Department of Engineering and Chemical Sciences, Karlstad University, SE Karlstad, Sweden
|
|
- Evgen Multia
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 Supporting Information Reliable Strategy for Analysis of Complex Biosensor Data Patrik Forssén a, Evgen Multia b, Jörgen Samuelsson a, Marie Andersson a, Teodor Aastrup c, Samuel Altun c, Daniel Wallinder c, Linus Wallbing c, Thanaporn Liangsupree b, Marja-Liisa Riekkola b *, Torgny Fornstedt a a Department of Engineering and Chemical Sciences, Karlstad University, SE Karlstad, Sweden b Department of Chemistry, P.O. Box 55, FI University of Helsinki, Finland c Attana AB, Björnäsvägen 21, SE Stockholm, Sweden CONTENTS Theory... S-2 The n-to-one Kinetic Model... S-2 Rate Constant Distributions... S-3 Blank injections... S-4 Synthetic Data... S-5 High Affinity Complex... S-7 Medium High Affinity Complex... S-9 Low Affinity Complex... S-11 References... S-12 S-1
2 Theory The n-to-one Kinetic Model Here we will assume that we have a biosensor system where the kinetics is described by an n-to-1 model, i.e., we have n interactions of the following type, a, i k A L A L, (1) i in the system, where [A i] is an injected analyte, [L] is a ligand immobilized on the biosensor chip surface, [A il] is a complex formed between the analyte and the ligand and this reaction has the corresponding association and disassociation rate constants, k a,i and k d,i, respectively. Let, kd, i i 0, t t0, ka, ic K 1 exp a, i d, i 0, 0 0 inj, i t k C k t t t t t t ka, ic k d, i Ks exp kd, i t t0 tinj, t t0 tinj, k C where K 1 exp k C k t. a, i s a, i d, i inj ka, ic k d, i (2) Here t is time, C is analyte concentration, t 0 is the time when the injection of the analyte begins and t inj is the injection duration. The total response R tot at time t will then be, R tot t n R 1 max, iki t, t t0, t t0 tinj, i n RI Rmax,, 1 iki t t0 t t0 tinj, i (3) where R max,i is the maximum analyte binding capacity and R I is an optional bulk effect parameter that is used to account for the fact that the biosensor base response might change during injection of analyte. For a n-interactions system the contribution c i of each interaction response to the total response, can, for example, be calculated as the mean of the contribution to the association and dissociation phase, c t0t t inj end R max, max, iki t R iki t dt t t 0 0tinj i 100 2, n t0tinj n tend j1 t max, j j j1 max, j j 0 t0tinj R K tdt R K t dt (4) where t end is the experiment duration. In a practical situation, we want to estimate the parameters k a, k d, R max, and possibly R I, from experimental sensorgram data R tot () t. This is usually done by fitting the model in eq 3, with some prechosen number of interactions, to the experimental data in a least squares sense, e.g., by using a least squares trust region reflective algorithm. 1 Conventionally one assumes one, sometimes two interactions, in the system and fit to all measured sensorgram data simultaneously, where it is assumed that k a, k d, R max are equal for all sensorgrams (but R I might be different). Assuming the n-to-one kinetic model in eq 3, a useful simple tool that indicates if one has one or more interactions in the biosensor system is by doing a dissociation graph. Here ln[r tot(t)/r tot(t 0 + t inj)] is plotted against t > t 0 + t inj. If this curve is near the top-left to bottom-right diagonal then there is only S-2
