SELVITYS LENTOLIIKENTEEN PÄÄSTÖJEN AIHEUTTAMISTA TIIVISTYMISJUOVISTA

Koko: px
Aloita esitys sivulta:

Download "SELVITYS LENTOLIIKENTEEN PÄÄSTÖJEN AIHEUTTAMISTA TIIVISTYMISJUOVISTA"

Transkriptio

1 SELVITYS LENTOLIIKENTEEN PÄÄSTÖJEN AIHEUTTAMISTA TIIVISTYMISJUOVISTA Kuva: L. Laakso ILMANLAADUN ASIANTUNTIJAPALVELUT 2012

2

3 SELVITYS LENTOLIIKENTEEN PÄÄSTÖJEN AIHEUTTAMISTA TIIVISTYMISJUOVISTA Jarkko Hirvonen Herman Böök Jatta Salmi Katja Lovén Konsultointipalvelut ILMATIETEEN LAITOS Helsinki

4

5 SISÄLLYSLUETTELO 1. JOHDANTO PERUSTIETOA TIIVISTYMISJUOVISTA TIIVISTYSMISJUOVIEN SYNTYPERIAATTEET Tiivistymisjuovien syntymisen, säilyvyyden ja haihtumisen fysiikka Tiivistymisjuovien muodostumisen laskentamenetelmä Tiivistymisjuovia synnyttäneiden tilanteiden tarkempi tutkailu YHTEENVETO VIITELUETTELO... 16

6

7 5 1. JOHDANTO Tämän selvityksen tarkoituksena on kuvata lentoliikenteen pakokaasupäästöjen aiheuttamaa tiivistymisjuovailmiötä (engl. contrail), sen syntytapaa sekä ilmiön fysikaalisia perusteita. Finavia saa vuosittain lukuisia yhteydenottoja ja tiedusteluita lentoliikenteen päästöjen aiheuttamiin tiivistysjuoviin liittyen. Tarve selvityksen tekemiselle syntyi tästä syystä. Työn tilasi Finavia Oyj ja selvitys tehtiin Ilmatieteen laitoksen Konsultointipalvelut - yksikössä. Selvityksen pääkirjoittaja on lentosääpäivystystyötä tekevä meteorologi, joka on asiantuntija omalla alallaan. 2. PERUSTIETOA TIIVISTYMISJUOVISTA Korkealla ilmakehässä lentävien pääsääntöisesti suihkumoottoreita käyttävien lentokoneiden jälkeensä jättämiä tiivistymisjuovia on usein havaittavissa paljain silmin, kun sääolot lentokoneiden lentokorkeudella yläilmakehässä ovat suotuisat tiivistymisjuovien syntymiselle. Tiivistymisjuovia syntyy säännöllisesti, mutta niitä ei useissa tapauksissa havaita maanpinnalta, koska muut tekijät, kuten alemmat pilvikerrokset, sade, sumu tai huonot valaistusolosuhteet estävät tiivistymisjuovia näkymästä. Toisinaan tiivistymisjuovia ei muodostu lentoliikenteestä huolimatta ilmakehän tiivistymisjuovien synnylle edustamien epäedullisten olosuhteiden johdosta. Tärkeimmät tiivistymisjuovien muodostumiseen ja säilymiseen vaikuttavat tekijät ovat ilman lämpötila ja ilmankosteus. Ilman täytyy olla riittävän kylmää; lämpötilan tulee mieluiten olla alle -40 C, jotta tiivistymisjuovien synty on todennäköistä. Muodostuneet tiivistymisjuovat voivat säilyä pitkään, jos ilma on alhaisen lämpötilan lisäksi riittävän kosteaa. Tällöin tiivistymisjuovat muuttuvat lopulta Cirrus-yläpilviksi (Ci), joita ei enää riittävän ajan kuluttua kyetä ulkomuodon perusteella erottamaan tavallisista Ci-pilvistä. Jos ilmankosteus on pieni, lentokoneen jälkeensä jättämä tiivistysjuova haihtuu ja katoaa näkyvistä nopeasti. Tässä tapauksessa taivaalla näkyvä juova muistuttaa vain lyhyen aikaa sen aiheuttaneen lentokoneen lentoreitistä. Lentoliikenteen aiheuttamat tiivistymisjuovat on ilmiönä tunnettu siitä saakka, kun riittävän tehokkaita ja korkealla lentämään kykeneviä kiinteäsiipisiä ilma-aluksia on ollut olemassa. Ensimmäisiä julkaistuja tutkimuksia tiivistymisjuovista on tehty jo vuonna 1919 (Baschin, 1919). Suuremmassa määrin kiinnostus juovien syntymisen fysiikan ymmärtämiseen ja selittämiseen lisääntyi toisen maailmansodan aikoihin ja sen jälkeen (Appleman, 1953; Brewer, 1946). Kiinnostusta ilmiön fysikaalisten syiden tuntemiselle lisäsi se, että haluttiin kyetä ennustamaan ja analysoimaan millä korkeudella tiivistymisjuovien syntyminen olisi mahdollista. Tällä tiedolla oli ja on edelleen paljon taktista käyttöarvoa lentokoneilla suoritettavissa sotilasoperaatiossa; korkealla lentävän lentokoneen sijainti paljastuu helposti ihmissilmälle useiden kymmenien, jopa satojen kilometrien päähän, jos se jättää jälkeensä pitkän tiivistymisjuovan, vaikka itse konetta ei yksinään kyet-

8 6 täisikään havaitsemaan (kuva 1). Lentokoneet ovat kuvassa 1 nähtävien tiivistymisjuovien ohuemmassa päässä, sillä juovan sekoittuminen ympäröivän ilman kanssa levittää juovia ajan mittaan. Tiivistymisjuovia jälkeensä jättävä lentokone on huomattavasti alttiimpi esimerkiksi torjuntatoimille kuin lentokone, joka lentää näkymättömämmin tiivistymisjuovia synnyttämättä. Viime vuosikymmeninä tiivistymisjuovien ennustaminen ja analysoiminen on sotilasilmailussa tullut entistä tärkeämmäksi tekijäksi käyttöön tulleen häivetekniikan ansiosta; jos häiveilma-alusta ei havaita valvontatutkassa, ei sen synnyttämien tiivistymisjuoviensa takia sovi paljastua ihmissilmällekään (Schenk). Kuva 1. Lentokoneiden sijainnit on helppo päätellä kolmen suihkuhävittäjän jälkeensä jättämien tiivistymisjuovien perusteella, vaikka itse lentokoneet eivät kuvan tilanteessa ihmissilmin olekaan nähtävissä (kuva: Lapin Lennosto). Ilmiön taustalla olevat fysikaaliset perusteet on tunnettu jo pitkään ja juovien ilmaantuminen tai ilmaantumattomuus on kyetty laskemaan, ennustamaan ja analysoimaan esimerkiksi Applemanin menetelmällä jo 1950-luvulta lähtien (Appleman, 1953). Kyseisen menetelmän soveltaminen ei vaadi muuta tietoa kuin ilmakehän lämpötilan ja kosteuden eri korkeuksilla, sekä tietoa kyseessä olevan ilma-aluksen moottorin ominaisuuksista. Nämä seikat tuntien voidaan laskea ilmakehän kerrokset, joihin syntyy tai jää syntymättä tiivistymisjuovia lentokoneiden lentäessä kerrosten läpi. Applemanin menetelmää on vuosikymmenten saatossa muokattu ja paranneltu useaan otteeseen, jotta se ottaisi paremmin huomioon esimerkiksi suihkumoottoreiden tekniikan kehittymisen vaikutuksen tiivistymisjuovien muodostumiselle (IPCC, 2007). Tiivistymisjuovat ovat viime vuosikymmeninä saaneet uutta huomiota myös juovien aiheuttaman säteilypakotteensa vuoksi; tiivistymisjuovat muuttuvat otollisissa olosuhteissa yläilmakehän pilviksi, jolloin niillä on vaikutusta maanpinnalle saapu-

