Radon aiheuttaa keuhkosyöpää

Koko: px
Aloita esitys sivulta:

Download "Radon aiheuttaa keuhkosyöpää"

Transkriptio

1 86 radonin hajoamisen seurauksena muodostuneet tytärytimet ovat kuitenkin haitallisia, koska ne ovat kiinteitä aineita ja voivat kulkeutua pölyhiukkasten mukana ihmisen keuhkoihin. Talon alla oleva maaperä on tärkein huoneilman radonlähde. Radon pääsee huoneilmaan betoniharkkojen läpi sekä putkien ja sähköjohtojen läpivientiaukoista. Sitä pääsee myös korvausilman mukana rakenteiden koloista ja halkeamista. Radonia tulee huoneilmaan jonkin verran myös rakennusmateriaaleista, esim. betonista ja tiilestä. Radonia voi vapautua huoneilmaan myös

2 87 vedenkäytön yhteydessä. Erityisesti porakaivoveteen liuenneen radonin pitoisuus voi olla niin suuri, että se nostaa huoneilman radonpitoisuutta. Radonia vapautuu herkästi etenkin suihkun, pyykinpesun ja astioiden pesun yhteydessä. Radon aiheuttaa keuhkosyöpää Radon on hajuton, mauton ja näkymätön radioaktiivinen kaasu, joka hajoaa kiinteiksi hajoamistuotteiksi. Huoneilmassa leijuvat radonin hajoamistuotteet kulkeutuvat hengityksen mukana keuhkoihin. Itse radonkaasu poistuu uloshengityksen mukana, mutta kiinteät hajoamistuotteet tarttuvat keuhkojen sisäpintaan. Keuhkojen saama säteilyannos lisää keuhkosyöpäriskiä. Suomessa todetaan vuosittain noin 2000 keuhkösyöpätapausta, joista radonin arvioidaan aiheuttavan noin 200. Radonpitoisen veden nauttimisesta aiheutuu säteilyä ruuansulatuselimille.

3 88 Radonia ei voida aistia eikä se aiheuta allergiaa, huimausta, väsymystä eikä muita sen kaltaisia tuntemuksia. Radon havaitaan vain erikoismittalaitteilla. Tehtävä: Ihmisen keuhkojen massa on keskimäärin 1,0 kg ja tilavuus 3,0 litraa. Huoneilman suurin sallittu radonaktiivisuus on 200 Bq/m 3 ja radonin hajoamisenergia on 5,59 MeV. Kuinka suuren ekvivalenttiannoksen tällainen radonaktiivisuus aiheuttaa keuhkoihin vuodessa? Huom! Tässä laskussa lasketaan vain radonista itsestään aiheutuva annos. Radonin aktiiviset tytärytimet jätetään huomiotta. Vastaus: 0,34 msv 6.3 LUONNON TAUSTASÄTELY Luonnon taustasäteilyn osuus suomalaisen keskimääräisestä vuosiannoksesta on noin 1 msv (30%). Annos muodostuu - ihmiskehon omista radioisotoopeista (0,31 msv) - maaperän ja rakennusten säteilystä (0,50 msv) - kosmisesta säteilystä (0,30 msv) RADIOAKTIIVISET AINEET KEHOSSA Monia luonnossa esiintyviä radioaktiivisia aineita joutuu kehoon ruuan, juoman ja hengityksen mukana. Näistä radioaktiivisista aineista aiheutuu noin 0,31 msv:n sisäinen säteilyannos vuodessa. Pääasiallisin säteilylähde ihmisessä on kalium-40, jonka osuus annoksesta on noin 0,17 msv.

4 89 Luonnon kaliumista vakio-osa on radioaktiivista kalium-40-isotooppia. Aikuisessa ihmisessä luonnon kaliumia on n. 140 g. Elimistö säätelee kaliumin pitoisuutta kehossa automaattisesti, joten kaliumin aiheuttamaa säteilyaltistusta ei voida vähentää. Kalium-40 hajoaa EC-hajonnalla (10,7%), jota seuraa gammaemissio ja -hajonnalla (89,3%). Puoliintumisaika on vuotta. Aktiivisuutena mitattuna kalium-40:tä on kehossa luokkaa becquerelia. Ravinnon ja hengitysilman mukana kehoon kulkeutuu myös uraanin ja toriumin hajoamissarjojen tuotteita. Näistä aiheutuu keskimäärin 0,14 msv:n suuruinen annos vuodessa. Eniten altistusta aiheuttavat uraanin hajoamistuotteet lyijy-210 ja polonium-210, joita esiintyy etenkin kaloissa ja äyriäisissä. Suomalaiset saavat juomavedessä esiintyvistä uraanisarjan aineista keskimäärin 0,03 msv:n vuotuisen sisäisen säteilyannoksen. Porakaivovesien käyttäjillä annokset ovat tavallista suurempia, keskimäärin noin 0,4 msv. Muita luonnon radioaktiivisia aineita joutuu kehoon hyvin vähän. Avaruussäteilyn kautta syntyvistä radioaktiivisista aineista tärkein on hiili-14. Se sitoutuu kaikkeen elolliseen ja joutuu sitä kautta elimistön. Hiili-14 aiheuttaa 0,012 msv:n säteilyannoksen vuodessa eli vain vähäisen osan sisäisestä annoksesta. Tehtävä: Aikuisessa ihmisessä on noin 140 g kaliumia, joka sisältää 0,0117% radioaktiivista isotooppia 40 K. Puoliintumisaika 40 K:lla on 1, vuotta ja se hajoaa pääasiassa kahdella prosessilla: EC-hajonnalla ja -emissiolla. EC-hajoamista seuraa 1,4608 MeV:n gammasäteily, jonka suhteellinen intensiteetti on 0,1067 kvanttia/hajoaminen. -emission suhteellinen intensiteetti on