3 one interaction in the system, but if it is convex then there are at least two different interactions in the system. Rate Constant Distributions Given experimental sensorgram data R tot () t we want to estimate the rate constants k a, k d and maximum analyte binding capacities R max for the system. This can be done by using eq 3, n R t R K t, (5) tot i1 max, i i where we for clarity of presentation assume that R I = 0 (it is straightforward to include also these constants in eq 6). Assume that we have measured R tot at a m time points t j, eq 5 can be written as an m x n non-negativity constrained linear system, KR max R tot, where, K t K t R R t 1 1 n 1 max,1 tot 1 max tot K, R 0, R. K t K t R R t 1 m n m max, n tot m (6) Given K and Rtot we can solve eq 2 to get R max. However, as this is an ill posed problem, regularization should be applied. Here we will use Tikhonov regularization with the identity matrix I. To estimate k a, k d and R max we assume that the rate constants are in the domain 2 ka,min, ka,max kd,min, kd,max. One can discretize Ω using a fixed equidistant grid, 2 but here we will use new Finite Element based algorithm called Adaptive Interaction Distribution Algorithm (AIDA) 3 that gives finer discretization where we have large variations in R max. We begin by making an initial Delaunay triangulation of the whole domain and using the vertices of the triangulation in eq 6, we get an estimate of the corresponding R max. We then adaptively add new triangles to the triangulation and estimate a new corresponding R max. This is repeated iteratively until some maximum number of triangle vertices is reached and we call the estimated points R max(k a, k d) a discrete Rate Constant Distribution (RCD). In the RCD we get a number of discrete distributions and the mode of these distributions can be viewed as estimates of the biosensor systems rate constants, see for example TOC and Figure 1c. Calculation of an RCDs using AIDA, 3 is considerably faster than fitting to the experimental data and here we do not have to select the number of interactions in the system. However, RCDs should be used with caution as they are the solution of an ill-posed and ill-conditioned inverse problem and the solution depends heavily on the amount and type of regularization applied. One generally needs to use several sensorgrams when calculating an RCD in order to get a reliable result and a good advice is also to check the results by also doing model fitting. When using several sensorgrams, and proper regularization, one can get a good estimate of number of interactions and their corresponding rate constants from the peak maxima. These can, for example, be used as input to the fitting algorithm, but one should never try to draw any conclusions about the system from the peak shapes. In the proposed strategy we will calculate RCDs separately for each sensorgram, and the resulting RCDs can then only be used as guide to decide the number of interactions and their rate constants. S-3
4 Blank injections (b) (a) Figure S1: For the system in Figure 2 the corresponding blank injections, (a) the injection channel and (b) the reference channel. Figure S2: For the system in Figure 3, the (unused) blank injections. Figure S3: For the system in Figure 4, blank injections. S-4
5 Synthetic Data (a) (b) (c) (d) Figure S4: (a) Sensorgrams for a perfect synthetic system at different analyte concentration levels. (b) Dissociation graph for a 220 nm injection. (c) Rate Constants Distribution (RCD) for a 24 nm injection. (d) Rate constants obtained by fitting a two interactions model to the sensorgrams one by one. In part d, the circled areas are proportional to the relative contributions, the crosses indicate median rate constants and the stars are the estimated rate constants from global fitting to a two interactions model (here they overlap). S-5
