUS Qx ( ) Nx ( ) 0 (puhdas taivutus) d t 0 eli taivutusmomentti on vakio dx dq eli palkilla oleva kuormitus on nolla 0 dx suora taivutus Taivutusta sanotaan suoraksi, jos kuormitustaso

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Ultralujien terästen särmäys

Ultralujien terästen särmäys Ultralujien terästen särmäys Työväline- ja muoviteollisuuden neuvottelupäivät 26-27.1.2017, Vierumäki, Suomi Anna-Maija Arola, tohtorikoulutettava Anna-Maija.Arola@oulu.fi Oulun yliopisto, Materiaali-

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

Advanced Materials Araldite 2048 TUOTESELOSTE

Advanced Materials Araldite 2048 TUOTESELOSTE Advanced Materials Araldite 2048 TUOTESELOSTE Araldite 2048 Kaksikomponenttinen metakrylaattiliima Ominaispiirteet Nopeasti kovettuva Hyvä tartunta moniin metalleihin ja muoveihin Ei vaadi täydellistä

Lisätiedot

MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Pienahitsien materiaalikerroin w

Pienahitsien materiaalikerroin w Pienahitsien materiaalikerroin w Pienahitsien komponenttimenettely (SFS EN 1993-1-8) Seuraavat ehdot pitää toteutua: 3( ) ll fu w M ja 0,9 f u M f u = heikomman liitettävän osan vetomurtolujuus Esimerkki

Lisätiedot

Hulevesien määrän ja laadun vaihtelu Lahden kaupungin keskusta- ja pientaloalueilla

Hulevesien määrän ja laadun vaihtelu Lahden kaupungin keskusta- ja pientaloalueilla Lahden tiedepäivä 11.11.2014 Hulevesien määrän ja laadun vaihtelu Lahden kaupungin keskusta- ja pientaloalueilla Marjo Valtanen, Nora Sillanpää, Heikki Setälä Helsingin yliopisto, Ympäristötieteiden laitos,

Lisätiedot

Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA

Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/5 Työ 4B8B S4h. AINEEN PITUUDEN MUUTOKSISTA TYÖN TAVOITE Tavoitteena on ymmärtää aineen kimmoisuuteen liittyviä käsitteitä sekä aineen lämpölaajenemista. Sovelluksena

Lisätiedot

LUJUUSHYPOTEESIT, YLEISTÄ

LUJUUSHYPOTEESIT, YLEISTÄ LUJUUSHYPOTEESIT, YLEISTÄ Lujuushypoteesin tarkoitus: Vastataan kysymykseen kestääkö materiaali tietyn yleisen jännitystilan ( x, y, z, τxy, τxz, τyz ) vaurioitumatta. Tyypillisiä materiaalivaurioita ovat

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

RUOSTUMATTOMAT TERÄKSET

RUOSTUMATTOMAT TERÄKSET 1 RUOSTUMATTOMAT TERÄKSET 3.11.2013 Seuraavasta aineistosta kiitän Timo Kauppia Kemi-Tornio Ammattikorkeakoulu 2 RUOSTUMATTOMAT TERÄKSET Ruostumattomat teräkset ovat standardin SFS EN 10022-1 mukaan seostettuja

Lisätiedot

TUOTELUETTELO SAUMATTOMAT PUTKET

TUOTELUETTELO SAUMATTOMAT PUTKET TUOTELUETTELO SAUMATTOMAT PUTKET 16 AINESPUTKET / HOLLOW BARS EN 10294-1:2005 mukainen laatu E470, kuumavalssattuna tai kylmävedettynä EN 10294-1:2005 grade E470, hot rolled or cold drawn Ohjeanalyysi:

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillinen suunnittelu 18 1.5 Lujuusopin

Lisätiedot

Juho Kurtti TUULITURBIINIVAIHTEEN VÄSYMIS- LASKENTA KONSEPTIVAIHEESSA

Juho Kurtti TUULITURBIINIVAIHTEEN VÄSYMIS- LASKENTA KONSEPTIVAIHEESSA Juho Kurtti TUULITURBIINIVAIHTEEN VÄSYMIS- LASKENTA KONSEPTIVAIHEESSA Tekniikan ja luonnontieteiden tiedekunta Diplomityö Tammikuu 2019 i TIIVISTELMÄ Juho Kurtti: Tuuliturbiinivaihteen väsymislaskenta

Lisätiedot

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VTT EXPERT SERVICES OY VTT EXPERT SERVICES LTD.

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VTT EXPERT SERVICES OY VTT EXPERT SERVICES LTD. T001 Liite 1.06 / Appendix 1.06 Sivu / Page 1(6) Testing of heat insulation materials and waterproof insulation AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VTT EXPERT SERVICES OY VTT

Lisätiedot

Johdatus materiaalimalleihin

Johdatus materiaalimalleihin Johdatus materiaalimalleihin 2 kotitehtäväsarja - kimmoisat materiaalimallit Tehtävä Erään epälineaarisen kimmoisen isotrooppisen aineen konstitutiivinen yhtälö on σ = f(i ε )I + Ge () jossa venymätensorin

Lisätiedot

KT51 Kirkkonummen syvä- ja massastabiloitu koerakenne LIITE 1 LIITTEET

KT51 Kirkkonummen syvä- ja massastabiloitu koerakenne LIITE 1 LIITTEET KT51 Kirkkonummen syvä- ja massastabiloitu koerakenne LIITE 1 KT51 Kirkkonummen syvä- ja massastabiloitu koerakenne LIITE 2/1(9) LIITE 2/2(9) KT51 Kirkkonummen syvä- ja massastabiloitu koerakenne KT51