5 90 0,893 elektronia/hajoaminen ja -säteilyn maksiomienergia on 1,32 MeV. a) Laske ihmisen 40 K-aktiivisuus sekä gamma- ja beetasäteilyn tuotto (aktiivisuus) b) Laske -säteilystä ihmiseen kohdistuva sisäinen annosnopeus ja vuotuinen kokonaisannos, kun se kudosmassa johon absorptio kohdistuu on 50 kg ja keskimääräiseksi 1 absorboituvaksi energiaksi otetaan E max 3 Vastaus: a) 4,24 kbq sekä 0,452 kbq ja 3,79 kbq b) 5,4 psv/s ja 0,17 msv MAAPERÄN JA RAKENNUSTEN SÄTEILY Ulkoista säteilyä saadaan maankamarassa ja rakennusmateriaaleissa olevien radioaktiivisten aineiden lähettämästä gammasäteilystä. Tällaisia aineita ovat mm. uraani, torium ja kalium. Nykyihmiset viettävät suurimman osan ajasta sisätiloissa. Sisällä saatu säteilyannos onkin noin viisi kertaa suurempi kuin ulkona saatu. Suurimmat pitoisuudet radioaktiivisia aineita esiintyy kivipohjaisissa rakennusmateriaaleissa, kuten betonissa ja kivilaatoissa. Ulkona säteily on peräisin maaperästä. Säteilystä aiheutuva annos tulee siis pääasiassa rakennusmateriaaleista sisätiloissa ja on keskimäärin 0,5 msv/v suomalaista kohti. Vaihtelu eri paikkakuntien välillä on suurta. Suurimmillaan säteily on Kaakkois-Suomen rapakivi-graniittialueella. Gammasäteilyn kartta on esitetty seuraavalla sivulla. Kartta esittää maaperän luonnollisen radioaktiivisuuden aiheuttamaa annosnopeutta ilmassa kesäaikana. Lukuarvoista on poistettu kosmisen säteilyn osuus 32 nsv/h sekä neutronisäteilyn osuus 11 nsv/h.

6 KOSMINEN SÄTEILY Ilma johtaa aina hieman sähköä. Esimerkiksi elektroskoopin lehdet menettävät melko pian varauksensa, vaikka laite olisi eristetty ympäristöstään. Syynä tähän on erittäin läpitunkeva kosminen säteily, joka ionisoi ilmaa. Kosmisesta säteilystä suomalaisille aiheutuu noin 0,3 msv:n annos vuodessa. Erot eri puolilla Suomea ovat lähes olemattomat. Jos Suomen korkeimmalla kohdalla, Haltitunturin huipulla, olisi kylä, niin tämän kylän asukkaille aiheutuisi kosmisesta säteilystä vain

7 92 noin 1,5 kertainen annos verrattuna merenpinnan tasolla asuviin helsinkiläisiin. Kosminen primäärisäteily on avaruudesta saapuvaa hiukkas- ja gammasäteilyä, josta suurin osa absorboituu ilmakehään. Maan pinnalle asti pääsee siis lähes pelkästään sekundääristä säteilyä, joka syntyy primäärisäteilyn hiukkasten törmäillessä ilmakehän atomeihin ja molekyyleihin. Primäärisäteily koostuu erilaisista atominytimistä, varsinkin protoneista ja heliumytimistä sekä neutriinoista, joita tulee Maan ilmakehään täysin satunnaisesti eri suunnista. Mukana on jonkin verran myös raskaampia ytimiä. Osaksi säteily on peräisin auringosta, jolloin siinä on mukana paljon elektroneja. Kosmisen säteilyn hiukkasten energia vaihtelee noin yhdestä MeV:sta aina ev:iin. Se voi siis olla tavattoman suuri paljon suurempi kuin missään hiukkaskiihdyttimissä on voitu keinotekoisesti synnyttää. Energia saadaan selville epäsuorasti sekundääri-

8 93 hiukkasten kokonaisenergian avulla. Maan magneettikenttä ja ilmakehä suojaavat ihmistä (elollista luontoa) primäärisäteilyltä. Ilmakehässä primäärisäteily saa aikaan sekundäärisäteilyä (kuva edellä), joka koostuu pääasiassa myoneista, jotka ovat elektronin tapaan leptoneihin kuuluvia alkeishiukkasia. Myonin varaus on sama kuin elektronin varaus, mutta massa on noin 200 kertainen. Myonien keskimääräinen elinikä on vain noin 2 s, eikä niiden klassillisen fysiikan mukaan pitäisi ehtiä ilmakehän yläkerroksista maan pinnalle, vaikka ne liikkuvat lähes valon nopeudella. Kuitenkin suhteellisuusteorian ennustaman aikadilataation takia myoneita esiintyy myös maan pinnalla. Kosmisen säteilyn annosnopeus ihmiselle maanpinnalla on noin 0,025 Sv/h. Kosminen säteily on vaikuttanut maan pinnalla samanlaisena jo hyvin kauan ja ihminen on sopeutunut siihen. Kosminen säteily on kuitenkin varteenotettava tekijä korkealla lentävissä lentokoneissa ja avaruusaluksilla. Tehtävä: Lentäjä on 20 tuntia viikossa m:n korkeudessa. Kosmisen säteilyn tuottama ekvivalenttiannosnopeus sillä korkeudella on 12 Sv/h. Kuinka suuri on lentäjän tästä saama vuosiannos? Vastaus: 105 msv 6.4 IHMISEN OMA TOIMINTA Ihmisen oman toiminnan osuus suomalaisen keskimääräisestä vuosiannoksesta on noin 0,56 msv (15%). Annos muodostuu pääosin säteilyn lääketieteellisestä käytöstä. Tarkastellaan seuraavassa - säteilyä terveydenhuollossa (0,54 msv) - ydinkokeita ja -onnettomuuksia (0,02 msv)