6 (a) (b) (c) (d) Figure S5: (a) Simulated sensorgrams (solid curves) at some analyte concentration levels for the deteriorating synthetic system in Figure 1 together with globally fitted sensorgrams using a two interactions model (dotted curves), (b) the residuals for the fits in (a). Figure (c) and (d) are the same as (a) and (b) when using fitting one by one. The vertical lines indicate the injection duration. Table S1: For the synthetic systems, seen in Figure S1 (perfect) and Figure 1 (deteriorating), median rate constants and dissociation equilibrium constants with 95% confidence intervals were estimated using global or local (one by one) fitting to a two interactions model. Together with the corresponding mean contribution (c) and Root Mean Square Error Normalized (RMSEN). System Fit True Global Perfect Local Global Deteriorating Local Interaction #1 #2 #1 #2 #1 #2 #1 #2 #1 #2 log10(ka) [(Ms)-1] ± ± [6.00, 6.00] 4.50 [4.50, 4.50] 6.14 ± ± [6.00, 6.00] 4.50 [4.50, 4.50] S-6 log10(kd) [s-1] log10(kd) [M] ± ± [-2.50, -2.50] [-1.50, -1.50] ± ± [-2.50, -2.50] [-1.50, -1.50] ± ± [-8.50, -8.50] [-6.00, -6.00] ± ± [-8.50, -8.50] [-6.00, -6.00] c RMSEN
7 High Affinity Complex (a) (b) (c) (d) (e) (f) Figure S6: For the trastuzumab-her2 system in Figure 2, fits (dotted curves) to measured sensorgrams (solid curves) in (a, c, e) at some analyte concentration levels, with the corresponding residual plot in (b, d, f). (a) Global fitting to one interaction model, (b) global fitting to a two interactions model, and (c) local (one by one) fitting to a two interactions model. The vertical lines indicate the injection duration, notice that the measured sensorgrams are here adjusted by the estimated start of the injection t0. S-7
8 Table S2: For the trastuzumab-her2 system, seen in Figure 2, median rate constants and dissociation equilibrium constants with 95% confidence intervals were estimated using global fitting to one- and two- interactions model or local (one by one) fitting to a two interactions model. Together with the corresponding mean contribution (c) and Root Mean Square Error Normalized (RMSEN). Fit Interactions Interaction log 10(k a) [(Ms) -1 ] log 10(k d) [s -1 ] log 10(K D) [M] c RMSEN 1 # ± ± ± Global # ± ± ± # ± ± ± Local 2 # [5.64, 5.92] [-3.67, -3.56] [-9.55, -9.35] 97.2 # [5.14, 5.78] [-1.82, -1.41] [-7.89, -7.22] S-8
9 Medium High Affinity Complex (a) (b) (c) (d) (e) (f) Figure S7: For the IDL-VLDL-anti-apoB-100 system in Figure 3, fits (dotted curves) to measured sensorgrams (solid curves) in (a, c, e) at some analyte concentration levels, with the corresponding residual plot in (b, d, f). (a) Global fitting to one interaction model, (b) global fitting to a two interactions model, and (c) local (one by one) fitting to a two interactions model. The vertical lines indicate the injection duration, notice that the measured sensorgrams are here adjusted by the estimated start of the injection t0. S-9
10 Table S3: For the IDL-VLDL-anti-apoB-100 system, seen in Figure 3, median rate constants and dissociation equilibrium constants with 95% confidence intervals were estimated using global fitting to one- and two- interactions model or local (one by one) fitting to two interactions model. Together with the corresponding mean contribution (c) and Root Mean Square Error Normalized (RMSEN). Fit Interactions Interaction log 10(k a) [(Ms) -1 ] log 10(k d) [s -1 ] log 10(K D) [M] c RMSEN 1 # ± ± ± Global # ± ± ± # ± ± ± Local 2 # [5.74, 5.82] [-3.09, -3.07] [-8.91, -8.83] 95.7 # [3.09, 3.66] [-1.50, -1.36] [-5.94, -4.97] S-10
11 Low Affinity Complex (a) (b) (c) (d) (e) (f) Figure S8: For the PTH-PTH1R system in Figure 4, fits (dotted curves) to measured sensorgrams (solid curves) in (a, c, e) at some analyte concentration levels, with the corresponding residual plot in (b, d, f). (a) Global fitting to one interaction model, (b) global fitting to a two interactions model, and (c) local (one by one) fitting to a two interactions model. The vertical lines indicate the injection duration, notice that the measured sensorgrams are here adjusted by the estimated start of the injection t0. S-11
