Murtumissitkeyden arvioimisen ongelmia
|
|
- Marika Rantanen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Master käyrä
2 Murtumissitkeyden arvioimisen ongelmia Charpy kokeissa suuri hajonta K Ic kokeet kalliita ja vaativat isoja näytteitä Lämpötilariippuvuuden huomioiminen? (pitääkö testata kaikissa lämpötiloissa) Hajonnan huomioiminen (milloin murtuma on poissuljettu? deterministinen vs. tilastollinen lähestymistapa)
3 Haurasmurtuman ydintyminen
4
5
6 Ydintyminen ura vs. särö
7
8
9
10 Lovellisissa näytteissä suurempi hajonta
11 Master-käyrä Ottaa huomioon haurasmurtuman tilastollisen luonteen Antaa kvantitatiivisen työkalun haurasmurtuman hallintaan erilaisista koetuloksista lämpötilan funktiona
12 Tilastollisuus
13 { ( { } )} P =1- exp -N V Pr I f V { } 1- Pr V/O
14
15 Ydintymisen todennäköisyys ì ï P =1- expí - B f ï B 0 î æ ç K I ç K è 0 ö 4 ü ï ý ï ø þ
16 Hajonta ì ï P =1- expí - B f ï B î 0 æ K - K I min ç è K - K 0 min ö 4 ü ï ý ø ï þ
17 Koon vaikutus K IC1 = K min + (K IC2 - K min ) æ B 2 ç è B 1 ö 1/4 ø
18 Master - käyrä Hajonta Koon vaikutus [ ] =1- exp ç - ê K I - K min ç P K IC K I æ ç è é ù 4ö ú ë ê K - K 0 min û ú ø K B 2 = K min +[ KB - 1 K min] æ ç è B 1 B2 ö ø 1/ 4?
19 Lämpötilariippuvuus K 0 = exp(0.019 [T - T 0 ])
20 Eri teräkset eri kohdassa käyrää
21 Mittauksilla määritetään T 0 Maximum-likelihood estimaatti datasta n å i=1 n d i exp{0.019 [ Ti - T 0]} exp{0.019 [ Ti - T 0]} - å ( KIC - 20) 4 exp{0.019 [ i Ti - T 0]} ( exp{0.019 [ i=1 Ti - T 0]} ) 5 = 0
22 Siis Mitataan murtumissitkeys eri lämpötiloissa K IC kokeet Charpy-kokeet Arvioidaan mittausten perusteella T 0 Lasketaan Master käyrältä K JC : eri lämpötiloissa eri murtumistodennäköisyydellä
23
24 Suunnitteluohjeet Säröllisten konstruktioiden käyttövarmuuden varmistaminen käyttäen tehokkaasti käytettävissä olevaa tietoa ja laskentamenetelmiä
25 Murtumismekaniikka K-mitoituslaskenta helppoa Valmiita ratkaisuja Lineaaris-elastisia malleja K testaus vaikeaa ja kallista J-mitoituslaskenta vaikeaa Vaatii elastis-plastisia särömalleja
26 Tarvitaan suunnitteluohje yhdistämään menetelmät s.e. Mahdollistaa LEFM käytön silloin kun se toimii Estää LEFM:n käytön silloin kun se ei sovellu Mahdollistaa työn korvaamisen konservatiivisuudella Suorituskyvystä ei makseta ellei sitä tarvita Ohjeistaa siirtymisen LEFM:stä EPFM:ään tarvittavissa kohteissa