9 SÄTEILY TERVEYDENHUOLLOSSA Suomessa tehdään vuosittain reilut 700 röntgentutkimusta tuhatta asukasta kohti. Röntgentutkimuksilla on keskeinen merkitys sairauksien tunnistamisessa. Kun erilaisista röntgentutkimuksista potilaille aiheutuvat säteilyannokset jaetaan kaikkien suomalaisten kesken, saadaan keskimääräiseksi annokseksi noin 0,5 msv vuodessa. Laskennallisesti voidaan arvioida, että vuosikymmeniä jatkuva röntgentutkimustoiminta aiheuttaisi Suomessa noin 100 syöpäkuolemaa vuodessa. Yksilölle riski on kuitenkin hyvin pieni. Esimerkiksi yksi keuhkojen röntgenkuvaus aiheuttaa samansuuruisen säteilyannoksen kuin pääkaupunkiseudulla pientalossa asuva saa huoneilman radonista 2-3 viikon aikana. Kaikkien röntgentutkimusten keskimääräinen säteilyannos yhtä tutkimusta kohti on noin 0,6 msv. Sädehoidossa säteilyllä pyritään tuhoamaan sellainen kasvainkudos, jota ei pystytä poistamaan kirurgisesti. Usein sädehoito yhdistetään leikkaus- ja lääkehoitoon. Sädehoitoa saa sairautensa jossain vaiheessa noin puolet syöpäpotilaista eli noin ihmistä vuosittain. Sädehoito annetaan yleensä kehon ulkopuolelta sädehoitolaitteella kohdistamalla säteily tarkasti kasvaimeen. Joissakin hoidoissa säteilylähde, tavallisimmin säteilevä aine, viedään kehon sisälle. Sädehoidossa pieni joukko ihmisiä altistuu hyvin suurille säteilyannoksille. Vaikka säteily yritetään kohdistaa mahdollisimman tarkasti juuri tuhottavaan kasvaimeen, niin kasvaimen ympärillä oleva terve kudoskin saa osan säteilystä. Jos tämä tavallaan ylimääräinen säteilyannos jaettaisiin kaikkien suomalaisten kesken, aiheutuisi siitä keskimäärin noin 0,6 millisievertin vuosiannos suomalaista kohti. Tätä annosta ei kuitenkaan oteta huomioon vuosiannosta laskettaessa.

10 95 Suomessa tehdään vuosittain noin isotooppitutkimusta, joista suurin osa oli luuston tutkimuksia. Myös keuhkoja, munuaisia, verenkiertoelimistöä ja kilpirauhasta voidaan tutkia. Yhdestä isotooppitutkimuksesta aiheutuu potilaalle keskimäärin 4,2 msv:n annos. Kaikista isotooppitutkimuksista aiheutuu noin 0,04 msv:n keskimääräinen annos suomalaista kohti YDINKOKEITA JA -ONNETTOMUUKSIA Vielä 1960-luvulla ydinasekokeita tehtiin ilmakehässä. Kokeiden laskeumasta peräisin olevia pitkäikäistä cesium-137:ää (puoliintumisaika 30 vuotta) ja strontium-90:tä (28 vuotta) on kulkeutunut ihmiseen ravinnon mukana. Tsernobylin onnettomuuden (1986) seurauksena ihmiset saavat edelleen cesium-137:ää ravinnosta. Alussa laskeumassa mukana ollut cesium-134 on lyhyen puoliintumisaikansa (2 vuotta) vuoksi lähes kokonaan hävinnyt. Radioaktiivista jodi-131:tä saatiin vähäisiä määriä hengityksen ja maidon mukana heti onnettomuuden jälkeen. Normaalisti toimivien ydinvoimalaitosten ympäristöön päästämien radioaktiivisten aineiden määrät ovat niin pieniä, ettei niillä ole ihmisen kannalta merkitystä. Vuonna 1986 Tshernobylin onnettomuus aiheutti jokaiselle suomalaiselle keskimäärin 0,15 msv:n ulkoisen säteilyannoksen. Vuoteen 1996 mennessä annos oli laskenut arvoon 0,02 msv vuodessa. Tällä hetkellä suurin osa ulkoisesta säteilyannoksesta aiheutuu cesium-137:stä. Kuvassa on esitetty kehon sisältämät cesium-137 määrät (aktiivisuutena) kolmessa eri ryhmässä, pohjois-lapin poronhoitajissa, keskisuomalaisissa ja pääkaupunkilaisissa.

11 luvun piikki tulee ilmakehässä tehtyjen ydinkokeiden laskeumista ja 1980-luvun lopun piikki Tsernobylistä. Ydinasekokeiden seurauksena pitkällä aikavälillä tullut laskeuma jakaantui Suomessa tasaisesti, mutta silti Helsingin ryhmän ja Inarin poronhoitajaryhmän cesiummäärien ero on suuri. Ero johtuu erilaisesta ravinnosta. Lapin karussa luonnossa erityisesti ravintoketju jäkälä poro ihminen on voimakas cesiumin rikastaja. Tshernobylistä tullut laskeuma jakaantui sen sijaan erittäin epätasaisesti. Lappiin sitä tuli vähän kuten väkirikkaalle pääkaupunkiseudullekin. Keski-Suomeen laskeumaa tuli paljon enemmän ja käytännön syistä Padasjoki valittiin seurantakohteeksi. Siellä ihmisten säteilyaltistus on suurempi kuin muualla maassa. Koko Suomessa Tshernobylin onnettomuudesta aiheutuva säteilyannos on kuitenkin hyvin pieni osa vuotuisesta kokonaisannoksesta.