12 Table S4: For a PTH-PTH1R system, seen in Figure 4, median rate constants and dissociation equilibrium constants with 95% confidence intervals were estimated using global fitting to one- and twointeractions model or local (one by one) fitting to a two interactions model. Together with the corresponding mean contribution (c) and Root Mean Square Error Normalized (RMSEN). Fit Interactions Interaction log 10(k a) [(Ms) -1 ] log 10(k d) [s -1 ] log 10(K D) [M] c RMSEN 1 # ± ± ± Global # ± ± ± # ± ± ± Local 2 # [4.05, 4.43] [-0.93, -0.91] [-5.36, -5.04] 58.1 # [3.38, 4.11] [-2.39, -2.04] [-6.44, -5.54] References (1) Coleman, T. F.; Li, Y. SIAM J. Optim. 1996, 6 (2), (2) Svitel, J.; Balbo, A.; Mariuzza, R. A.; Gonzales, N. R.; Schuck, P. Biophys. J. 2003, 84 (6), (3) Zhang, Y.; Forssén, P.; Fornstedt, T.; Gulliksson, M.; Dai, X. Inverse Probl. Sci. Eng. 2017, S-12
Reliable Strategy for Analysis of Complex Biosensor Data
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/324069109 Reliable Strategy for Analysis of Complex Biosensor Data in March 2018 CITATIONS
Asuntoreformi 2018
SUOMEN ARKKITEHTILIITTO F I N L A N D S A R K I T E K T FÖRBUND FINNISH ASSOCIATION OF ARCHITECTS 4.6.2018 To reformist@eclipso.eu Thank you for contacting the Finnish Association of Architects SAFA regarding
dupol.eu - WIFI based remote gate control unit - Hungarian product
WIFI based remote gate control unit User manual v1.0 1 EN Basic information A is a innovative device, designed to fulfill the modern request for comfortable environment. Using a local Wi-Fi network, it
Capacity Utilization
Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run
Instruction of Installation of 0-30V Stabilized Voltage Supply
Instruction of Installation of 0-30V Stabilized Voltage Supply This is a high quality stabilized voltage supply with which the voltage can be regulated continuously, and the range in which to regulate
The Viking Battle - Part Version: Finnish
The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman
Air purification in gene laboratories
Julkaistu ruotsin johtavassa puhdastila teknologia lehdessä 2000. Julkaistu Cleanroom Technology lehdessä UK 2000. Air purification in gene laboratories by Hans Brunila, (B.Sc) Finland A novel method to
dupol.eu - smart home product comparison
DUPOL KFT HUNGARY SINGULAR WIFI WIFI alarm communicator for signal to smartphone App, working with any alarm panel Connection to alarm panel through Ring/Tip terminals (emulates phone line) Forwards Contact
Metsälamminkankaan tuulivoimapuiston osayleiskaava
VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations
Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a
, Tuulivoimahanke Layout 9 x N131 x HH145 Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 km 2 SHADOW - Main Result Assumptions for shadow calculations
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 13.6.2013 19:42 / 1 Minimum
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.9.269
( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145
OX2 9 x N131 x HH145 Rakennuskanta Asuinrakennus Lomarakennus Liike- tai julkinen rakennus Teollinen rakennus Kirkko tai kirkollinen rak. Muu rakennus Allas Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 2 km
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Calculation: N117 x 9 x HH141 Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen
WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
Information on preparing Presentation
Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals
Smart access control.