27 Menetelmiä R6 "Assessment of the Integrity of Structures Containing Defects" SINTAP BS-PD6493 ETM jne.
28 Menetelmän perusosat Yksinkertaistettu rajakuormamääritelmä FAD CDF Analyysitaso valittavissa Mikä syötteiden laadussa tai analyysin helppoudessa voitetaan, se konservatiivisuudella maksetaan Ei-tyydyttävä tulos ohjaa tekemään monimutkaisemman(vähemmän konservatiivisen) analyysin
29 Yksinkertaista mallia pitää korjata
30 FAD - konsepti
31 Analyysitasot Vähentävät konservatiivisuutta Lisäävät työtä
32 Analyysitasot (skemaattinen esitys)
33 Failure assessment diagram FAD R6
34 Crack driving force - CDF
35 FAD vs. CDF Teknisesti ekvivalentit (nykyään) Valinta makuasia Vanhemmissa ohjeissa FAD historiallisista syistä Uudemmissa rinnalla yksinkertaisempi (?) CDF
36 Yhteenveto On olemassa lukuisia ohjeita jotka yhdistävät murtumismekaaniset parametrit ja plastisen ylikuorman suunnittelun Näiden tarkempi analyysi on jatkokurssin asiaa Jos tuntee parametrit, suunnittelumenetelmä tukee ja helpottaa analyysiä Jos ei ymmärrä menetelmän perusteita, ei menetelmä taluta oikeaan ratkaisuun
37 Väsyminen
38 1842, Versailles
39 Wöhler
40 Klassinen väsymismitoitus
41 Coffin - Manson 41
42
43 Hajonta S-N käyrässä 43
44 Vaihteleva (toistuva) kuormitus R = s max s min Ds = s max -s min 44
45 Keskijännitys 45
46 Keskijännityksen hallitsemiseksi voidaan joko Testata eri keskijännityksillä tai Arvioida väsymiskestävyyttä eri keskijännityksellä tehdyn datan perusteella
47 Keskijännitys Goodman (1899) ì s = s í 1- s 0 a fs î s UTS ü ý þ Gerber (1874) ì ï æ s = s í 1- s 0 a fs ç î ï è s UTS ö ø 2 ü ï ý þ ï 47
48 Keskijännityksen vaikutus Modified Goodman equation Gerber parabola a ar m u 1 a ar m u 2 1 m 0
49 Keskijännityksen vaikutus ar max a max 0 ar max 1 R 2 max 0 Smith, Watson, and Topper (SWT) equation
50 Keskijännityksen vaikutus ar 1 max a ( max 0) ar max Walker equation 1 R 2 max 0
51 Kun kuormituksessa erilaisia jaksoja Kukin jakso vie osan väsymiskestoiästä
52 Miner Yksinkertainen lineaarinen summaatio Jaksojen järjestyksen oletetaan olevan merkityksetön D = m å i =1 n i N f,i 52 52
53 ... mutta Todellisuudessa eri jaksojen järjestyksellä on merkitystä pienetkin syklit aiheuttavat vauriota kun se on päässyt alkuun satunnaiset ylikuormitukset parantavat kestävyyttä Minerin kaava silti yleisesti käytössä helpon käytettävyyden vuoksi
54 Entä kun kuormitus satunnaista Täytyy olla jokin tapa erottaa "syklit" satunnaisesti vaihtelevasta kuormituksesta Useita menetelmiä Käytetyin "rainflow" -menetelmä