12 RADIOAKTIIVISTEN AINEIDEN KÄYTTÄYTYMINEN KEHOSSA Radioaktiivisten aineiden imeytymiseen, pidättymiseen ja jakautumiseen eri elimiin ja kudoksiin sekä elimistöstä poistumiseen vaikuttavat niiden kemiallinen muoto, liukoisuus ja hiukkaskoko. Nielemällä saatujen radionuklidien imeytyminen tapahtuu pääosin ohutsuolessa. Hengitettyjen hiukkasten kulkeutuminen ja tarttuminen hengityselinten eri osiin riippuu itse hiukkasten olomuodosta ja koosta. Keuhkoista osa hiukkasista kulkeutuu värekarvojen kuljettamana nieluun, minkä jälkeen ne käyttäytyvät kuin nielty aine. Radioaktiivisista aineista cesium ja kalium kulkeutuvat pääosin ihmisen lihaksiin. Strontium kulkeutuu kalsiumin tavoin luustoon ja radioaktiivinen jodi kilpirauhaseen. Aineiden poistumiseen kehosta vaikuttaa niiden kiertokulku elimistössä. Poistumisnopeutta kehosta kuvataan biologisella puoliintumisajalla. Se on aika, jonka kuluessa puolet aineesta on erittynyt pois. Esimerkiksi cesium-137:n biologinen puoliintumisaika on aikuisella keskimäärin 110 päivää ja jodin 80 päivää. Lapsilla biologiset puoliintumisajat ovat lyhyempiä kuin aikuisilla. Radioaktiivisen aineen määrä elimistössä vähenee erittymisen lisäksi myös radioaktiivisen hajoamisen seurauksena. Tehtävä: Radioaktiivinen 24 Na hajoaa beetahajonnalla viereisen kaavion mukaisesti puoliintumisajalla 15 tuntia. Beetahiukkasten keskimääräinen energia on 0,555 MeV. Aktiivisesta natriumista valmistetaan ruokasuolaliuos ( 24 NaCl), jonka

13 98 kokonaisaktiivisuus on 1 MBq. Liuos ruiskutetaan 70 kg painoisen henkilön elimistöön, jonne sen oletetaan leviävän tasaisesti hyvin lyhyessä ajassa. Ruokasuolaliuos poistuu normaalien elintoimintojen seurauksena kehosta puoliintumisajalla 245 tuntia (biologinen puoliintumisaika). Laske a) montako 24 Na ytimen hajoamista kaiken kaikkiaan tapahtuu elimistössä ja b) säteilyannos, kun oletetaan, että kaikki beetahiukkaset absorboituvat ja gammasäteilyn energiasta absorboituu osuudet: 1 :stä 0,310 ja 2 :sta 0,265. Vastaus: 7, hajoamista ja 0,30 msv Elimistössä olevien radioaktiivisten aineiden tunnistaminen ja pitoisuuksien määrittäminen tehdään esimerkiksi ns. kokokeholaskureilla, joiden toiminta perustuu puolijohdekiteisiin. Yläkuvassa on säteilyturvakeskuksen kokokeholaskuri, joka ulkoisen taustasäteilyn eliminoimiseksi on sijoitettu huoneeseen, jonka seinät ovat 15 cm paksua rautaa. Mittaustulokseksi saadaan gammasäteilyspektri, josta eri radioaktiiviset aineet voidaan tunnistaa.

14 99 7 SÄTEILYN KÄYTTÖ Radioaktiiviset aineet ja ionisoiva säteily kuuluvat ihmisen elinympäristöön. Haittavaikutuksista huolimatta säteilyä käytetään myös hyödyksi. Suomessa säteilyn käyttö voidaan jakaa kolmeen osaan: 1. Teollisuus ja tutkimus (~ 50%) 2. Terveydenhuolto (~ 40%) 3. Eläinröntgentutkimus (~ 10%) On huomattava, että ydinenergian tuotanto ei ole säteilyn käyttöä. Säteily energiantuotannossa on vain haitallinen sivutuote. 7.1 TEOLLISUUS JA TUTKIMUS Teollisuudessa käytetään röntgen- ja gammasäteilyä erilaisten metallirakenteiden laadunvalvontaan. Säteilyn avulla voidaan paljastaa hitsaus- ja valuvirheitä tai rakenteiden halkeamia esimerkiksi paineastioissa, laivoissa, siltarakenteissa tai lentokoneissa. Tällaisen tarkkailun hyvä puoli on se, että se voidaan tehdä rakenteita rikkomatta. Periaate näissä tutkimuksissa on sama kuin lääketieteellisissä röntgen- ja gammakuvauksissa. Erilaisten kohteiden kvalitatiivisia ja kvantitatiivisia koostumuksia analysoidaan teollisuudessa aktivointianalyysien avulla. Esimerkiksi neutroniaktivoinnissa tutkittavaa kohdetta pommitetaan neutroneilla, jolloin osa kohteen ytimistä sieppaa neutronin ja muuttuu radioisotoopeiksi. Radioisotoopien säteilyä mittaamalla voidaan päätellä, mitä aineita tutkittava kappale sisälsi ja myös aineiden pitoisuuksia.