Smart access control. www.topkodas.lt zivile@topkodas.lt UPC: 99989897969062 Door control with Wiegand keypad, ibutton key. Door control during specified time interval. Remote control via mobile phone,
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 22.12.2014 11:33 / 1 Minimum
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
Gap-filling methods for CH 4 data
Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling
TM ETRS-TM35FIN-ETRS89 WTG
VE1 SHADOW - Main Result Calculation: 8 x Nordex N131 x HH145m Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please
,0 Yes ,0 120, ,8
SHADOW - Main Result Calculation: Alue 2 ( x 9 x HH120) TuuliSaimaa kaavaluonnos Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered
KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ
KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ https://community.plm.automation.siemens.com/t5/tech-tips- Knowledge-Base-NX/How-to-simulate-any-G-code-file-in-NX- CAM/ta-p/3340 Koneistusympäristön määrittely
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 5.11.2013 16:44 / 1 Minimum
( N117 x HH141 ( Honkajoki N117 x 9 x HH120 tv-alueet ( ( ( ( ( ( ( ( ( ( m. Honkajoki & Kankaanpää tuulivoimahankkeet
Honkajoki & Kankaanpää tuulivoimahankkeet N117 x HH141 Honkajoki N117 x 9 x HH120 tv-alueet Alahonkajoki_kaava_alueen_raja_polyline Asuinrakennus Julkinen tai liiker rak. Lomarakennus Teollinen rak. Allas
( ,5 1 1,5 2 km
Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 4 5 3 1 2 6 7 8 9 10 0 0,5 1 1,5 2 km
Efficiency change over time
Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel
16. Allocation Models
16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue
Choose Finland-Helsinki Valitse Finland-Helsinki
Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun
Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi
Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi
Rakennukset Varjostus "real case" h/a 0,5 1,5
Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 1 2 3 5 8 4 6 7 9 10 0 0,5 1 1,5 2 km
Huom. tämä kulma on yhtä suuri kuin ohjauskulman muutos. lasketaan ajoneuvon keskipisteen ympyräkaaren jänteen pituus
AS-84.327 Paikannus- ja navigointimenetelmät Ratkaisut 2.. a) Kun kuvan ajoneuvon kumpaakin pyörää pyöritetään tasaisella nopeudella, ajoneuvon rata on ympyränkaaren segmentin muotoinen. Hitaammin kulkeva
Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu
Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007
National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its
Bounds on non-surjective cellular automata
Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective
SDTF Teacher Training based on TTC 2016
SDTF Teacher Training based on TTC 2016 Viola Spolin (11/7, 1906 11/22, 1994) theatre academic, educator We learn through experience and experiencing, and no one teaches anyone anything. 'Talent' or 'lack
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
LYTH-CONS CONSISTENCY TRANSMITTER
LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are
TM ETRS-TM35FIN-ETRS89 WTG
SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579
FinFamily Installation and importing data (11.1.2016) FinFamily Asennus / Installation
FinFamily Asennus / Installation 1 Sisällys / Contents FinFamily Asennus / Installation... 1 1. Asennus ja tietojen tuonti / Installation and importing data... 4 1.1. Asenna Java / Install Java... 4 1.2.
FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL
FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...
Other approaches to restrict multipliers
Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of
Salasanan vaihto uuteen / How to change password
Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change
MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)
MRI-sovellukset Ryhmän 6 LH:t (8.22 & 9.25) Ex. 8.22 Ex. 8.22 a) What kind of image artifact is present in image (b) Answer: The artifact in the image is aliasing artifact (phase aliasing) b) How did Joe
ALOITUSKESKUSTELU / FIRST CONVERSATION
ALOITUSKESKUSTELU / FIRST CONVERSATION Lapsen nimi / Name of the child Lapsen ikä / Age of the child yrs months HYVINKÄÄN KAUPUNKI Varhaiskasvatuspalvelut Lapsen päivähoito daycare center / esiopetusyksikkö
T Statistical Natural Language Processing Answers 6 Collocations Version 1.0
T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred
The CCR Model and Production Correspondence
The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls
Alternative DEA Models
Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex
make and make and make ThinkMath 2017
Adding quantities Lukumäärienup yhdistäminen. Laske yhteensä?. Countkuinka howmonta manypalloja ballson there are altogether. and ja make and make and ja make on and ja make ThinkMath 7 on ja on on Vaihdannaisuus
Topologies on pseudoinnite paths
Topologies on pseudoinnite paths Andrey Kudinov Institute for Information Transmission Problems, Moscow National Research University Higher School of Economics, Moscow Moscow Institute of Physics and Technology
INSTALLATION INSTRUCTION ASENNUSOHJE PEM1417 2012-11 ENGLISH SUOMI CURRENT LIMITING DEVICE VIRTAA RAJOITTAVA SUOJA SDI46.812 & SDI46.