9 7 vaan auringonsäteilyn määrään, vaikuttaen näin maanpinnan säteilytasapainoon (Burkhardt et al., 2011). 3. TIIVISTYSMISJUOVIEN SYNTYPERIAATTEET Lentoliikenteen aiheuttamien tiivistymisjuovien syntyprosessi muistuttaa hyvin paljon pakkassään uloshengityksen höyryä 1 (kuva 2). Pakkassäällä hengitettäessä kuiva ja kylmä ulkoilma joutuu sisälle keuhkoihin, jossa keuhkokudoksista haihtuu vettä sisäänhengitettyyn ilmaan ilmamassan samanaikaisesti lämmetessä jonkin verran. Ilmankosteus ja lämpöenergia lisääntyvät lopputuloksena. Kun tämä kostunut ja lämmennyt ilma uloshengitetään takaisin pakkasilman joukkoon, alkaa uloshengityksen ilma ja ympäröivä pakkasilma saman tien sekoittua. Joissakin tilanteissa sekoittumisen seurauksena syntyneen ilman suhteellinen kosteus on niin korkea, että sen sisältämä vesihöyry alkaa tiivistyä. Näkymätön vesihöyry muuttuu näkyväksi eli hyvin suureksi joukoksi hyvin pieniä nestemäisiä pisaroita, toisin sanoen pilveksi. Kuva 2. Pakkassäällä uloshengitys näyttää "höyryävän". Todellisuudessa uloshengityksen kostea ja lämmin ilma muodostaa pilven pakkasilmaan sekoittuessaan (kuva: Heikki Pohjola). Samalla tavoin ilma-aluksen moottoriin joutuva ilma kostuu ja lämpenee voimakkaasti moottorissa tapahtuvan polttoprosessin seurauksena. Moottorista ulospurkautuva ilma voi riittävän kylmään ympäristöön sekoittuessaan muodostaa pilven eli tiivistymisjuovan. Samalla tavoin kuin hengityksen höyryäminen, on myös tiivistymisjuovien muodostuminen riippuvainen ulkoilman lämpötilan ja kosteuden määrästä. Tiivistymisjuovien muodostuminen on siis ilmakehän olosuhteista riippuvainen. 1 Arkikielinen ilmaisu hengityksen höyryäminen on fysikaalisesti väärin, koska vesi höyrynä eli kaasumaisessa olomuodossa on näkymätön ja hajuton kaasu. Uloshengityksessä näkyvä höyry onkin pienten nestemäisten pisaroiden muodostama joukko eli pilvi.

10 8 3.1 Tiivistymisjuovien syntymisen, säilyvyyden ja haihtumisen fysiikka Vaikka tiivistymisjuovien syntyminen muistuttaa uloshengityksen höyryämistä, poikkeaa hengityksen höyryäminen ja tiivistymisjuovat toisistaan. Tämä johtuu erisuuruisista muutoksista ilmanpaineen, lämpötilan, suhteellisen kosteuden sekä kosteuden ja lämpöenergian lisäyksien suhteen näiden tilanteiden välillä. Hengityshöyryn nestemäiset pisarat säilyvät nestemäisinä ja haihtuvat aina nopeasti ulkoilmaan sekoittuessaan. Tiivistymisjuovien pisarat jäätyvät sen sijaan nopeasti jääkiteiksi, jolloin haihtumisaika pitenee, sillä jääkiteiden haihtuminen on nestemäisiä pisaroita hitaampaa. Kuvassa 3 on esitetty hieman tarkemmin, kuinka lentokoneen moottorista purkautuva ilma (ajanhetkellä 1) on hyvin kosteaa ja kuumaa eikä se vielä erotu paljain silmin. Kun moottorista tuleva kostea ja kuuma ilma sekoittuu ympäröivän ilman kanssa riittävän kauan, saavuttaa pakokaasun ja ympäröivän ilman seos kyllästystilan vesipinnan suhteen (ajanhetki 2). Lentokoneen jälkeensä jättämä ilma ylikyllästyy sekoittumisen jatkuessa, jolloin tiivistymistä alkaa tapahtua ja havaitaan tiivistymisjuova (ajanhetkien 2-3 välillä). Tiivistymisessä syntyneet pisarat jäätyvät jääkiteiksi tämän aikana. Jos ympäröivä ilma on kuivaa (kuva 3a), niin sekoittumisen edelleen jatkuessa saavutetaan ensin alikyllästystila vesipinnan suhteen (ajanhetken 3 tienoilla), ja lopulta alikyllästystila jääpinnan suhteen (ajanhetken 3 jälkeen). Tässä vaiheessa sekoittuneen ilman sisältämät jääkiteet alkavat sublimoitua (olomuodon muutos, jossa kiinteä aine muuttuu suoraan kaasuksi), jonka seurauksena tiivistymisjuova alkaa hälventyä ja häviää lopulta kokonaan näkyvistä. Kuva 3a kuvaa siis lyhytikäisen tiivistymisjuovan syntymistä ja hälventymistä. Jos ympäröivä ilma on riittävän kosteaa (kuva 3b), voi lentokoneen moottoreiden vanaveteen syntyvä sekoittunut ilma pysyä ylikyllästystilassa jääpinnan suhteen (ajanhetki 3). Tällöin tiivistymisjuovan jääkiteiden haihtuminen on joko hidasta, olematonta, tai ne voivat kasvaa lisää. Tässä tapauksessa on syntynyt pitkäikäinen tiivistymisjuova, josta voi ajan kuluessa muodostua Cirrus-yläpilvi. Jotta tiivistymistä tapahtuu, vaaditaan yleisesti ottaen tiivistymisytimiä. Tiivistymisytiminä toimivat erinäiset luontaiset tai ihmisperäiset aerosolit (kaasun ja siinä leijuvien kiinteiden tai nestemäisten hiukkasten seokset). Esimerkkeinä kasvisplankton, pöly, savi, tulivuoren tuhka, merisuola ja erinäisten polttoprosessien lopputuotteet (EPA, 2012). Tiivistymisytimien määrä vaikuttaa muodostuvien pilvipisaroiden kokojakaumaan: pieni määrä tiivistymisytimiä johtaa suurempiin pilvipisaroihin kuin suuri määrä tiivistymisytimiä (Lyndon State College, 2012). Jotta täysin puhdas vesi jäätyy merenpinnan tasolla, vaaditaan noin -42 C lämpötila (Debenedetti et al., 2003).

11 9 Kuva 3. Tiivistymisjuovien syntyminen lämpötilan (vaaka-akseli) ja höyrynpaineen (pystyakseli) suhteen tarkasteltuna. Höyrynpaine kertoo, kuinka herkästi neste haihtuu tai höyrystyy pinnalta ympäristöön. Kuvassa a) syntyy lyhytikäisiä ja kuvassa b) pitkäikäisiä tiivistymisjuovia. Katkoviiva on kyllästystila jääpinnan suhteen ja pistekatkoviiva on kyllästystila vesipinnan suhteen. Veden ja jään saturaatiokäyrien vasen puoli kuvaa ylikyllästys- ja oikea puoli alikyllästystilaa. Yhtenäisellä viivalla merkityllä aikajanalla ajankohdat 1-4 kuvaavat tiivistymisjuovan syntymisen ja hälvenemisen eri vaiheita (Scharader, 1997). 3.2 Tiivistymisjuovien muodostumisen laskentamenetelmä Kun lasketaan syntyykö näkyviä tiivistymisjuovia vai ei, täytyy ensimmäiseksi määritellä raja-arvo tiivistymisjuovan tiheydelle, jota harvemmat lentokoneiden tyypillisellä lentokorkeudella olevat tiivistymisjuovat eivät ole maanpinnalta paljain silmin nähtävissä. Raja-arvoa tiheämmät tiivistymisjuovat näkyvät siis maahan asti. Appleman on olettanut pilven vesisisällön tiheyden raja-arvoksi 0,004-0,01 g/m 3. Lisäksi tarvitaan tietoa lentokoneen moottorista ja moottorin polttoprosessista vapautuvan vesihöyryn ja lämpöenergian sekä moottorin läpi virtaavan ilman