15 100 Tehtävä: Auton moottorin teräksisen männänrenkaan massa oli 30,0 g. Rengasta säteilytettiin reaktorissa, kunnes sen 59 Fe-aktiivisuus oli 0,400 MBq. Aktivoitu männänrengas asennettiin tasan 9 vuorokautta myöhemmin koemoottoriin, joka sai käydä yhtäjaksoisesti 30,0 vuorokautta. Kokeen päättyessä mitattiin kampikammion öljyn 59 Fe-aktiivisuus, jonka todettiin olevan 12,6 hajoamista minuutissa /100 cm 3 öljyä. Kuinka paljon männänrenkaan aineesta oli siirtynyt öljyyn, kun öljyn kokonaistilavuus oli 6000 cm 3? 59 Fe:n puoliintumisaika on 45,1 vuorokautta. Vastaus: 1,72 g Radioaktiivisia nuklideja hyödynnetään teollisuudessa myös erilaisissa mittareissa, esimerkiksi tiheys- ja pinta-alamassan mittareissa. Paperi- ja selluloosateollisuudessa ionisoivaa säteilyä käytetään esimerkiksi paperin paksuusmittauksissa, joissa tutkitaan säteilyn vaimenemista paperissa. Vaimenemisen perusteella pystytään päättelemään paperin paksuus pysäyttämättä valmistusprosessia. Teollisuudessa tehdään myös kosteusmittauksia, jotka perustuvat neutronien ja vetyatomien välisiin kimmoisiin törmäyksiin. Neutronitörmäysten avulla voidaan mitata myös sitoutuneen veden ja kideveden määrä. Muovien polymerisoinnissa voidaan käyttää ionisoivaa säteilyä. Esimerkiksi paperin pinnalla levitettyyn ohueen pinnoitemateriaalikerrokseen ohjataan hiukkaskiihdyttimestä suihku, joka polymeroi pinnoitteen nopeasti. Näin pinnoite myös kiinnittyy hyvin paperiin. Elintarvike-, lääke- ja sairaalatarviketeollisuudessa käytetään ionisoivaa säteilyä pakkausmateriaalien ja tuotteiden sterilointiin. Kohteet voidaan säteilyttää suljetuissa pakkauksissa, jolloin säteily tappaa niissä olevat mikrobit, ja ne säilyvät avaamattomina steriileinä pitkään. Elintarvikkeiden säteilytys on herättänyt viime-

16 101 aikoina paljon keskustelua. Säteilysterilointi tappaa kyllä kohteessa olevat mikrobit, jolloin pilaantuminen ei enää jatku, mutta mikrobien jo tuottamat myrkyt jäävät jäljelle. Lisäksi on väitetty, että säteily muuttaisi valkuaisaineita ihmiselle haitallisiksi samalla tavoin kuin rasvassa käristäminen. Elintarvikkeiden säteilytys onkin Suomessa kielletty lukuunottamatta mausteita ja sairaalaruokia. Edellä mainittuja aktivointianalyysejä käytetään myös muilla aloilla kuin teollisuudessa haluttaessa selvittää jonkin kohteen alkuainekoostumus tarkasti kohdetta rikkomatta. Esimerkiksi arvokkaiden taulujen aitouden selvittämisessä hyödynnetään aktivointianalyysiä. Taideteosta pommitetaan hiukkaskiihdyttimestä saatavalla ionisuihkulla, jolloin tapahtuu erilaisia reaktioita, joissa osa ytimistä muuttuu radioaktiivisiksi. Analysoimalla syntyvää säteilyä saadaan tietoa teoksen sisältämistä alkuaineista. Näin voidaan tunnistaa onko maalauksessa käytetty esimerkiksi moderneja synteettisiä maaleja. Lisäksi voidaan selvittää millainen on vanhojen öljymaalien koostumus. Samaa periaatetta voidaan soveltaa myös selvitettäessä esimerkiksi muinaisilta ajoilta peräisin olevien esineiden alkuainekoostumusta, jolloin pystytään päättelemään niiden valmistuspaikka. Kemiassa ja biologiassa käytetään radionuklideja merkkiaineina ja aktivointianalyysejä pienten ainepitoisuuksien mittaamiseen. Tutkimuksessa esimerkiksi hiilen ja vedyn radioaktiivisilla isotoopeilla tutkitaan ravinteiden kulkeutumista kasveissa. IÄNMÄÄRITYS Radioaktiivisuutta voidaan käyttää hyväksi määritettäessä geologisten, biologisten ja arkeologisten näytteiden ikää. Minkä tahansa radionuklidin hajoaminen on ympäristöstä riippumaton, jolloin radionuklidin ja sen hajoamisen seurauksena syntyvän pysyvän