INSTALLATION INSTRUCTION ASENNUSOHJE PEM1417 2012-11 ENGLISH SUOMI CURRENT LIMITING DEVICE VIRTAA RAJOITTAVA SUOJA SDI46.812 & SDI46.824 2/8 SDI46.812 & SDI46.824 PEM1417 2012-11 ENGLISH GENERAL INFORMATION
Statistical design. Tuomas Selander
Statistical design Tuomas Selander 28.8.2014 Introduction Biostatistician Work area KYS-erva KYS, Jyväskylä, Joensuu, Mikkeli, Savonlinna Work tasks Statistical methods, selection and quiding Data analysis
Capacity utilization
Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure
Oma sininen meresi (Finnish Edition)
Oma sininen meresi (Finnish Edition) Hannu Pirilä Click here if your download doesn"t start automatically Oma sininen meresi (Finnish Edition) Hannu Pirilä Oma sininen meresi (Finnish Edition) Hannu Pirilä
Introduction - - - - - - - - - - - - - - - - - - - - - - - - - - -1. Getting Started - - - - - - - - - - - - - - - - - - - - - - - -2
User Guide Introduction - - - - - - - - - - - - - - - - - - - - - - - - - - -1 Getting Started - - - - - - - - - - - - - - - - - - - - - - - -2 HUAWEI MediaPad at a Glance...2 Installing the SIM and microsd
Categorical Decision Making Units and Comparison of Efficiency between Different Systems
Categorical Decision Making Units and Comparison of Efficiency between Different Systems Mat-2.4142 Optimointiopin Seminaari Source William W. Cooper, Lawrence M. Seiford, Kaoru Tone: Data Envelopment
Kylänetti projektin sivustojen käyttöohjeita Dokumentin versio 2.10 Historia : 1.0, 1.2, 1.6 Tero Liljamo / Deserthouse, päivitetty 25.8.
Kylänetti projektin sivustojen käyttöohjeita Dokumentin versio 2.10 Historia : 1.0, 1.2, 1.6 Tero Liljamo / Deserthouse, päivitetty 25.8.2012 Hakemisto 1. Sivustot internetissä... 2 2. Yleistä... 2 3.
RINNAKKAINEN OHJELMOINTI A,
RINNAKKAINEN OHJELMOINTI 815301A, 18.6.2005 1. Vastaa lyhyesti (2p kustakin): a) Mitkä ovat rinnakkaisen ohjelman oikeellisuuskriteerit? b) Mitä tarkoittaa laiska säikeen luominen? c) Mitä ovat kohtaaminen
Use of spatial data in the new production environment and in a data warehouse
Use of spatial data in the new production environment and in a data warehouse Nordic Forum for Geostatistics 2007 Session 3, GI infrastructure and use of spatial database Statistics Finland, Population
1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.
START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The
A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
A DEA Game II Juha Salohemo 12.12.2007 Content Recap of the Example The Shapley Value Margnal Contrbuton, Ordered Coaltons, Soluton to the Example DEA Mn Game Summary Home Assgnment Recap of the Example
Operatioanalyysi 2011, Harjoitus 4, viikko 40
Operatioanalyysi 2011, Harjoitus 4, viikko 40 H4t1, Exercise 4.2. H4t2, Exercise 4.3. H4t3, Exercise 4.4. H4t4, Exercise 4.5. H4t5, Exercise 4.6. (Exercise 4.2.) 1 4.2. Solve the LP max z = x 1 + 2x 2
Data quality points. ICAR, Berlin,
Data quality points an immediate and motivating supervision tool ICAR, Berlin, 22.5.2014 Association of ProAgria Centres Development project of Milk Recording Project manager, Heli Wahlroos heli.wahlroos@proagria.fi
EDE Introduction to Finite Element Method
Tampere Universiy of Technology EDE- Inroducion o Finie Elemen ehod.. Eercise 7 A We divide he srucure o hree beam elemens wih wo nodal degrees of freedom. The nodes, elemens and global degrees of freedom
anna minun kertoa let me tell you
anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta
Kvanttilaskenta - 1. tehtävät