12 10 määrästä. Kaikki nämä tekijät voidaan laskelmissa ottaa huomioon yhden tekijän, ns. tiivistymisjuovakertoimen avulla (CF, engl. contrail factor). Myös ympäröivän ilman vesihöyryn määrä, eli suhteellinen kosteus (RH) tai suhteellinen kosteus vesipinnan suhteen (RHw), täytyy määrittää tiivistymisjuovien laskemiseksi. Laskelmia varten täytyy muodostaa seuraavat yhtälöt: Kuva 4. Yhtälöt kriittisen lämpötilan ratkaisemiseksi. e sat on vesihöyryn osapaine, T c on kriittinen lämpötila ja RH on suhteellinen kosteus vesipinnan suhteen. CF (contrail factor) on moottorista riippuva tiivistymisjuovakerroin (Scharader, 1997). Kun yhtälöt ratkaistaan iteratiivisesti tai geometrisesti (Scharader, 1997), saadaan kriittisen lämpötilan T c arvot laskettua mille tahansa suhteelliselle kosteudelle RH ja ilmanpaineelle p. Kun ilman lämpötila T tunnetaan, voidaan sitä verrata kriittiseen lämpötilaan T c, ja todeta tiivistymisjuovia syntyvän, jos T on pienempi kuin T c. Muussa tapauksessa tiivistymisjuovia ei synny. Kuvassa 5 on esitetty Scharaderin laskemat kriittisen lämpötilan arvot erilaisille moottorityypeille ilmanpaineen ja suhteellisen kosteuden funktiona. Taulukoituja arvoja käyttämällä on mahdollista arvioida tiivistymisjuovien syntymistä esimerkiksi säänennustusmallista saatavaa tai radioluotauksella mitattua lämpötilaa ja suhteellista kosteutta käyttämällä. Taulukon arvoja tutkimalla huomataan, että ohivirtaussuihkumoottori (high bypass) aikaansaa tiivistymisjuovia korkeammissa lämpötiloissa kuin tavallinen suihkumoottori (non-bypass). Esimerkiksi kun suhteellinen kosteus on 80 % 200 mb paineessa, joka vallitsee yli 10 km korkeudessa, täytyy ilman lämpötilan (kriittinen lämpötila, T c ) olla -52,1 C tai kylmempää, jotta tavallinen suihkumoottori aikaansaisi tiivistymisjuovia. Ohivirtaussuihkumoottorin tapauksessa kriittinen lämpötila on -49,6 C. Tiivistymisjuovien muodostuminen ja säilyminen on ilmakehän tilan osalta siis enimmäkseen riippuvainen ilman lämpötilasta sekä ilmankosteudesta. Ilmakehän lämpötila- ja kosteusrakenne on kuitenkin voimakkaasti vuodenajasta, leveyspiiristä, sekä säätilasta riippuvainen, joten tyypillisen tiivistymisjuovien muodostumiskorkeuden antaminen on hankalaa. Suomen ilmasto-olosuhteissa -50 C ilmamassa sijaitsee yleensä noin kymmenen kilometrin korkeudella.

13 11 Kuva 5. Kriittisen lämpötilan arvot neljälle eri suihkumoottorityypille ilmanpaineen (mb, rivi) ja suhteellisen kosteuden (%, sarake) funktiona (Scharader, 1997).

14 Tiivistymisjuovia synnyttäneiden tilanteiden tarkempi tutkailu Hollannissa Schipolin lentoaseman lähellä näkyi klo. 16 aikoihin paikallista aikaa kuvan 6 kaltaisia tiivistymisjuovia. Kuvassa näkyy useampia tiivistymisjuovia eri korkeuksilla. Kuvan keskellä näkyvästä pystysuuntaisesta tiivistymisjuovasta on selkeästi erotettavissa juovan katkonaisuus. Tiivistymisjuova on muodostunut vain osaan lentokoneen läpi lentämistä ilmakerroksista. Kuvassa näkyy myös muita eri-ikäisiä tiivistymisjuovia eri lentokorkeuksilla. Kuvan yläosassa on havaittavissa yläpilviä, jotka kertovat yläilmakehän runsaasta kosteudesta. Kuvassa 6 näkyvän katkonaisen tiivistymisjuovan muodostuminen on johtua esimerkiksi ilmankosteuden, lämpötilan tai ilman pystyvirtausten vaihtelusta lentokoneen lentoreitillä. Myös lentokoneen tehoasetusten muutokset, lentokorkeuden muutokset tai lentokoneen siipien aiheuttamien jättöpyörteiden sekoittuminen tiivistymisjuoviin saattaa aiheuttaa tiivistymisjuovien katkeilemista. Suurella teholla moottorista tulee ulos paljon vesihöyryä ja lämpöenergiaa, jolloin paksuja tiivistymisjuovia voi syntyä helpommin. Pienellä teholla vesihöyryä tulee selvästi vähemmän, vaikka lämpöenergiaa tuotetaankin vielä reilusti. Vesihöyryn vähyys voi kuitenkin saada tiivistymisjuovien synnyn loppumaan. Katkonaiset tiivistymisjuovat eivät edellä mainituista tekijöistä johtuen ole kovinkaan poikkeuksellisia. Kuva 6. Katkonainen tiivistymisjuova Hollannissa Schipolin lentoaseman läheisyydessä klo. 16 paikallista aikaa. Tiivistymisjuovien seassa näkyy hieman yläpilviä yläilmakehän runsaasta kosteudesta kertoen (kuva: Ilmatieteen laitos).

15 13 Seuraavassa tarkastellaan esimerkkinä erästä säätilannetta Keski-Suomesta Tarkastelussa hyödynnetään Jyväskylässä klo. 9 tehtyä radioluotausta (kuva 8). Säätilanne tuona päivänä oli otollinen tiivistymisjuovien syntymiselle ja tiivistymisjuovia havaittiinkin reilunpuoleisesti. Noin kilometrin korkeudella oli kylmää ( C) ja melko kosteaa. Ilmakehän lämpötilan ja kosteuden pystyjakaumaa voi tarkemmin tarkastella kuvan 8 luotauksen avulla. Kuvassa 8 on esitetty oransseilla samanarvonviivoilla kriittisen lämpötilan arvot neljälle suhteellisen kosteuden arvolle (RH = 0, 40, 70 ja 100 %). Ilman todellinen suhteellinen kosteus 8,5-12 kilometrin korkeudella on merkitty oransseilla luvuilla. Tiivistymisjuovien esiintymiskorkeudet voidaan päätellä vertaamalla mitattua lämpötilaa kriittisen lämpötilan viivoihin. Nähdään, että vaikka ilma olisi alussa täysin kuivaa (RH = 0 %), niin ilmakehä on silti riittävän kylmä, jotta tiivistymisjuovia voi syntyä 10,0-12,2 km korkeudelle. Tämän mahdollistaa ilmakerroksen lämpötila, joka on suhteellista kosteutta (RH = 0 %) vastaavaa kriittistä lämpötilaa alhaisempi. Kyseisellä korkeudella tiivistymisjuovien syntyminen on siis väistämätöntä. Ilmakehän todellinen ilmankosteus vesipinnan suhteen (RHw) on kuitenkin noin 40 %. Tästä seuraa, että käyttämällä RHw = 40 % vastaavaa kriittisen lämpötilan viivaa nähdään, että ilman lämpötila on tätä kylmempi ilmakerroksessa 9,5 km yläpuolella. Tässä tapauksessa tiivistymisjuovia on siis voinut syntyä noin 2,7 km paksuun kerrokseen 9,5-12,2 km korkeusvälille. Kun tarkastellaan lisäksi kyseisen tilanteen suhteellisia kosteuksia vesi- ja jääpinnan suhteen, voidaan todeta, että ilma on melko lähellä kyllästystilaa jääpinnan suhteen (RHi, kuva 7). Vaikka RHw on vain noin 40 % tiivistymisjuovien korkeudella, on suhteellinen kosteus jääpinnan suhteen (RHi) noin 80 %. Tiivistymisjuovissa pisaroista jäätymällä muodostuneet jääkiteet haihtuvat tästä johtuen varsin hitaasti. Kuva 7. Radioluotauksesta laskettu suhteellinen kosteus vesipinnan suhteen (RHw, sininen viiva) ja jääpinnan suhteen (RHi, punainen viiva) klo 9 korkeus välillä 7-13 km. Suhteellinen kosteus jääpinnan suhteen (RHi) on huomattavasti suhteellista kosteutta vesipinnan suhteen (RHw) suurempaa korkeusvälillä noin km.

16 14 Kuva 8. Radioluotaus Jyväskylästä klo 6 UTC (klo 9 Suomen aikaa). Yhtenänen musta viiva on mitattu lämpötila T. Musta pisteviiva on mitattu kastepiste T d vesipinnan suhteen. Lämpötila on vaaka-akselilla ja korkeus (km; oikealla) sekä paine (mb; vasemmalla) pystyakselilla. Kriittisen lämpötilan viivat arvoille RHw = 0 %, RHw = 40 %, RHw = 70 % ja RHw = 100 % on merkitty oransseilla viivoilla. Ilman todellinen suhteellinen kosteus 8,5-12 kilometrin korkeudella on merkitty oransseilla luvuilla. Kuvan oikeassa laidassa olevaan taulukkoon on merkitty lämpötila (T), kastepiste (T d ), korkeus maanpinnasta (Z), tuulen nopeus (WS) sekä suunta (WD) kullakin painepinnalla P (mbar).