55 Spektriväsytys 55
56 High-cycle vs. Low cycle 56
57 Alexander Kielland, 1980
58 UA232, DC-10, 1989
59 Eschede, 1998
60 Yleisin vaurio
61 Mitä tapahtuu ennen katastrofia? Miten vaurio syntyyy? Miten vaurio etenee? Mitä väsyminen on?
62 Materiaalimuutokset väsymisen aikana Vähäisiä Dislokaatiorakenteet muuttuvat Suurella kuormituksella havaitaan lujittumista tai pehmenemistä 62
63 Sykliset jännitys-venymäkäyrät 63
64 Vaurio alkaa särön muodostumisella Extruusio Intruusio Deformoitumaton matriisi
65 Sulkeumien vaikutus väsymisrajaan C riippuu sulkeuman sijainnista (C=1.56 pinnan alaisille sulkeumille ja C=1.43 pintasulkeumille) 65
66 Väsymissärön kasvu
67 Vaurio keskittyy särön kärkeen
68 Särön kasvu kiihdyttää vauriota
69 Väsymisrajan luonne Väsymisraja häviää spektriväsytyksessä, ympäristövaikutteisessa väsytyksessä, jne. Väsymisrajaa ei havaita kaikilla materiaaleilla 69
70 70
71 Lujuuden vaikutus 0.5 x UTS 1.6 x HV 71
72 Paris: särönkasvua voidaan ennustaa Särönkasvu (µm / sykli) Kynnys K
73 Särön eteneminen näkyy murtopinnalla
74 Murtopinta-analyysi Ydintymiskohta Beach marks 74
75 ... ja mikroskoopissa Väsymisjuovat (striations)
76 Väsyminen = ydintyminen + särönkasvu Extruusio Intruusio matriisi Deformoitumaton +
77 Ydintymisen osuus 900 Jännitysvaihtelu (MPa), Särönpituus (µm) Syklit 10 6
78 Väsymisen hallinta
79 Valmistuksen laaduntarkkailu Väsymissuunnittelun parantaminen Turvallisuuskulttuuri Parannetut valmistuksen aikaiset tarkastukset Parannettu käytön aikaiset tarkastukset Lisätty käytön aikaisia tarkastuksia
80 Yhteenveto Väsyminen on vaihtokuorman ajamaa kiihtyvää särönkasvua Väsymisen hallinta kattaa koko tuotteen elinkaaren Suunnittelu Valmistus Seuranta
Väsymissärön ydintyminen
Väsymissärön ydintyminen 20.11.2015 1 Vaurio alkaa särön muodostumisella Extruusio Intruusio Deformoitumaton matriisi S-N käyrät Testattu sauvan katkeamiseen Kuvaavat aikaa "engineering särön muodostumiseen"
Murtumismekanismit: Väsyminen
KJR-C2004 Materiaalitekniikka Murtumismekanismit: Väsyminen 11.2.2016 Väsyminen Väsyminen on dynaamisen eli ajan suhteen aiheuttamaa vähittäistä vaurioitumista. Väsymisvaurio ilmenee särön, joka johtaa
Vauriomekanismi: Väsyminen
Vauriomekanismi: Väsyminen Väsyminen Väsyminen on vaihtelevan kuormituksen aiheuttamaa vähittäistä vaurioitumista. Erään arvion mukaan 90% vaurioista on väsymisen aiheuttamaa. Väsymisikää voidaan kuvata
Vaurioiden tyypilliset syyt
Vaurioituminen II Vaurioiden tyypilliset syyt 18.9.2013 2 Loppumurtuma Hauras tai sitkeä murtuma Ei juurisyy, vaan viimeinen vaihe pitkässä tapahtumaketjussa. 18.9.2013 3 Väsyminen (Fatigue) 1998 Eschede
Murtumismekaniikka II. Transitiokäyttäytyminen ja haurasmurtuma
Murtumismekaniikka II Transitiokäyttäytyminen ja haurasmurtuma Kertauskysymyksiä: Miksi säröt ovat vaarallisia? Miksi säröllinen kappale ei murru pienellä jännityksellä? Mikä on G? Yksikkö? Mikä on K?
Murtumismekaniikka III LEFM => EPFM
Murtumismekaniikka III LEFM => EPFM LEFM Rajoituksia K on validi, kun plastisuus rajoittuu pienelle alueelle särön kärkeen mitattavat TMMT-tilassa Hauraille materiaaleille Validiteetti Standardin kokeellinen
Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.