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

Luento 2 Martensiitti- ja bainiittireaktio

Luento 2 Martensiitti- ja bainiittireaktio Luento 2 Martensiitti- ja bainiittireaktio Martensiittitransformaatiossa tapahtuvat muodonmuutokset hilassa Martensiittitransformaatiossa tapahtuvat muodonmuutokset hilassa - Martensiitti (tkk, tetragoninen)

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Murtolujuus, Rm, MPa 49-186 196-372 196-372 343-490 (=N/mm ) Myötöraja, Re, MPa 10-167 59-314 137-334 206-412

Murtolujuus, Rm, MPa 49-186 196-372 196-372 343-490 (=N/mm ) Myötöraja, Re, MPa 10-167 59-314 137-334 206-412 N:o 765 2679 LIITE A VAARALLISET AINEET JA ESINEET SEKÄ NIIDEN PAKKAAMINEN JA MERKITSEMINEN III OSA LISÄYS A.2 A. Luokan 2 tiettyjen kaasujen kuljetuksessa käytettäviä alumiiniseosastioita koskevat määräykset

Lisätiedot

Ultralujien terästen käyttö dynaamisesti kuormitetuissa koneen rakenteissa

Ultralujien terästen käyttö dynaamisesti kuormitetuissa koneen rakenteissa Diplomityö Ultralujien terästen käyttö dynaamisesti kuormitetuissa koneen rakenteissa Johdanto Työn tarkoituksena perehtyä ultralujien S550-S700 -terästen mahdollisuuksiin ja selvittää keinot niiden hyväksikäyttämiseksi

Lisätiedot

Stalatube Oy. P u t k i k a n n a k k e e n m a s s o j e n v e r t a i l u. Laskentaraportti

Stalatube Oy. P u t k i k a n n a k k e e n m a s s o j e n v e r t a i l u. Laskentaraportti P u t k i k a n n a k k e e n m a s s o j e n v e r t a i l u Laskentaraportti 8.6.2017 2 (12) SISÄLLYSLUETTELO 1 EN 1.4404 putkikannakkeen kapasiteetti... 4 1.1 Geometria ja materiaalit... 4 1.2 Verkotus...

Lisätiedot

PANK-2206. Menetelmä soveltuu ainoastaan kairasydännäytteille, joiden halkaisija on 32-62 mm.

PANK-2206. Menetelmä soveltuu ainoastaan kairasydännäytteille, joiden halkaisija on 32-62 mm. PANK-2206 KIVIAINES, PISTEKUORMITUSINDEKSI sivu 1/6 PANK Kiviainekset, lujuus- ja muoto-ominaisuudet PISTEKUORMITUSINDEKSI PANK-2206 PÄÄLLYSTEALAN NEUVOTTELUKUNTA 1. MENETELMÄN TARKOITUS Hyväksytty: Korvaa

Lisätiedot

Keskinopea jäähtyminen: A => Bainiitti

Keskinopea jäähtyminen: A => Bainiitti Keskinopea jäähtyminen: A => Bainiitti Fe 3 C F = Bainiitti (B) C ehtii diffundoitua lyhyitä matkoja. A A A A Lämpötila laskee è Austeniitti Ferriitti Austeniitti => ferriitti muutos : atomit siirtyvät

Lisätiedot

Casion fx-cg20 ylioppilaskirjoituksissa apuna

Casion fx-cg20 ylioppilaskirjoituksissa apuna Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin

Lisätiedot

LÄMPÖTILAN MITTAUS VASTUSANTUREILLA

LÄMPÖTILAN MITTAUS VASTUSANTUREILLA 1/11 LÄMPÖTILAN MITTAUS VASTUSANTUREILLA 2/11 Metallit tuntoelinmateriaaleina Puolijohdepohjaiset vastusanturit eli termistorit 6/11 -Vastusanturit ovat yleensä metallista valmistettuja passiivisia antureita.

Lisätiedot

KUIVASULATTIMEN AKSELIN OPTIMOINTI

KUIVASULATTIMEN AKSELIN OPTIMOINTI KUIVASULATTIMEN AKSELIN OPTIMOINTI Mika Salovuori Opinnäytetyö Joulukuu 2013 Kone- ja tuotantotekniikka Tuotekehitys TIIVISTELMÄ Tampereen ammattikorkeakoulu Kone- ja tuotantotekniikka Tuotekehitys SALOVUORI,

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

KON-C3002. Tribologia. Kosketusjännitykset

KON-C3002. Tribologia. Kosketusjännitykset KON-C300 Tribologia Kosketusjännitykset 0.05.08 Kosketusjännitykset Esitys poikkeaa KOS-kirjan luvun.8 esitystavasta Tässä seurataan pääosin Tribologia-kirjan (Kivioja et al., 6p, 00, luvut 3. 3.4) esitystapaa

Lisätiedot

Johdatus materiaalimalleihin

Johdatus materiaalimalleihin Johatus materiaalimalleihin Johatus materiaalimalleihin. harjoitus - virumis- ja vauriomallit Tehtävä. Nortonin-Baileyn virumismalli on muotoa ε c σ p σ t c σ + K σ, jossa σ on kuormittamattoman materiaalin

Lisätiedot