17 15 4. YHTEENVETO Pitkään mielenkiinnon kohteena ollut tiivistymisjuovien muodostuminen on prosessi, johon vaikuttaa ilmakehän olosuhteet, lentokoneen ominaisuudet sekä moottorin käyttöteho. Ilmakehän olosuhteiden osalta oleellisimmat tekijät tiivistymisjuovien muodostumiselle on riittävä kylmyys. Korkea ilmankosteus on sen sijaan tiivistymisjuovien säilymistä pitkittävä tekijä. Tiivistymisjuovien havaitsemista maan pinnalta voi hankaloittaa esimerkiksi suuri pilvisyys sekä huonot valaistus- ja sääolosuhteet. Kuvassa 9 on valokuva Frankfurtista kesäajalta. Kuvasta havaitaan jälleen tiivistymisjuovan katkonaisuus. Ilmiön epäjatkuvuuden taustalla vaikuttaa vahvasti ilmakehän olosuhteet, jotka ovat lentokoneesta riippumaton tiivistymisjuovien syntyyn ja muotoon sekä näkymiseen vaikuttava tekijä. Ilmakehän rakenne ja sen muuttuvat olosuhteet ovat epähomogeenisia, joka aikaansaa sen, että myös tiivistymisjuovailmiö on epähomogeeninen ja ympäristön olosuhteita mukaileva ilmiö. Kuva 9. Kesällä Frankfurtissa Saksassa kuvattu tiivistymisjuova, joka päättyy äkkinäisesti (kuva: Ilmatieteen laitos).

18 16 VIITELUETTELO Appleman, H, 1953: The Formation of Exhaust Condensation Trails by Jet Aircrafts. Bull. Am. Meteorol. Soc., 34(1), s Baschin, O, 1919: Flugzeuge als Wolkenbildner und Wolkenfresser. Deutsche Luftfahrer-Z 6, H ,6. Brewer, A. W., 1946: Condensation trails. Weather, 1(2), s Burkhardt, U. ja Kärcher, B., 2011: Global radiative forcing from contrail cirrus. Nature Climate Change, 1, s Debenedetti, P. G. ja Stanley H. E., 2003: Supercooled and Glassy Water. Physics Today, 56(6), s EPA, 2012: Fine Particle Designations, Basic Information. [Viitattu ]. Saatavilla html-muodossa: <http://www.epa.gov/pmdesignations/basicinfo.htm> IPCC, 2007: Ilmastonmuutos v. 2007: Luonnontieteellinen perusta. Yhteenveto päätöksentekijöille. [Viitattu ]. Saatavilla html-muodossa: <http://www.fmi.fi/kuvat/ipcc_ar4_spm_suomennos.pdf> Lyndon State College, Atmospheric Sciences, 2012: Formation of Haze, Fog and Clouds: Condensation Nuclei. [Viitattu ]. Saatavilla html-muodossa: <http://apollo.lsc.vsc.edu/classes/met130/notes/chapter5/ccn.html> Scharader, M. L., 1997: Calculations of Aircraft Contrail Formation Critical Temperatures. J. Appl. Meteor. 36(12), s Schenk, F. M.: An Introduction to Forecasting Contrails (julkaisematon opinnäyte). Naval Postgraduate School, MR Cloud Physics, Tark. Prof. P. Durkee.

19

20 Ilmatieteen laitos Erik Palménin aukio 1 PL 503, Helsinki Puh ilmatieteenlaitos.fi

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Yläilmakehän luotaukset Synoptiset säähavainnot antavat tietoa meteorologisista parametrestä vain maan pinnalla Ilmakehän

Lisätiedot

Kasvihuoneen kasvutekijät. ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari

Kasvihuoneen kasvutekijät. ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari Kasvihuoneen kasvutekijät ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari Kasvien kasvuun vaikuttavat: - Lämpö - Valo - Vesi - Ilmankosteus - Hiilidioksidi - Ravinteet - Kasvin perinnölliset eli geneettiset

Lisätiedot

Interseptio = se osa sateesta, mikä jää puiden latvustoon (kasvien pinnalle) haihtuakseen sateen jälkeen.

Interseptio = se osa sateesta, mikä jää puiden latvustoon (kasvien pinnalle) haihtuakseen sateen jälkeen. Interseptio = se osa sateesta, mikä jää puiden latvustoon (kasvien pinnalle) haihtuakseen sateen jälkeen. -pienentää maanpinnalle (ja siitä valuntaan joutuvaa) saapuvaa sademäärää -riippuu latvuston kokonaispinta-alasta

Lisätiedot

Purjelennon Teoriakurssi 2014. Sääoppi, osa 1 Veli-Matti Karppinen, VLK

Purjelennon Teoriakurssi 2014. Sääoppi, osa 1 Veli-Matti Karppinen, VLK Purjelennon Teoriakurssi 2014, osa 1 Veli-Matti Karppinen, VLK Tavoitteena Ymmärtää ilmakehässä tapahtuvia, lentämiseen vaikuttavia ilmiöitä Saada kuva siitä, miten sääennusteet kuvaavat todellista säätä

Lisätiedot

Uusinta tietoa ilmastonmuutoksesta: luonnontieteelliset asiat

Uusinta tietoa ilmastonmuutoksesta: luonnontieteelliset asiat Uusinta tietoa ilmastonmuutoksesta: luonnontieteelliset asiat Jouni Räisänen Helsingin yliopiston fysiikan laitos 3.2.2010 Lähteitä Allison et al. (2009) The Copenhagen Diagnosis (http://www.copenhagendiagnosis.org/)

Lisätiedot

Paloriskin ennustaminen metsäpaloindeksin avulla

Paloriskin ennustaminen metsäpaloindeksin avulla Paloriskin ennustaminen metsäpaloindeksin avulla Ari Venäläinen, Ilari Lehtonen, Hanna Mäkelä, Andrea Understanding Vajda, Päivi Junila the ja Hilppa climate Gregow variation and change Ilmatieteen and

Lisätiedot

Aerosolimallit ja aerosolisään ennustaminen Suomen olosuhteissa

Aerosolimallit ja aerosolisään ennustaminen Suomen olosuhteissa Aerosolimallit ja aerosolisään ennustaminen Suomen olosuhteissa MATINE hanke 800 Suorituspaikka: Ilmatieteen laitos Rahoitus: 56 0000 eur Tutkimuksenjohtaja: Dos. Heikki Lihavainen AEROSOLIEN VAIKUTUS

Lisätiedot

Mikä muuttuu, kun kasvihuoneilmiö voimistuu? Jouni Räisänen Helsingin yliopiston fysiikan laitos

Mikä muuttuu, kun kasvihuoneilmiö voimistuu? Jouni Räisänen Helsingin yliopiston fysiikan laitos Mikä muuttuu, kun kasvihuoneilmiö voimistuu? Jouni Räisänen Helsingin yliopiston fysiikan laitos 15.4.2010 Sisältöä Kasvihuoneilmiö Kasvihuoneilmiön voimistuminen Näkyykö kasvihuoneilmiön voimistumisen

Lisätiedot

Sään ja ilmaston vaihteluiden vaikutus metsäpaloihin Suomessa ja Euroopassa Understanding the climate variation and change and assessing the risks

Sään ja ilmaston vaihteluiden vaikutus metsäpaloihin Suomessa ja Euroopassa Understanding the climate variation and change and assessing the risks Sään ja ilmaston vaihteluiden vaikutus metsäpaloihin Suomessa ja Euroopassa Understanding the climate variation and change and assessing the risks Ari Venäläinen, Ilari Lehtonen, Hanna Mäkelä, Andrea Vajda,

Lisätiedot

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.

Lisätiedot

Aineen olomuodot ja olomuodon muutokset

Aineen olomuodot ja olomuodon muutokset Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1

Lisätiedot

Ilmakehän aerosoliprosessien ja aerosoliilmastovaikutuksen. tutkimus. Antti-Ilari Partanen Ilmatieteen laitos, Kuopion yksikkö

Ilmakehän aerosoliprosessien ja aerosoliilmastovaikutuksen. tutkimus. Antti-Ilari Partanen Ilmatieteen laitos, Kuopion yksikkö Ilmakehän aerosoliprosessien ja aerosoliilmastovaikutuksen tutkimus Antti-Ilari Partanen Ilmatieteen laitos, Kuopion yksikkö Sisältö Johdanto: Aerosolien vaikutus ilmastoon Käytetyt mallit: ECHAM5-HAM

Lisätiedot

Kasvin soluhengityksessä vapautuu vesihöyryä. Vettä suodattuu maakerrosten läpi pohjavedeksi. Siirry asemalle: Ilmakehä

Kasvin soluhengityksessä vapautuu vesihöyryä. Vettä suodattuu maakerrosten läpi pohjavedeksi. Siirry asemalle: Ilmakehä Vettä suodattuu maakerrosten läpi pohjavedeksi. Pysy asemalla: Pohjois-Eurooppa Kasvin soluhengityksessä vapautuu vesihöyryä. Sadevettä valuu pintavaluntana vesistöön. Pysy asemalla: Pohjois-Eurooppa Joki