24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ
Vaatimukset. Rakenne. Materiaalit ja niiden ominaisuudet. Timo Kiesi
Vaurioituminen I Vaatimukset Rakenne Materiaalit ja niiden ominaisuudet Timo Kiesi 18.9.2013 2 Vaurioituminen Miksi materiaalit murtuvat? Miten materiaalit murtuvat? Timo Kiesi 18.9.2013 3 Miksi insinöörin
Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
Tuukka Yrttimaa. Vaurioituminen. Sitkeä- ja haurasmurtuma. Brittle and Ductile Fracture
Tuukka Yrttimaa Vaurioituminen Sitkeä- ja haurasmurtuma Brittle and Ductile Fracture Sitkeä- ja haurasmurtuma Metallin kyky plastiseen deformaatioon ratkaisee murtuman luonteen (kuva 1) [3] Murtumaan johtaa
Väsyminen. Amanda Grannas
Väsyminen Amanda Grannas Väsyminen Materiaalin struktuurin heikentyminen vaihtelevan kuormitusten tai jännitysten seurauksena Lähtee usein säröstä leviää kasvaa (syklinen jännityskuormitus jatkuu) murtuma
Hitsaustekniikkaa suunnittelijoille koulutuspäivä Hitsattujen rakenteiden lujuustarkastelu Tatu Westerholm
Hitsaustekniikkaa suunnittelijoille koulutuspäivä 27.9.2005 Hitsattujen rakenteiden lujuustarkastelu Tatu Westerholm HITSAUKSEN KÄYTTÖALOJA Kehärakenteet: Ristikot, Säiliöt, Paineastiat, Koneenrungot,
Pienahitsien materiaalikerroin w
Pienahitsien materiaalikerroin w Pienahitsien komponenttimenettely (SFS EN 1993-1-8) Seuraavat ehdot pitää toteutua: 3( ) ll fu w M ja 0,9 f u M f u = heikomman liitettävän osan vetomurtolujuus Esimerkki
edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾
ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos
Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
Liite A : Kuvat. Kuva 1.1: Periaatekuva CLIC-kiihdyttimestä. [ 1 ]
Liite A : Kuvat Kuva 1.1: Periaatekuva CLIC-kiihdyttimestä. [ 1 ] Kuva 2.1: Jännityksen vaihtelu ajan suhteen eri väsymistapauksissa. Kuvaajissa x-akselilla aika ja y-akselilla jännitys. Kuvien merkinnöissä
¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.
10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn
Vaihdelaa(kon synkronirengas C.R Gagg & P.R Lewis / Engineering Failure Analysis 16 (2009)
Vaihdelaa(kon synkronirengas C.R Gagg & P.R Lewis / Engineering Failure Analysis 16 (2009) 1775 1793 Miten synkronirengas vaurioitui? Mitä yksityiskohka voidaan havaita, joiden perusteella edelliseen kysymykseen
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen
Simulation and modeling for quality and reliability (valmiin työn esittely) Aleksi Seppänen 16.06.2014 Ohjaaja: Urho Honkanen Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
Ympäristövaikutteinen murtuminen EAC
Ympäristövaikutteinen murtuminen EAC Ympäristövaikutteinen murtuminen Yleisnimitys vaurioille, joissa ympäristö altistaa ennenaikaiselle vauriolle Lukuisia eri mekanismeja ja tyyppejä Tässä: Jännistyskorroosio
Kon Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset
Kon-67.3401 Luento 12 -Säteilyhaurastuminen -Mikrorakenteen vaikutus murtumiseen -Yhteenveto -CASE: Murtumismekanismien yhteisvaikutukset Säteilyhaurastuminen Reaktoripaineastia ja sisukset 12/3/2015 3
Kuparikapselin pitkäaikaiskestävyys
Kuparikapselin pitkäaikaiskestävyys Juhani Rantala, Pertti Auerkari, Stefan Holmström & Jorma Salonen VTT, Espoo Tapio Saukkonen TKK Materiaalitekniikan laboratorio, Espoo KYT2010 Puoliväliseminaari 26.9.2008,
Miksi vaurioita I. Triviaaliselitykset eivät riitä estämään vaurioita jotka voitaisiin estää nykytiedolla II. Syvempikin vaurioanalyysi jää tyypillise