Kvanttilaskenta -. tehtävät Johannes Verwijnen January 9, 0 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem False, sillä 0 0. Problem False, sillä 0 0 0 0. Problem A quantum state
PHYS-C0210 Kvanttimekaniikka Exercise 2, extra challenges, week 45
PHYS-C0210 Kvanttimekaniikka Exercise 2, extra challenges, week 45 1. Dirac delta-function is an eigenstate of the position operator. I.e. you get such a wavefunction from an infinitely precise measurement
Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition)
Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 3 (Finnish Edition) Esko Jalkanen Uusi Ajatus Löytyy
21~--~--~r--1~~--~--~~r--1~
- K.Loberg FYSE420 DIGITAL ELECTRONICS 13.05.2011 1. Toteuta alla esitetyn sekvenssin tuottava asynkroninen pun. Anna heratefunktiot, siirtotaulukko ja kokonaistilataulukko ( exitation functions, transition
Miksi Suomi on Suomi (Finnish Edition)
Miksi Suomi on Suomi (Finnish Edition) Tommi Uschanov Click here if your download doesn"t start automatically Miksi Suomi on Suomi (Finnish Edition) Tommi Uschanov Miksi Suomi on Suomi (Finnish Edition)
The role of 3dr sector in rural -community based- tourism - potentials, challenges
The role of 3dr sector in rural -community based- tourism - potentials, challenges Lappeenranta, 5th September 2014 Contents of the presentation 1. SEPRA what is it and why does it exist? 2. Experiences
A DEA Game I Chapters
A DEA Game I Chapters 5.-5.3 Saara Tuurala 2.2.2007 Agenda Introducton General Formulaton Assumpton on the Game and Far Dvson Coalton and Characterstc Functon Summary Home Assgnment Introducton /5 A DEA
S Sähkön jakelu ja markkinat S Electricity Distribution and Markets
S-18.3153 Sähkön jakelu ja markkinat S-18.3154 Electricity Distribution and Markets Voltage Sag 1) Kolmivaiheinen vastukseton oikosulku tapahtuu 20 kv lähdöllä etäisyydellä 1 km, 3 km, 5 km, 8 km, 10 km
Ohjelmointikielet ja -paradigmat 5op. Markus Norrena
Ohjelmointikielet ja -paradigmat 5op Markus Norrena Kotitehtävä 6, toteuttakaa alla olevan luokka ja attribuutit (muuttujat) Kotitehtävä 6, toteuttakaa alla olevan luokka ja attribuutit (muuttujat) Huom!
Valuation of Asian Quanto- Basket Options
Valuation of Asian Quanto- Basket Options (Final Presentation) 21.11.2011 Thesis Instructor and Supervisor: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta
RULLARADAT RULLADAT ROLLER TABLES
ROLLER TABLES Roller tables are an important element in an assembly line, where ergonomics and good workflow must be ensured. The roller tables guarantee that the wheels can be fed forward effortlessly
Results on the new polydrug use questions in the Finnish TDI data
Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen
Counting quantities 1-3
Counting quantities 1-3 Lukumäärien 1 3 laskeminen 1. Rastita Tick (X) (X) the kummassa box that has laatikossa more on balls enemmän in it. palloja. X 2. Rastita Tick (X) (X) the kummassa box that has
Hankkeiden vaikuttavuus: Työkaluja hankesuunnittelun tueksi
Ideasta projektiksi - kumppanuushankkeen suunnittelun lähtökohdat Hankkeiden vaikuttavuus: Työkaluja hankesuunnittelun tueksi Erasmus+ -ohjelman hakuneuvonta ammatillisen koulutuksen kumppanuushanketta
7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)
7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät
MEETING PEOPLE COMMUNICATIVE QUESTIONS
Tiistilän koulu English Grades 7-9 Heikki Raevaara MEETING PEOPLE COMMUNICATIVE QUESTIONS Meeting People Hello! Hi! Good morning! Good afternoon! How do you do? Nice to meet you. / Pleased to meet you.