Lisätiedot

HAIHDUNTA. Haihdunnan määrällä on suuri merkitys biologisten prosessien lisäksi mm. vesistöjen kunnostustöissä sekä turvetuotannossa

HAIHDUNTA. Haihdunnan määrällä on suuri merkitys biologisten prosessien lisäksi mm. vesistöjen kunnostustöissä sekä turvetuotannossa HAIHDUNTA Haihtuminen on tapahtuma, missä nestemäinen tai kiinteä vesi muuttuu kaasumaiseen olotilaan vesihöyryksi. Haihtumisen määrä ilmaistaan suureen haihdunta (mm/aika) avulla Haihtumista voi luonnossa

Lisätiedot

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun

Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Johtuuko tämä ilmastonmuutoksesta? - kasvihuoneilmiön voimistuminen vaikutus sääolojen vaihteluun Jouni Räisänen Helsingin yliopiston fysiikan laitos 15.1.2010 Vuorokauden keskilämpötila Talvi 2007-2008

Lisätiedot

ILMASTONMUUTOSENNUSTEET

ILMASTONMUUTOSENNUSTEET ILMASTONMUUTOSENNUSTEET Sami Romakkaniemi Sami.Romakkaniemi@fmi.fi Itä-Suomen Ilmatieteellinen Tutkimuskeskus Kasvihuoneilmiö Osa ilmakehän kaasuista absorboi lämpösäteilyä Merkittävimmät kaasut (osuus

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi.

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi. ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat Hannu Hirsi. SRakMK ja rakennusten energiatehokkuus : Lämmöneristävyys laskelmat, lämmöneristyksen termit, kertausta : Lämmönjohtavuus

Lisätiedot

Kuivauksen fysiikkaa. Hannu Sarkkinen

Kuivauksen fysiikkaa. Hannu Sarkkinen Kuivauksen fysiikkaa Hannu Sarkkinen 28.11.2013 Kuivatusmenetelmiä Auringon säteily Mikroaaltouuni Ilmakuivatus Ilman kosteus Ilman suhteellinen kosteus RH = ρ v /ρ vs missä ρ v = vesihöyryn tiheys (g/m

Lisätiedot

Hydrologia. Säteilyn jako aallonpituuden avulla

Hydrologia. Säteilyn jako aallonpituuden avulla Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna

Lisätiedot

Viikkoharjoitus 2: Hydrologinen kierto

Viikkoharjoitus 2: Hydrologinen kierto Viikkoharjoitus 2: Hydrologinen kierto 30.9.2015 Viikkoharjoituksen palautuksen DEADLINE keskiviikkona 14.10.2015 klo 12.00 Palautus paperilla, joka lasku erillisenä: palautus joko laskuharjoituksiin tai

Lisätiedot

050 Ilmailusää SWC kartta ja sääilmiöt

050 Ilmailusää SWC kartta ja sääilmiöt 050 Ilmailusää SWC kartta ja sääilmiöt Mirjam Intke Lennonopettajien kertauskoulutus 31.03.2016 NSWC Pohjoismainen merkitsevän sään kartta, Tukholman SMHI tai Helsingin IL tekemä Yhdistelmä kartta ala-,

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus HÖYRYTEKNIIKKA 1. Vettä (0 C) höyrystetään 2 bar paineessa 120 C kylläiseksi höyryksi. Laske

Lisätiedot

Mistä on kyse? Pilvien luokittelu satelliittikuvissa. Sisältö. Satelliittikartoitus. Rami Rautkorpi 25.1.2006. Satelliittikartoitus

Mistä on kyse? Pilvien luokittelu satelliittikuvissa. Sisältö. Satelliittikartoitus. Rami Rautkorpi 25.1.2006. Satelliittikartoitus Pilvien luokittelu satelliittikuvissa Mistä on kyse? Rami Rautkorpi 25.1.2006 25.1.2006 Pilvien luokittelu satelliittikuvissa 2 Sisältö Satelliittikartoitus Satelliittikartoitus Pilvien luokittelu Ensimmäinen

Lisätiedot

IPCC 5. ARVIOINTIRAPORTTI OSARAPORTTI 1 ILMASTONMUUTOKSEN TIETEELLINEN TAUSTA

IPCC 5. ARVIOINTIRAPORTTI OSARAPORTTI 1 ILMASTONMUUTOKSEN TIETEELLINEN TAUSTA IPCC 5. ARVIOINTIRAPORTTI OSARAPORTTI 1 ILMASTONMUUTOKSEN TIETEELLINEN TAUSTA SISÄLLYSLUETTELO 1. HAVAITUT MUUTOKSET MUUTOKSET ILMAKEHÄSSÄ SÄTEILYPAKOTE MUUTOKSET MERISSÄ MUUTOKSET LUMI- JA JÄÄPEITTEESSÄ

Lisätiedot

Seuraa huolellisesti annettuja ohjeita. Tee taitokset tarkkaan,

Seuraa huolellisesti annettuja ohjeita. Tee taitokset tarkkaan, Origami on perinteinen japanilainen paperitaittelumuoto, joka kuuluu olennaisena osana japanilaiseen kulttuuriin. Länsimaissa origami on kuitenkin suhteellisen uusi asia. Se tuli yleiseen tietoisuuteen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Heijastuminen ionosfääristä

Heijastuminen ionosfääristä Aaltojen eteneminen Etenemistavat Pinta-aalto troposfäärissä Aallon heijastuminen ionosfääristä Lisäksi joitakin erikoisempia heijastumistapoja Eteneminen riippuu väliaineen ominaisuuksista, eri ilmiöt

Lisätiedot

CLT-rakenteiden rakennusfysikaalinen toimivuus

CLT-rakenteiden rakennusfysikaalinen toimivuus CLT-rakenteiden rakennusfysikaalinen toimivuus Tutkija: VTT / erikoistutkija Tuomo Ojanen Tilaaja: Digipolis Oy / Markku Helamo Laatinut: Lappia / Martti Mylly Tehtävän kuvaus Selvitettiin laskennallista

Lisätiedot

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi.

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi. KATETUOTTOLASKENTA laskennassa selvitetään onko liiketoiminta kannattavaa. Laskelmat tehdään liiketoiminnasta syntyvien kustannuksien ja tuottojen perusteella erilaisissa tilanteissa. laskennassa käytetään

Lisätiedot

Simon Seipimäen ja Tikkalan tuulivoimapuisto

Simon Seipimäen ja Tikkalan tuulivoimapuisto S U U N N IT T EL U JA T EK N IIK K A RAJAKIIRI OY Simon Seipimäen ja Tikkalan tuulivoimapuisto Näkymäalueanalyysi ja valokuvasovitteet 29 x RD160 x HH170 Yhteismallinnukset Seipimäki, Tikkala ja Leipiö

Lisätiedot

Planeetan määritelmä

Planeetan määritelmä Planeetta on suurimassainen tähteä kiertävä kappale, joka on painovoimansa vaikutuksen vuoksi lähes pallon muotoinen ja on tyhjentänyt ympäristönsä planetesimaalista. Sana planeetta tulee muinaiskreikan

Lisätiedot

Mitä kuuluu ilmastonmuutokselle?

Mitä kuuluu ilmastonmuutokselle? Mitä kuuluu ilmastonmuutokselle? IPCC AR5 WG1 SPM Heikki Tuomenvirta Erikoistutkija Ilmatieteen laitos Sisältö Taustaa IPCC:n 5. arviointiraportista (AR5) Working Group 1 (WG1): Tieteellinen perusta Havainnot

Lisätiedot

Louen tuulivoimapuisto

Louen tuulivoimapuisto S U U N N IT T EL U JA T EK N IIK K A TUULIWATTI OY Louen tuulivoimapuisto FCG SUUNNITTELU JA TEKNIIKKA OY 2 (11) Paulina.Kaivo-oja@fcg.fi Louen tuulivoimapuisto 1 Maisema ja havainnekuvat Havainnekuvat

Lisätiedot

ILMASTONMUUTOS MITEN JA MILLAISTA TULEVAISUUTTA MALLIT ENNUSTAVAT? YLEISTYVÄTKÖ ÄÄRI-ILMIÖT?