Vaurioita - teasers Miksi vaurioita I. Triviaaliselitykset eivät riitä estämään vaurioita jotka voitaisiin estää nykytiedolla II. Syvempikin vaurioanalyysi jää tyypillisesti alan sisäiseksi tiedoksi ja
Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,
TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko
Testaus ja suunnittelu. Heikki Lagus
Testaus ja suunnittelu Heikki Lagus Tehtävänanto Kerro lyhyesti seuraavista testausmenetelmistä, niistä saatavasta datasta ja miten sitä voidaan hyödyntää suunnittelussa: Charpy-V iskusitkeyskoe (impact
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin
VÄSYMISMITOITUS Pasila. Antti Silvennoinen, WSP Finland
TIESILTOJEN VÄSYMISMITOITUS Siltaeurokoodikoulutus- Teräs-, liitto- ja puusillat 29.-30.3.2010 Pasila Antti Silvennoinen, WSP Finland TIESILTOJEN VÄSYMISMITOITUS Väsymisilmiö Materiaaliosavarmuuskertoimet
JULKISEN HALLINNON DIGITAALISEN TURVALLISUUDEN JOHTORYHMÄN SIHTEERISTÖN (VAHTI-sihteeristö) JA ASIANTUNTIJAJAOSTON ASETTAMINEN
Asettamispäätös ÊÓñîïëëñððòðïòððòðïñîðïê Ö«µ ÝÌó± ± ïòíòîðïé Ö«µ ²»² JULKISEN HALLINNON DIGITAALISEN TURVALLISUUDEN JOHTORYHMÄN SIHTEERISTÖN (VAHTI-sihteeristö) JA ASIANTUNTIJAJAOSTON ASETTAMINEN Ê ±ª
3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4
Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ
Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten
KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018
Vastaukset palautetaan htenä PDF-tiedostona Courses:iin 1.3. klo 1 mennessä. ahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. askuharjoitus 1. Selitä seuraavat käsitteet:
Raerajalujittuminen LPK / Oulun yliopisto
Raerajalujittuminen 1 Erkautuslujittuminen Epäkoherentti erkauma: kiderakenne poikkeaa matriisin rakenteesta dislokaatiot kaareutuvat erkaumien väleistä TM teräksissä tyypillisesti mikroseosaineiden karbonitridit
Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!
LUT-Kone Timo Björk BK80A2202 Teräsrakenteet I: 17.12.2015 Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!
pitkittäisaineistoissa
Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon
TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA.
1 SAVONIA-AMK TEKNIIKKA/ KUOPIO HitSavonia- projekti Seppo Vartiainen Esitelmä paineastiat / hitsausseminaarissa 1.11.05 TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA. Kylmät olosuhteet. Teräksen transitiokäyttäytyminen.
AKSIAALIVUOSÄHKÖMOOTTORIN VALURUNGON VÄSYMISTARKASTELU
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0400 Kandidaatintyö ja seminaari AKSIAALIVUOSÄHKÖMOOTTORIN VALURUNGON VÄSYMISTARKASTELU Lappeenrannassa 3.2.2011
Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!
LUT-Kone Timo Björk BK80A2202 Teräsrakenteet I: 31.3.2016 Oheismateriaalin käyttö EI sallittua, mutta laskimen käyttö on sallittua Vastaukset tehtäväpaperiin, joka PALAUTETTAVA (vaikka vastaamattomana)!
pitkittäisaineistoissa
Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. marraskuuta 2007 Antti Rasila () TodB 30. marraskuuta 2007 1 / 19 1 Lineaarinen regressiomalli ja suurimman uskottavuuden menetelmä Minimin löytäminen
7.4 PERUSPISTEIDEN SIJAINTI
67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli
Vastaanotettu Hyväksytty Julkaistu verkossa
Rakenteiden Mekaniikka Vol. 50, Nro 3, 2017, s. 153-157 https://rakenteidenmekaniikka.journal.fi/index https://doi.org/10.23998/rm.23998/rm.65049 Kirjoittaja(t) 2017. Vapaasti saatavilla CC BY-SA 4.0 lisensioitu.