17 102 tytärnuklidin lukumäärien suhde näytteessä riippuu näytteen iästä. Mitä suurempi on tytärnuklidin osuus sitä vanhempi on näyte. Tarkastellaan seuraavassa miten biologisten ja arkeologisten näytteiden ikää voidaan arvioida radiohiilimenetelmällä, jossa käytetään hyväksi hiili-isotooppia 14 C. Kosminen säteily (aurinko) tuo ilmakehään jatkuvasti protoneita, jotka törmäilevät ilmakehän atomiytimien kanssa synnyttäen uusia hiukkasia, esimerkiksi neutroneja. Nämä neutronit voivat reagoida ilmakehän typen kanssa, jolloin muodostuu radioaktiivista hiiltä 14 C ja syntyy protoni seuraavan reaktion mukaisesti N n C p Syntyvä protoni vangitsee elektronin ja näin syntyy vetyä. Radiohiilessä on liian monta neutronia, jotta se olisi pysyvä ja se hajaantuukin beetahajoamisella typpi-ioniksi 14 N puoliintumisajan ollessa 5730 vuotta. Vaikka radiohiiltä koko ajan hajoaa, sitä myös syntyy kosmisen säteilyn vaikutuksesta lisää, niin että sen määrä ilmakehässä säilyy vakiona. Hyvin pian muodostumisen jälkeen radiohiiliatomit yhtyvät happiatomeihin muodostaen hiilidioksidia. Vihreät kasvit tarvitsevat yhteyttämiseen ilmakehän hiilidioksidia, joten jokainen kasvi sisältää vähän radiohiiltä. Eläinten syödessä kasveja radiohiiltä joutuu myös niiden elimistöön. Koska elävät organismit ottavat jatkuvasti lisää radiohiiltä ympäristöstä, hiili-isotooppien 14 C ja 12 C suhde säilyy niissä vakiona. Kun eliö kuolee, siihen ei enää tule uusia radiohiiliatomeja, sen sijaan siinä olevat atomit hajoavat koko ajan. Kun aikaa on kulunut 5730 vuotta, radiohiiliatomeista on enää puolet jäljellä. Määrittämällä radiohiilen ja tavallisen hiilen suhde näytteessä sen ikä voidaan selvittää. Radiohiilimenetelmää voidaan käyttää esimerkiksi muinaisten eläinten sekä orgaanista materiaalia sisältävien historiallisten ja

18 103 esihistoriallisten esineiden iän määrittämiseen. Mittauslaitteistojen on oltava tarkkoja, koska tutkittavat aktiivisuudet ovat hyvin pieniä. Vanhimmat näytteet, joita voidaan ajoittaa tällä menetelmällä, ovat jopa vuoden ikäisiä, jolloin niiden alkuperäisestä aktiivisuudesta on jäljellä enää noin 0,25%. Hiiliajoituksen luotettavuus riippuu siitä, kuinka hyvin ilmakehän radiohiilipitoisuus säilyy vakiona. Tämä taas johtuu maan magneettikentästä, jonka vaihtelut vaikuttavat ilmakehään pääsevien protonien määrään. Tehtävä: Radioaktiivinen 14 C syntyy maapallolle kosmisen säteilyn vaikutuksesta. Se hajoaa beetasäteilyllä, jonka maksimienergia on 0,155 MeV. Puoliintumisaika on 5730 vuotta. Luonnossa suhde 14 C/ 12 C on noin ja sen oletetaan säilyvän suurinpiirtein vakiona. a) Laske 14 C:n beetasäteilyn (keskimääräinen absorboituva energia 1/3 maksimienergiasta) aiheuttama vuosiannos ihmisessä. Ihmisessä luonnon hiiltä on noin 15% kehon massasta. b) Radiohiiliajoituksessa näyte A on valmistettu yli vuotta vanhasta hiilestä, jossa ei enää ole jäljellä radioaktiivista 14 C:tä. Näyte B on peräisin tuoreesta puusta, ja näytteen C ikä on määritettävä. Aktiivisuusmittauksessa pulssilaskuri antoi tulokset: näyte A: pulssia 960 minuutissa näyte B: pulssia 180 minuutissa näyte C: pulssia 480 minuutissa Laske näytteen ikä. Vastaus: a) 6,5 µsv = 0,0065 msv, b) noin vuotta Koska radiohiilimenetelmän käyttökelpoisuus rajoittuu vuoteen, sitä ei voida hyödyntää geologiassa, jossa tarkastellaan jopa miljardeja vuosia vanhoja näytteitä. Geologisessa iänmäärityksessä on käytettävä pitkäikäisempiä radionuklideja. Taulukossa alla on annettu joitakin geologien käyttämiä iänmääritysmenetelmiä. Kaikissa tapauksissa on oletettava, että kaikki tutkittavasta kivestä löytyvät stabiilit tytärytimet ovat syntyneet emoytimien hajotessa.

19 104 Vanhimmat maapallolta peräisin olevat kivet, joiden ikä on pystytty radionuklidin avulla määrittämään, ovat Grönlannista ja niiden iäksi on arvioitu 3,8 miljardia vuotta. Kuusta tuotujen näytteista vanhimpien iäksi taas on arvioitu 4,6 miljardia vuotta. 7.2 TERVEYDENHUOLTO Lääketieteessä säteilyä käytetään sekä sairauksien havaitsemiseen että hoitoon. Sairauksien havaitsemiseen käytetään mm. röntgen- ja gammasäteilyä (röntgen- ja isotooppitutkimukset) ja sairauksien hoitoon esimerkiksi röntgen- ja beetasäteilyä (sädehoito). RÖNTGENTUTKIMUKSET Suomessa tehdään vuosittain keskimäärin yksi röntgentutkimus jokaista ihmistä kohti (4,2 milj. röntgentutkimusta ja 1,5 milj. hammaskuvausta). Keskimääräiseksi vuosiannokseksi arvioidaan kertyvän 0,5 msv. Röntgenkuvaus perustuu siihen, että säteily läpäisee eri tavalla erilaisia aineita. Mitä suurempi on aineen järjestysluku, sitä enemmän aine absorboi röntgensäteilyä. Eri kudokset, esimerkiksi