ILMASTONMUUTOS MITEN JA MILLAISTA TULEVAISUUTTA MALLIT ENNUSTAVAT? YLEISTYVÄTKÖ ÄÄRI-ILMIÖT? ILMASTONMUUTOS MITEN JA MILLAISTA TULEVAISUUTTA MALLIT ENNUSTAVAT? YLEISTYVÄTKÖ ÄÄRI-ILMIÖT? Kimmo Ruosteenoja Ilmatieteen laitos ENERGIATEOLLISUUDEN YMPÄRISTÖTUTKIMUSSEMINAARI 25.I 2017 ESITYKSEN SISÄLTÖ

Lisätiedot

MITTAUSRAPORTTI. Työ : 514/3248. Kohde: Hämeenkylän koulu. Raportointipäivä : 24.6.2014. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2

MITTAUSRAPORTTI. Työ : 514/3248. Kohde: Hämeenkylän koulu. Raportointipäivä : 24.6.2014. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2 MITTAUSRAPORTTI Kohde: Hämeenkylän koulu Raportointipäivä : 2462014 Työ : 514/3248 etunimisukunimi@akumppanitfi 01740 Vantaa wwwkuivauspalvelutfi KOHDE: Hämeenkylän koulu TILAN VUOKRALAINEN: TILAAJA: Vantaan

Lisätiedot

Ilmastonmuutos Heikki Tuomenvirta, Ilmastokeskus, Ilmatieteen laitos

Ilmastonmuutos Heikki Tuomenvirta, Ilmastokeskus, Ilmatieteen laitos Ilmastonmuutos Heikki Tuomenvirta, Ilmastokeskus, Ilmatieteen laitos Sisältö Mikä on ilmastonmuutoksen tutkimuksen tuki päätöksenteolle: IPCC ja Ilmastopaneeli Ilmastonmuutos on käynnissä Hillitsemättömällä

Lisätiedot

Suomen kaatopaikat kasvihuonekaasujen lähteinä. Tuomas Laurila Ilmatieteen laitos

Suomen kaatopaikat kasvihuonekaasujen lähteinä. Tuomas Laurila Ilmatieteen laitos Suomen kaatopaikat kasvihuonekaasujen lähteinä Tuomas Laurila Ilmatieteen laitos Johdanto: Kaatopaikoilla orgaanisesta jätteestä syntyy kasvihuonekaasuja: - hiilidioksidia, - metaania - typpioksiduulia.

Lisätiedot

Portin tuulivoimapuisto

Portin tuulivoimapuisto S U U N N IT T EL U JA T EK N IIK K A PUHURI OY Portin tuulivoimapuisto FCG SUUNNITTELU JA TEKNIIKKA OY 24112015 2 9) PaulinaKaivo-oja@fcgfi 24112015 Portin tuulivoimapuisto 1 Maisema ja havainnekuvat

Lisätiedot

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU HARJOITUSTYÖOHJE SISÄLLYS SYMBOLILUETTELO 3 1 JOHDANTO 4 2 TYÖOHJE

Lisätiedot

Kaasu Neste Kiinteä aine Plasma

Kaasu Neste Kiinteä aine Plasma Olomuodot Kaasu: atomeilla/molekyyleillä suuri nopeus, vuorovaikuttavat vain törmätessään toisiinsa Neste: atomit/molekyylit/ionit liukuvat toistensa lomitse, mutta pysyvät yhtenä nestetilavuutena (molekyylien

Lisätiedot

ACCLIM II Ilmastonmuutosarviot ja asiantuntijapalvelu sopeutumistutkimuksia varten Kirsti Jylhä, Ilmatieteen laitos ISTO-loppuseminaari 26.1.

ACCLIM II Ilmastonmuutosarviot ja asiantuntijapalvelu sopeutumistutkimuksia varten Kirsti Jylhä, Ilmatieteen laitos ISTO-loppuseminaari 26.1. http://www.fmi.fi/acclim II Ilmastonmuutosarviot ja asiantuntijapalvelu sopeutumistutkimuksia varten Kirsti Jylhä, Ilmatieteen laitos ISTO-loppuseminaari 26.1.211 TEHTÄVÄ: tuottaa ilmaston vaihteluihin

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Mistä tiedämme ihmisen muuttavan ilmastoa? Jouni Räisänen, Helsingin yliopiston fysiikan laitos

Mistä tiedämme ihmisen muuttavan ilmastoa? Jouni Räisänen, Helsingin yliopiston fysiikan laitos Mistä tiedämme ihmisen muuttavan ilmastoa? Jouni Räisänen, Helsingin yliopiston fysiikan laitos 19.4.2010 Huono lähestymistapa Poikkeama v. 1961-1990 keskiarvosta +0.5 0-0.5 1850 1900 1950 2000 +14.5 +14.0

Lisätiedot

Sektoritutkimusohjelman ilmastoskenaariot SETUKLIM

Sektoritutkimusohjelman ilmastoskenaariot SETUKLIM Sektoritutkimusohjelman ilmastoskenaariot SETUKLIM 2011-12 Climate scenarios for Sectorial Research Ilmatieteen laitos Heikki Tuomenvirta, Kirsti Jylhä, Kimmo Ruosteenoja, Milla Johansson Helsingin Yliopisto,

Lisätiedot

IPCC 5. ilmastonmuutoksen tieteellinen tausta

IPCC 5. ilmastonmuutoksen tieteellinen tausta IPCC 5. arviointiraportti osaraportti 1: ilmastonmuutoksen tieteellinen tausta Sisällysluettelo 1. Havaitut muutokset Muutokset ilmakehässä Säteilypakote Muutokset merissä Muutokset lumi- ja jääpeitteessä

Lisätiedot

Lumen teknisiä ominaisuuksia

Lumen teknisiä ominaisuuksia Lumen teknisiä ominaisuuksia Lumi syntyy ilmakehässä kun vesihöyrystä tiivistyneessä lämpötila laskee alle 0 C:n ja pilven sisällä on alijäähtynyttä vettä. Kun lämpötila on noin -5 C, vesihöyrystä, jäähiukkasista

Lisätiedot

Pyhäjoen kunta ja Raahen kaupunki Maanahkiaisen merituulivoimapuiston osayleiskaava

Pyhäjoen kunta ja Raahen kaupunki Maanahkiaisen merituulivoimapuiston osayleiskaava 82127096 Pyhäjoen kunta ja Raahen kaupunki Maanahkiaisen merituulivoimapuiston osayleiskaava Kaavaehdotus 20.11.2012 Tuulivoimalamuodostelmien esteettiset ominaisuudet Tuulivoimaloiden keskittäminen usean

Lisätiedot

Eksimeerin muodostuminen

Eksimeerin muodostuminen Fysikaalisen kemian Syventävät-laboratoriotyöt Eksimeerin muodostuminen 02-2010 Työn suoritus Valmista pyreenistä C 16 H 10 (molekyylimassa M = 202,25 g/mol) 1*10-2 M liuos metyylisykloheksaaniin.

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

Pakkaset ja helteet muuttuvassa ilmastossa lämpötilan muutokset ja vaihtelu eri aikaskaaloissa

Pakkaset ja helteet muuttuvassa ilmastossa lämpötilan muutokset ja vaihtelu eri aikaskaaloissa Pakkaset ja helteet muuttuvassa ilmastossa lämpötilan muutokset ja vaihtelu eri aikaskaaloissa Jouni Räisänen Helsingin yliopiston fysiikan laitos Kimmo Ruosteenoja Ilmatieteen laitos Sisältöä ACCLIM-skenaariot

Lisätiedot

Simon Seipimäen ja Tikkalan tuulivoimapuisto

Simon Seipimäen ja Tikkalan tuulivoimapuisto SUUNNITTELU JA TEKNIIKKA RAJAKIIRI OY Simon Seipimäen ja Tikkalan tuulivoimapuisto Näkymäalueanalyysi ja valokuvasovitteet VE1: 22 x V126 x HH137 VE2: 39 x V126 x HH137 VE3: 36 x V126 x HH137 Yhteismallinnukset

Lisätiedot

Naulakankaan tuulivoimapuisto

Naulakankaan tuulivoimapuisto S U U N N IT T EL U JA T EK N IIK K A TUULIWATTI OY Naulakankaan tuulivoimapuisto Näkymäalueanalyysi ja valokuvasovitteet V136 x 6 x HH182 FCG SUUNNITTELU JA TEKNIIKKA OY 27.6.2016 P26596 V136 x 6 x HH182

Lisätiedot

ILMASTONMUUTOSSKENAARIOT JA LUONTOYMPÄRISTÖT

ILMASTONMUUTOSSKENAARIOT JA LUONTOYMPÄRISTÖT ILMASTONMUUTOSSKENAARIOT JA LUONTOYMPÄRISTÖT Kimmo Ruosteenoja Ilmatieteen laitos kimmo.ruosteenoja@fmi.fi MUUTTUVA ILMASTO JA LUONTOTYYPIT -SEMINAARI YMPÄRISTÖMINISTERIÖ 17.I 2017 ESITYKSEN SISÄLTÖ 1.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