"h 'ffi: ,t^-? ùf 'J. x*r:l-1. ri ri L2-14. a)5-x:8-7x b) 3(2x+ l) :6x+ 1 c) +* +5 * I : 0. Talousmatematiikan perusteet, onus to o.
1 Vaasan yopso, kev a 0 7 Taousmaemakan perusee, onus o o R1 R R3 R ma 1-1 ma 1-1 r 08-10 r -1 vkko 3 F9 F53 F5 F53 1.-0..01 R5 R o R7 pe R8 pe - r-1 08-10 10-1 F53 F10 F5 F9 1. Sevennä seuraava ausekkee.
Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio
Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n
Koneenosien lujuuslaskenta
Koneenosien lujuuslaskenta Tavoitteet Koneiden luotettavuuden parantaminen Materiaalin säästö Rakenteiden keventäminen Ongelmat Todellisen kuormituksen selvittäminen Moniakselinen jännitys ja muodonmuutos
JÄNNEVIRRAN SILLAN VÄSYMISMITOITUS MITATULLA LIIKENNEKUORMALLA
JÄNNEVIRRAN SILLAN VÄSYMISMITOITUS MITATULLA LIIKENNEKUORMALLA DIPLOMITYÖN SISÄLTÖ Teoria osuus Väsymismitoitus Eurokoodin mukaan Väsymisluokka Hitsin jälkikäsittelymenetelmät Mitatut liikennekuormat Jännevirran
Harjoitus 11. Betonin lujuudenkehityksen arviointi
Harjoitus 11 Betonin lujuudenkehityksen arviointi Betonin lujuudenkehityksen arvioiminen Normaali- ja talviolosuhteet T = +5 +40 C lujuudenkehityksen nopeus muuttuu voimakkaasti, mutta loppulujuus sama
805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista
Vaasan ammattikorkeakoulu, University of Applied Sciences Publications OTHER PUBLICATIONS C10
Vaasan ammattikorkeakoulu, University of Applied Sciences Publications OTHER PUBLICATIONS C10 VÄSYMISLUJUUDEN MITOITUSMENETELMÄT - nykytila ja tulevaisuuden näkymät Matti Makkonen Vaasa 2011 TIIVISTELMÄ
DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi
DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön
Visuaalinen ilme (luonnos)
Työterveys Helsinki Visuaalinen ilme (luonnos) 24.11.2015 1 Työterveys Helsingin ilmeessä sovelletaan Helsingin kaupungille luotuja visuaalisen ilmeen elementtejä uudella kuosilla, tunnuksella ja väripaletilla
761121P-01 FYSIIKAN LABORATORIOTYÖT 1. Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 2016
1 76111P-01 FYSIIKAN LABORATORIOTYÖT 1 Oulun yliopisto Fysiikan tutkinto-ohjelma Kevät 016 JOHDANTO Fysiikassa pyritään löytämään luonnosta lainalaisuuksia, joita voidaan mitata kokeellisesti ja kuvata
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään
Valetun valukappaleelle on asetettu usein erilaisia mekaanisia ominaisuuksia, joita mitataan aineenkoestuksella.