20 105 rasva, pehmeä kudos ja luu, erottuvat toisistaan, koska niiden vaimennuskertoimet ovat erilaisia. Röntgenkuvauksessa filmin tiettyyn kohtaan osuvan säteilyn intensiteetti riippuu siten kuvattavan kohteen materiaalijakaumasta. Kohteen läpäisseen säteilyn intensiteettijakauma muodostaa ns. primäärisen kuvan röntgenfilmille. Kun filmi kehitetään, säteilyn intensiteetin vaihtelut havaitaan filmin tummuuden vaihteluina. Röntgenkuvauksessa voidaan lisäksi käyttää hyväksi varjoaineita, esimerkiksi jodi- tai bariumpitoisia aineita. Varjoaineet muuttavat vaimennuskertoimia, jolloin niiden avulla saadaan näkyviin rajapintoja, jotka eivät muuten näkyisi. Tavallisessa röntgenkuvassa kolmiulotteisesta kohteesta muodostuu kaksiulotteinen projektio filmipinnalle. Syvyyssuunnassa peräkkäin olevat rakenteet kuvautuvat filmille päällekkäin. Tomografia- eli kerroskuvauksessa saadaan aikaan kuva kohteen halutusta tasosta liikuttamalla joko filmiä tai röntgenputkea. Kuva voidaan myös tallentaa tietokoneelle, jolloin kuvan laatua voidaan parantaa kuvanjkäsittelyohjelmilla. Tällöin puhutaan röntgentietokonetomografiasta. SÄDEHOIDOT Sädehoitoa saa noin suomalaista vuosittain. Sädehoidossa eli röntgenterapiassa kohdistetaan suurenergistä röntgensäteilyä syöpäkudokseen. Tarkoituksena on tuhota syöpäkasvain. Huonona puolena on se, että samalla tuhoutuu myös tervettä kudosta. Perinteisen röntgenhoidon rinnalla käytetään nykyisin myös beetasäteilyhoitoa. Tämän hyvänä puolena on se, että lineaarikiihdyttimestä tai beetatronista saatavat elektronit voidaan ohjata tarkasti halutuun kohteeseen, jolloin sivuvaikutukset ovat pienemmät kuin röntgenhoidossa. Sädehoitoa annetaan myös sisäisesti viemällä säteilevä aine itse kohteeseen. Esimerkkinä radiojodin käyttö kilpirauhasen liikatoiminnan hoidossa.

21 106 ISOTOOPPITUTKIMUKSET Suomessa tehdään noin isotooppitutkimusta vuosittain. Yhdestä tutkimuksesta aiheutuu potilaalle keskimäärin 4,2 msv:n annos. Isotooppitutkimuksessa käytetään radioaktiivisia isotooppeja merkkiaineina, joiden avulla tutkitaan elimistöä tai jotakin sen osaa. Koska atomien kemialliset ominaisuudet määräytyvät niiden elektronirakenteen perusteella, aineiden radioaktiivisilla ja stabiileilla isotoopeilla on samat kemialliset ominaisuudet ja ne leviävät elimistöön samalla tavalla. Radioaktiivisten nuklidien leviämistä elimistöön on kuitenkin helppo seurata mittaamalla elimistöstä tulevaa gammasäteilyä. Leviämistä voidaan seurata joko mittaamalla suoraan potilasta tai mittaamalla potilaan eritteitä. Mittauksissa tutkitaan joko elinten tai kasvainten sijaintia ja kokoa tai niiden toimintaa. Tietyt radioaktiiviset aineet kulkeutuvat elimistössä tiettyyn elimeen, esimerkiksi jodi-isotooppi 131 I kerääntyy kilpirauhaseen. Siksi samaa isotooppia voidaan usein käyttää sekä kyseisen elimen tutkimiseen että elimessä esiintyvien sairauksien sädehoitoon. Käytettävien isotooppien puoliintumisajan on oltava sopiva. Toisaalta sen on oltava riittävän pitkä, että mittaus ehditään suorittaa ja toisaalta se ei saa olla liian pitkä, koska tällöin tarvitaan suuria aktiivisuuksia luotettavien tulosten saamiseksi ja potilaan saama annos kasvaa. Nuklidien elimistöön aiheuttama absorboitunut annos riippuu aktiivisuudesta, puoliintumisajasta ja syntyvän säteilyn energiasta. Puoliintumisaikana käytetään tässä yhteydessä biologista puoliintumisaikaa, jossa otetaan huomioon se, että nuklidi vähenee elimistössä nopeammin kuin fysikaalisen puoliintumisajan perusteella voitaisiin olettaa, koska nuklidia poistuu kehosta myös aineenvaihdunnan kautta. Useimmat käytettävät nuklidit lähettävät gamma- ja

22 107 beetasäteilyä. Potilan saama annos on sitä pienempi, mitä pienempi on beetasäteilyn energia, jolloin parhaita ovat pelkkää gammasäteilyä lähettävät nuklidit. Sopiva gammakvanttien energia on välillä kev, koska tätä pienemmillä energioilla kvantit absorboituvat voimakkaasti elimistöön ja suurempia energioita on vaikeaa mitata käytettävillä ilmaisimilla. Taulukkoon on koottu joitakin tutkimuksissa ja hoidossa käytettyjä isotooppeja: Nuklidi T 1/2 E (kev) Tutkimuskohde 113 In 102 min 393 maksa istukka 125 I 60 vrk 28; 35 veri 131 I 8 vrk 364 kilpirauhanen, aivot, munuaiset 18 F 110 min 511 luusto, haima 51 Cr 14,5 vrk 320 veri 99 Tc 6 h 140 aivot, kilpirauhanen, haima, maksa, luusto Isotooppititkimuksessa potilaalle annetaan radioaktiivista ainetta joko suun kautta tai ruiskuttamalla lihakseen tai laskimoon. Aineenvaihdunnan välityksellä aine hakeutuu tutkimuskohteeseen ja ulkopuolisella ilmaisimella, esimerkiksi gammakameralla tai tuikeilmaisimella, tutkitaan aineen kertymistä. Viereisessä kuvassa radioaktiivinen aine on kiinnitetty merkkiaineeseen, joka hakeutuu luustoon. Gammakamerakuvista voidaan havaita luustossa mahdollisesti oleva kasvain Elimen toimintaa taas voidaan tutkia mittaamalla elimen