Naulakankaan tuulivoimapuisto

Naulakankaan tuulivoimapuisto S U U N N IT T EL U JA T EK N IIK K A TUULIWATTI OY Naulakankaan tuulivoimapuisto Näkymäalueanalyysi ja valokuvasovitteet 6 x V136 x HH182 FCG SUUNNITTELU JA TEKNIIKKA OY 19.4.2016 P26596 6 x V136 x HH182

Lisätiedot

KÄYTTÖOPAS. Tarkkuuskosteus-lämpömittari. Malli RH490

KÄYTTÖOPAS. Tarkkuuskosteus-lämpömittari. Malli RH490 KÄYTTÖOPAS Tarkkuuskosteus-lämpömittari Malli RH490 Johdanto RH490-kosteus-lämpömittari mittaa kosteutta, ilman lämpötilaa, kastepistelämpötilaa, märkälämpötilaa ja vesihöyryn määrää ilmassa. Edistyneitä

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

TUULETTUVAT RYÖMINTÄTILAT

TUULETTUVAT RYÖMINTÄTILAT TUULETTUVAT RYÖMINTÄTILAT Leca sorasta on Suomessa pitkäaikaiset ja hyvät käyttökokemukset. Leca sora ryömintatilassa Tuulettuvat ryömintätilat Uudis- ja korjausrakentaminen 3-12 / 5.9.2016 korvaa esitteen

Lisätiedot

Sää, ilmasto, ilmanlaatu ja suomalaisten hyvinvointi

Sää, ilmasto, ilmanlaatu ja suomalaisten hyvinvointi Sää, ilmasto, ilmanlaatu ja suomalaisten hyvinvointi SOTERKO - Työ- ja ympäristöperäisten terveysriskien torjunta: Miten päästä tehokkaisiin tuloksiin? 8.10.2014, TTL Reija Ruuhela Mia Aarnio Ilmatieteen

Lisätiedot

VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ

VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ 56 VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ Hyvällä havaitsijalla keskimääräinen virhe tähdenlennon kirkkauden arvioimisessa on noin 0.4 magnitudia silloin, kun meteori näkyy havaitsijan näkökentän keskellä.

Lisätiedot

Alumiinirungon/Eristyskatto

Alumiinirungon/Eristyskatto 7970FI Alumiinirungon/Eristyskatto Kattolipan runko 8 Willab Garden 2016.05 3 2 4 TÄRKEÄÄ! Lue asennusohjeet läpi ennen kuin aloitat asentamisen! Jos ohjeita ei noudateta, elementti ei toimi parhaalla

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

1.5 Suljetulla välillä jatkuva funktio. Perusominaisuudet.

1.5 Suljetulla välillä jatkuva funktio. Perusominaisuudet. 1.5 Suljetulla välillä jatkuva funktio. Perusominaisuudet. Differentiaalilaskennassa on aika tavallinen tilanne päästä tutkimaan SULJETUL- LA VÄLILLÄ JATKUVAA FUNKTIOTA. Oletuksena on tällöin funktion

Lisätiedot

ILMASTOMALLEIHIN PERUSTUVIA ARVIOITA TUULEN KESKIMÄÄRÄISEN NOPEUDEN MUUTTUMISESTA EI SELVÄÄ MUUTOSSIGNAALIA SUOMEN LÄHIALUEILLA

ILMASTOMALLEIHIN PERUSTUVIA ARVIOITA TUULEN KESKIMÄÄRÄISEN NOPEUDEN MUUTTUMISESTA EI SELVÄÄ MUUTOSSIGNAALIA SUOMEN LÄHIALUEILLA ILMASTOMALLEIHIN PERUSTUVIA ARVIOITA TUULEN KESKIMÄÄRÄISEN NOPEUDEN MUUTTUMISESTA EI SELVÄÄ MUUTOSSIGNAALIA SUOMEN LÄHIALUEILLA Tuulen voimakkuuden muutosarviot perustuivat periaatteessa samoihin maailmanlaajuisiin

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 VESI

KEMIAN MIKROMAAILMA, KE2 VESI VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen

Lisätiedot

Ohjeita fysiikan ylioppilaskirjoituksiin

Ohjeita fysiikan ylioppilaskirjoituksiin Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat

Lisätiedot

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Alkudemonstraatio Käsi lämpömittarina Laittakaa kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä. 1) Pitäkää

Lisätiedot

Maan ja avaruuden välillä ei ole selkeää rajaa

Maan ja avaruuden välillä ei ole selkeää rajaa Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta

Lisätiedot

REAKTIOT JA ENERGIA, KE3. Kaasut

REAKTIOT JA ENERGIA, KE3. Kaasut Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen

Lisätiedot

3 MALLASVEDEN PINNAN KORKEUS

3 MALLASVEDEN PINNAN KORKEUS 1 TAVASE OY, IMEYTYS- JA MERKKIAINEKOKEEN AIKAISEN TARKKAILUN YHTEENVETO 26.4.2010 1 YLEISTÄ Tavase Oy toteuttaa tekopohjavesihankkeen imeytys- ja merkkiainekokeen tutkimusalueellaan Syrjänharjussa Pälkäneellä.

Lisätiedot

ILMASTONMUUTOKSEN VAIKUTUS METSIIN JA METSIEN SOPEUTUMINEN MUUTOKSEEN

ILMASTONMUUTOKSEN VAIKUTUS METSIIN JA METSIEN SOPEUTUMINEN MUUTOKSEEN ILMASTONMUUTOKSEN VAIKUTUS METSIIN JA METSIEN SOPEUTUMINEN MUUTOKSEEN Metlan tiedotustilaisuus 27.5.2009 Risto Seppälä 1 TAUSTAA Vuonna 2007 luotiin Global Forest Expert Panel (GFEP) -järjestelmä YK:n

Lisätiedot

LCD-NÄYTTÖ. Käyttöohjeesta

LCD-NÄYTTÖ. Käyttöohjeesta LCD-NÄYTTÖ Käyttöohjeesta Onneksi olkoon uuden Oregon Scientific (FAW- 101) sääaseman hankinnan johdosta. Tämä sääasema ennustaa säätä, mittaa ilmanpaineen ja -kosteuden sekä ulko- ja sisälämpötilan langattomasti.

Lisätiedot

Lämpöopin pääsäännöt

Lämpöopin pääsäännöt Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia

Lisätiedot

Purjelennon Teoriakurssi 2014. Sääoppi, osa 2 Veli-Matti Karppinen, VLK

Purjelennon Teoriakurssi 2014. Sääoppi, osa 2 Veli-Matti Karppinen, VLK Purjelennon Teoriakurssi 2014, osa 2 Veli-Matti Karppinen, VLK Pilvityypit Purjelentäjän pilvet Cumulus, kumpupilvi Teräväreunainen kumpupilvi kertoo noston olemassaolosta Noston ollessa hiipumassa ja

Lisätiedot

Hevosenlannan mahdollisuudet ja haasteet poltossa ja pyrolyysissä

Hevosenlannan mahdollisuudet ja haasteet poltossa ja pyrolyysissä Hevosenlannan mahdollisuudet ja haasteet poltossa ja pyrolyysissä Markku Saastamoinen, Luke Vihreä teknologia, hevostutkimus Ypäjä HELMET hanke, aluetilaisuus, Jyväskylä 24.1.2017 Johdanto Uusiutuvan energian

Lisätiedot

ROVANIEMEN ALUEEN ASEMAKAAVOITUS, POHJANOLOSUHTEIDEN MAAPERÄN SELVI- TYS - VENNIVAARA

ROVANIEMEN ALUEEN ASEMAKAAVOITUS, POHJANOLOSUHTEIDEN MAAPERÄN SELVI- TYS - VENNIVAARA RAPORTTI 1 (5) Rovaniemen kaupunki Kaavoituspäällikkö Tarja Outila Hallituskatu 7, PL 8216 96100 ROVANIEMI ROVANIEMEN ALUEEN ASEMAKAAVOITUS, POHJANOLOSUHTEIDEN MAAPERÄN SELVI- TYS - VENNIVAARA YLEISTÄ

Lisätiedot

Kattiharjun tuulivoimapuisto

Kattiharjun tuulivoimapuisto LIITE S U U N N IT T EL U JA T EK N IIK K A PROKON WIND ENERGY FINLAND OY Kattiharjun tuulivoimapuisto Näkymäalueanalyysi ja valokuvasovitteet FCG SUUNNITTELU JA TEKNIIKKA OY P214 FCG SUUNNITTELU JA TEKNIIKKA