K. Aineen koestus Pekka Niemi Tampereen ammattiopisto Valetun valukappaleelle on asetettu usein erilaisia mekaanisia ominaisuuksia, joita mitataan aineenkoestuksella. K. 1 Väsyminen Väsytyskokeella on
Murtumismekaniikka. Jussi Tamminen
Murtumismekaniikka Jussi Tamminen Taustaa Murtumismekaanisia kokeita kehitetty 1950-luvun lopusta asti Materiaali murtuu yleensä nimellysjännitystä pienemmällä jännityksellä Kriittisen vikakoon määrittäminen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
Todennäköisyysteoriaan pohjautuva väsymisanalyysi. Seminaari Oulun yliopistossa, toukokuu 2014 Roger Rabb
Todennäköisyysteoriaan pohjautuva väsymisanalyysi Seminaari Oulun yliopistossa, toukokuu 2014 Roger Rabb Osa II: Muuttuva-amplitudinen jännitys Kirjan luvut 16...21 Todennäköisyysteoriaanpohjautuva väsymisanalyysi,
Kanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
Scalar diffraction and vector diffraction using Fourier analysis. Yasuhiro Takaki. Tokyo University of Agriculture & Technology. Faculty of Technology
Scalar diffraction and vector diffraction using Fourier analysis Yasuhiro Takaki Faculty of Technology Maxwell RCWA : F F I G G ; Maxwell! " # $ % & ' ( ) * +, -. / 0. 1 ' 2 3 $ 4 5 6 7 8 9, : ; < = >
T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1
T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
Ultralujien terästen hitsausliitosten väsymislujuus
Ultralujien terästen hitsausliitosten väsymislujuus Timo Björk Lappeenrannan teknillinen yliopisto LUT Kone Teräsrakenteiden laboratorio Johdanto Hitsauksen laatu??? - Rakenteen lopullinen käyttötarkoitus
Identifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
Inversio-ongelmien laskennallinen peruskurssi Luento 2
Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +
Regressioanalyysi. Kuusinen/Heliövaara 1
Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin
(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
1. Tilastollinen malli??
1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen
EPMAn tarjoamat analyysimahdollisuudet
Top Analytica Oy Ab Laivaseminaari 27.8.2013 EPMAn tarjoamat analyysimahdollisuudet Jyrki Juhanoja, Top Analytica Oy Johdanto EPMA (Electron Probe Microanalyzer) eli röntgenmikroanalysaattori on erikoisrakenteinen
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta LUT Metalli Konetekniikan koulutusohjelma KESTOMAGNEETTIKONEEN ROOTTORIN VÄSYMISANALYYSI
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta LUT Metalli Konetekniikan koulutusohjelma Tommi Veiste KESTOMAGNEETTIKONEEN ROOTTORIN VÄSYMISANALYYSI Tarkastajat: Professori Aki Mikkola DI Janne
T Luonnollisten kielten tilastollinen käsittely
T-61.281 Luonnollisten kielten tilastollinen käsittely Vastaukset 3, ti 11.2.2003, 16:15-18:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2
º ÅÓÒ ÙÐÓØØ Ø Ö ÒØ Ð Ð ÒØ º½ Â Ø ÙÚÙÙ Ó ØØ Ö Ú Ø Ø Ù Ò ÑÙÙØØÙ Ò ÙÒ Ø Ó Ò Ö ÒØ Ð Ð ÒØ ÐÑÔ Ø Ð ÓÒ Ò Ô Ò ÙÒ Ø Ó T(x, y, z.t) ÄÑÔ Ø Ð Ö ÒØØ ÐÑÓ ØØ Ñ Ò ÙÙÒØ Ò ÐÑÔ Ø Ð Ú ÚÓ Ñ ÑÑ Ò Ù Ò Ð ÐÑÔ Ø Ð Ö ÒØØ ½½ ÃÓÓÖ
Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
Tuotantoprosessin optimaalinen aikataulutus (valmiin työn esittely)
Tuotantoprosessin optimaalinen aikataulutus (valmiin työn esittely) Joona Kaivosoja 01.12.2014 Ohjaaja: DI Ville Mäkelä Valvoja: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
Regressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu
1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Identifiointiprosessi
Alustavia kokeita Identifiointiprosessi Koesuunnittelu, identifiointikoe Mittaustulosten / datan esikäsittely Ei-parametriset menetelmät: - Transientti-, korrelaatio-, taajuus-, Fourier- ja spektraalianalyysi
Esimerkki: Tietoliikennekytkin
Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen
Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon
Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
3R-menetelmän käyttö vaihtuva-amplitudisesti kuormitettujen hitsausliitosten väsymisanalysoinnissa
Rakenteiden Mekaniikka Vol. 49, Nro 4, 2016, s. 176-201 rmseura.tkk.fi/rmlehti/ Kirjoittajat 2016. Vapaasti saatavilla CC BY-SA 4.0 lisensioitu. 3R-menetelmän käyttö vaihtuva-amplitudisesti kuormitettujen
Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio
Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla
Kon Teräkset Harjoituskierros 6.