E80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering
Lecture 2 Data Uncertainty, Data Fitting, Error Propagation Jan. 23, 2014 Jon Roberts Purpose & Outline Data Uncertainty & Confidence in Measurements Data Fitting - Linear Regression Error Propagation
Guidebook for Multicultural TUT Users
1 Guidebook for Multicultural TUT Users WORKPLACE PIRKANMAA-hankkeen KESKUSTELUTILAISUUS 16.12.2010 Hyvää käytäntöä kehittämässä - vuorovaikutusopas kansainvälisille opiskelijoille TTY Teknis-taloudellinen
tgg agg Supplementary Figure S1.
ttaggatattcggtgaggtgatatgtctctgtttggaaatgtctccgccattaactcaag tggaaagtgtatagtaatgaatctttcaagcacacagatcacttcaaaagactgtttcaa catcacctcaggacaaaaagatgtactctcatttggatgctgtgatgccatgggtcacag attgcaattcccaagtgcccgttcttttacaccaaaatcaaagaagaatatctccccttt
I. Principles of Pointer Year Analysis
I. Principles of Pointer Year Analysis Fig 1. Maximum (red) and minimum (blue) pointer years. 1 Fig 2. Principle of pointer year calculation. Fig 3. Skeleton plot graph created by Kinsys/Kigraph programme.
OFFICE 365 OPISKELIJOILLE
OFFICE 365 OPISKELIJOILLE Table of Contents Articles... 3 Ohjeet Office 365 käyttöönottoon... 4 One Driveen tallennetun videon palauttaminen oppimisympäristön palautuskansioon... 5 Changing default language
Operatioanalyysi 2011, Harjoitus 2, viikko 38
Operatioanalyysi 2011, Harjoitus 2, viikko 38 H2t1, Exercise 1.1. H2t2, Exercise 1.2. H2t3, Exercise 2.3. H2t4, Exercise 2.4. H2t5, Exercise 2.5. (Exercise 1.1.) 1 1.1. Model the following problem mathematically:
ELEMET- MOCASTRO. Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions. Period
1 ELEMET- MOCASTRO Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions Period 20.02-25.05.2012 Diaarinumero Rahoituspäätöksen numero 1114/31/2010 502/10
Sisällysluettelo Table of contents
Sisällysluettelo Table of contents OTC:n Moodlen käyttöohje suomeksi... 1 Kirjautuminen Moodleen... 2 Ensimmäinen kirjautuminen Moodleen... 2 Salasanan vaihto... 2 Oma käyttäjäprofiili... 3 Työskentely
SAGA 150. Asennusohjeet. Mittaa oven korkeus. Piirrä seinään oven kiinni -päätyyn seinäkannattimen kohdalle vaakaviiva korkeudelle ovi + 75mm + 20 mm.
SAGA 150 Asennusohjeet 500 1 2 Mittaa oven korkeus. Piirrä seinään oven kiinni -päätyyn seinäkannattimen kohdalle vaakaviiva korkeudelle ovi + 75mm + 20 mm. 3 Piirrä vesivaa an avulla viiva myös kiskon
TECHNOSPACE. Juha Jäävalo EBOOK
TECHNOSPACE Juha Jäävalo EBOOK EMOTIONAL DEJA-VU CLIMAX International action Baby Scientific action Baby TECHNOSPACE Dancing in to the night Feeling seems so alright Watching spaceship flight Beleave to
812336A C++ -kielen perusteet, 21.8.2010
812336A C++ -kielen perusteet, 21.8.2010 1. Vastaa lyhyesti seuraaviin kysymyksiin (1p kaikista): a) Mitä tarkoittaa funktion ylikuormittaminen (overloading)? b) Mitä tarkoittaa jäsenfunktion ylimääritys