Lisätiedot

1. Vuotomaa (massaliikunto)

1. Vuotomaa (massaliikunto) 1. Vuotomaa (massaliikunto) Vuotomaa on yksi massaliikuntojen monista muodoista Tässä ilmiössä (usein vettynyt) maa aines valuu rinnetta alaspa in niin hitaasti, etta sen voi huomata vain rinteen pinnan

Lisätiedot

Auringonsäteilyn mittaukset ja aikasarjat

Auringonsäteilyn mittaukset ja aikasarjat Auringonsäteilyn mittaukset ja aikasarjat Ari Venäläinen Antti Aarva Pentti Pirinen Ilmatieteenlaitos/ Ari V. & Antti A. & Pentti P. 21.11.2013 IIlmatieteenlaitos/ Ari V. & Antti A. & Pentti P. 21.11.2013

Lisätiedot

Revontulet matkailumaisemassa

Revontulet matkailumaisemassa Revontulet matkailumaisemassa Kuva: Vladimir Scheglov Noora Partamies noora.partamies@fmi.fi ILMATIETEEN LAITOS Päivän menu Miten revontulet syntyvät: tapahtumaketju Auringosta Maan ilmakehään Revontulet

Lisätiedot

Hirvinevan tuulivoimahanke

Hirvinevan tuulivoimahanke S U U N N IT T EL U JA T EK N IIK K A TM VOIMA OY FCG SUUNNITTELU JA TEKNIIKKA OY 6305 (8) PaulinaKaivo-oja@fcgfi 6305 Maisema ja havainnekuvat Havainnekuvat on laadittu alueesta laadittua maastomallinnusta

Lisätiedot

Energiatehokkuuden analysointi

Energiatehokkuuden analysointi Liite 2 Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma Energiatehokkuuden analysointi Liite loppuraporttiin Jani Isokääntä 9.4.2015 Sisällys

Lisätiedot

Puutikankankaan tuulivoimapuisto

Puutikankankaan tuulivoimapuisto LIITE 7 S U U N N IT T EL U JA T EK N IIK K A TM VOIMA OY Puutikankankaan tuulivoimapuisto Näkymäalueanalyysi ja valokuvasovitteet V126 x 9 x HH137 FCG SUUNNITTELU JA TEKNIIKKA OY 26.1.2015 V126 x 9 x

Lisätiedot

BM20A0900, Matematiikka KoTiB3

BM20A0900, Matematiikka KoTiB3 BM20A0900, Matematiikka KoTiB3 Luennot: Matti Alatalo Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luvut 1 4. 1 Sisältö Ensimmäisen kertaluvun differentiaaliyhtälöt

Lisätiedot

Hakkeen kosteuden on-line -mittaus

Hakkeen kosteuden on-line -mittaus Hakkeen kosteuden on-line -mittaus Julkaisu: Järvinen, T., Siikanen, S., Tiitta, M. ja Tomppo, L. 2008. Yhdistelmämittaus hakkeen kosteuden on-line -määritykseen. VTT-R-08121-08 Tavoite ja toteutus Hakkeen

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

YMPÄRISTÖMINISTERIÖ Neuvotteleva virkamies 16.12.2012 Anneli Karjalainen

YMPÄRISTÖMINISTERIÖ Neuvotteleva virkamies 16.12.2012 Anneli Karjalainen YMPÄRISTÖMINISTERIÖ Muistio Neuvotteleva virkamies 16.12.2012 Anneli Karjalainen VALTIONEUVOSTON PÄÄTÖS YMPÄRISTÖNSUOJELULAIN 110 A :SSÄ TARKOI- TETUSTA POLTTOAINETEHOLTAAN VÄHINTÄÄN 50 MEGAWATIN POLTTOLAI-

Lisätiedot

Fahim Al-Neshawy Aalto yliopisto Insinööritieteiden korkeakoulu Rakennustekniikan laitos

Fahim Al-Neshawy Aalto yliopisto Insinööritieteiden korkeakoulu Rakennustekniikan laitos Julkisivuyhdistyksen Innovaatio 2016 seminaari 12-13.05.2016 Fahim Al-Neshawy Aalto yliopisto Insinööritieteiden korkeakoulu Rakennustekniikan laitos Sisältö 2 v v v v v Julkisivun yleisimmät vauriomekanismit

Lisätiedot

LIITE 4 Alustavan näkymäalueanalyysin tulokset ja havainnekuvat

LIITE 4 Alustavan näkymäalueanalyysin tulokset ja havainnekuvat LIITE 4 Alustavan näkymäalueanalyysin tulokset ja havainnekuvat LIITE 4 (25 s.) SUUNNITTELU JA TEKNIIKKA Halsuan tuulivoimapuisto Näkymäalueanalyysi ja valokuvasovitteet VE1: 85 x SWT 3.3-130 x HH135 VE2:

Lisätiedot

Näin lisäeristät 4. Sisäpuolinen lisäeristys. Tuotteina PAROC extra ja PAROC-tiivistystuotteet

Näin lisäeristät 4. Sisäpuolinen lisäeristys. Tuotteina PAROC extra ja PAROC-tiivistystuotteet Näin lisäeristät 4 Sisäpuolinen lisäeristys Tuotteina PAROC extra ja PAROC-tiivistystuotteet Tammikuu 202 Sisäpuolinen lisälämmöneristys Lisäeristyksen paksuuden määrittää ulkopuolelle jäävän eristeen

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Laboratorioanalyysit, vertailunäytteet ja tilastolliset menetelmät

Laboratorioanalyysit, vertailunäytteet ja tilastolliset menetelmät Jarmo Koskiniemi Maataloustieteiden laitos Helsingin yliopisto 0504151624 jarmo.koskiniemi@helsinki.fi 03.12.2015 Kolkunjoen taimenten geneettinen analyysi Näytteet Mika Oraluoma (Vesi-Visio osk) toimitti

Lisätiedot

1. Seinäkiinnike 2. Pöytätuki 3. Paristokotelo 4. RESET -näppäin 5. C/ F -näppäin (paristokotelossa) 6. Tuuletusaukko

1. Seinäkiinnike 2. Pöytätuki 3. Paristokotelo 4. RESET -näppäin 5. C/ F -näppäin (paristokotelossa) 6. Tuuletusaukko Esittely Kiitos että valitsit Oregon Scientific TM tuotteen. Tämä tuote on suunniteltu huolettomaan ja ongelmattomaan käyttöön vuosiksi eteenpäin. Pakkauksessa on seuraavat osat: - Pääyksikkö (BAR289)

Lisätiedot

ALUEELLISET ILMASTON- MUUTOSENNUSTEET JA NIITTEN EPÄVARMUUSTEKIJÄT

ALUEELLISET ILMASTON- MUUTOSENNUSTEET JA NIITTEN EPÄVARMUUSTEKIJÄT ALUEELLISET ILMASTON- MUUTOSENNUSTEET JA NIITTEN EPÄVARMUUSTEKIJÄT Page 1 of 29 Kimmo Ruosteenoja Ilmatieteen laitos MUUTTUVA ILMASTO JA METSÄT -SEMINAARI 9.XII 2014 ESITYKSEN SISÄLTÖ 1. KASVIHUONEKAASUSKENAARIOT

Lisätiedot

METEORIEN HAVAINNOINTI III VISUAALIHAVAINNOT 3.1 YLEISTÄ

METEORIEN HAVAINNOINTI III VISUAALIHAVAINNOT 3.1 YLEISTÄ 23 METEORIEN HAVAINNOINTI III VISUAALIHAVAINNOT 3.1 YLEISTÄ Tässä metodissa on kyse perinteisestä. luettelomaisesta listaustyylistä, jossa meteorit kirjataan ylös. Tietoina meteorista riittää, kuuluuko

Lisätiedot

Kiimakallio tuulivoimahanke, Kuortane

Kiimakallio tuulivoimahanke, Kuortane S U U N N IT T EL U JA T EK N IIK K A LAGERWEY DEVELOPMENT OY Kiimakallio tuulivoimahanke, Kuortane Lagerwey L100 x 2 x hh135m FCG SUUNNITTELU JA TEKNIIKKA OY 25.3.2015 P26678 FCG SUUNNITTELU JA TEKNIIKKA

Lisätiedot

Ilmastonmuutos globaalina ja paikallisena ilmiönä

Ilmastonmuutos globaalina ja paikallisena ilmiönä Ilmastonmuutos globaalina ja paikallisena ilmiönä Muuttuva Selkämeri Loppuseminaari 25.5.2011 Kuuskajaskari Anna Hakala Asiantuntija, MMM Pyhäjärvi-instituutti 1 Ilmasto Ilmasto = säätilan pitkän ajan

Lisätiedot