Kon-67.3110 Teräkset Harjoituskierros 6. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Viikkoharjoitus #6 - kysymykset Mitä on karkaisu? Miten karkaisu suunnitellaan?
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
esitellä omia kokemuksia PTW uudesta timantti-ilmaisimesta
Timantti-ilmaisimen ilmaisimen käyttöön- ottotestaus HUS:ssa 2014 Agenda ja tavoite: esitellä omia kokemuksia PTW uudesta timantti-ilmaisimesta Antti Kulmala, Fyysikko HUS-sädehoito 10/06/2015 NEUVOTTELUPÄIVÄT
HITSATUN LIITOKSEN VÄSYMISKESTÄVYYDEN MÄÄRITTÄMINEN SÄRÖN KASVUN SIMULOINNILLA
LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta LUT Metalli Teräsrakenteiden laboratorio BK10A0400 Kandidaatintyö ja seminaari HITSATUN LIITOKSEN VÄSYMISKESTÄVYYDEN MÄÄRITTÄMINEN SÄRÖN KASVUN
CHEM-A1410 Materiaalitieteen perusteet
CHEM-A1410 Materiaalitieteen perusteet Laskuharjoitus 18.9.2017, Materiaalien ominaisuudet Tämä harjoitus ei ole arvioitava, mutta tämän tyyppisiä tehtäviä saattaa olla tentissä. Tehtävät perustuvat kurssikirjaan.
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
WESTENERGY OY AB MUSTASAAREN JÄTTEENPOLTTOLAITOKSEN KATTILATUHKA JA SAVUKAASUNPUHDISTUSJÄTE
29/15/KRi 4.2.2015 1(9) WESTENERGY OY AB MUSTASAAREN JÄTTEENPOLTTOLAITOKSEN KATTILATUHKA JA SAVUKAASUNPUHDISTUSJÄTE Vuosiraportti 2014 16/15/KRi 21.1.2015 2(9) SISÄLLYS 1 Johdanto... 3 2 Näytteenotto...
KANSALLINEN LIITE (LVM) SFS-EN 1993-2 TERÄSRAKENTEIDEN SUUNNITTELU Sillat LIIKENNE- JA VIESTINTÄMINISTERIÖ
KANSALLINEN LIITE (LVM) SFS-EN 1993-2 TERÄSRAKENTEIDEN SUUNNITTELU Sillat LIIKENNE- JA VIESTINTÄMINISTERIÖ 1.6.2010 Kansallinen liite (LVM), 1.6.2010 1/9 Alkusanat KANSALLINEN LIITE (LVM) STANDARDIIN SFS-EN
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.
TILASTOLLINEN KOON VAIKUTUS MONOTONISESSA KUORMITUKSESSA
TILASTOLLINEN KOON VAIKUTUS MONOTONISESSA KUORMITUKSESSA 1 TIIVISTELMÄ Tilastolliset mitoitusmenetelmät ovat valtaamassa alaa metallien väsymislujuuden mitoituksessa. Vanhastaan on ollut tunnettua, että
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016