23 108 aktiivisuutta ajan funktiona. Isotooppitutkimusten etuna on se, että ne ovat kivuttomia ja aiheuttavat harvoin komplikaatioita. Ne aiheuttavat yleensä potilaalle pienemmän absorboituneen annoksen kuin röntgentutkimus. Isotooppimittauksissa havaitaan joko ytimen viritystilojen muutosten seurauksena emittoituvia gammakvantteja tai beetahajoamisessa syntyneen positronin törmäämistä elektroniin, jolloin seurauksena syntyy myös gammakvantteja (positronikuvaus). Laitteistoon kuuluu usein potilaan ympärillä pyörivä gammakamera, jolloin esimerkiksi tietokoneen avulla saadaan muodostettua poikkileikkauskuva kohteesta, kuten röntgentomografiassa. Radioisotooppeihin perustuvaa merkkiainetutkimusta käytetään muillakin aloilla kuin lääketieteessä. Sitä voidaan käyttää esimerkiksi kemiassa tutkittaessa kemiallisten reaktioiden etenemistä. Jos esimerkiksi reaktion lähtöaineisiin lisätään pieni määrä radioaktiivista merkkiainetta, se on helppo tunnistaa reaktion eri vaiheissa sen lähettämän säteilyn perusteella. Myös kasvinjalostuksessa ja lannoitetutkimuksissa käytetään hyväksi merkkiaineita, joiden avulla voidaan mm. selvittää ravinteiden kulkeutumista kasveissa ja maaperässä. 7.3 ELÄINRÖNTGENTUTKIMUS Suomessa pieneläimille (kissat, koirat,...) ja myös suuremmille (hevoset,...) tehdään noin röntgentutkimusta vuosittain. Kuvauksissa ns. "kiinnipitäjälle" saattaa kohdistua merkittävä annos. Kiinnipitäjä ei saa olla alle 18 vuotias tai raskaana oleva. Kiinnipidon apuna käytetään hiekkasäkkejä ja erilaisia telineitä.

7 SÄTEILYN KÄYTTÖ 7.1 TEOLLISUUS JA TUTKIMUS

7 SÄTEILYN KÄYTTÖ 7.1 TEOLLISUUS JA TUTKIMUS 99 7 SÄTEILYN KÄYTTÖ Radioaktiiviset aineet ja ionisoiva säteily kuuluvat ihmisen elinympäristöön. Haittavaikutuksista huolimatta säteilyä käytetään myös hyödyksi. Suomessa säteilyn käyttö voidaan jakaa

Lisätiedot

SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI

SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI 1 Sisällysluettelo 1. Luonnossa esiintyvä radioaktiivinen säteily... 2 1.1. Alfasäteily... 2 1.2. Beetasäteily... 3 1.3. Gammasäteily... 3 2. Radioaktiivisen

Lisätiedot

SÄTEILY- JA YDINTURVALLISUUSKATSAUKSIA. Ihmisen radioaktiivisuus. Säteilyturvakeskus Strålsäkerhetscentralen Radiation and Nuclear Safety Authority

SÄTEILY- JA YDINTURVALLISUUSKATSAUKSIA. Ihmisen radioaktiivisuus. Säteilyturvakeskus Strålsäkerhetscentralen Radiation and Nuclear Safety Authority SÄTEILY- JA YDINTURVALLISUUSKATSAUKSIA Ihmisen radioaktiivisuus Säteilyturvakeskus Strålsäkerhetscentralen Radiation and Nuclear Safety Authority Ihmisen radioaktiivisuus Jokaisessa ihmisessä on radioaktiivisia

Lisätiedot

Ionisoiva säteily. Radioaktiiviset aineet ja ionisoiva säteily kuuluvat luonnollisena osana elinympäristöömme.

Ionisoiva säteily. Radioaktiiviset aineet ja ionisoiva säteily kuuluvat luonnollisena osana elinympäristöömme. Ionisoiva säteily Radioaktiiviset aineet ja ionisoiva säteily kuuluvat luonnollisena osana elinympäristöömme. Ionisoivan säteilyn ominaisuuksia ja vaikutuksia on vaikea hahmottaa arkipäivän kokemusten

Lisätiedot

7 SÄTEILYN KÄYTTÖ 7.1 TEOLLISUUS JA TUTKIMUS

7 SÄTEILYN KÄYTTÖ 7.1 TEOLLISUUS JA TUTKIMUS 99 7 SÄTEILYN KÄYTTÖ Radioaktiiviset aineet ja ionisoiva säteily kuuluvat ihmisen elinympäristöön. Haittavaikutuksista huolimatta säteilyä käytetään myös hyödyksi. Suomessa säteilyn käyttö voidaan jakaa

Lisätiedot

Tehtävänä on vertailla eri säteilylähteiden säteilyvoimakkuutta (pulssia/min).

Tehtävänä on vertailla eri säteilylähteiden säteilyvoimakkuutta (pulssia/min). TYÖ 66. SÄTEILYLÄHTEIDEN VERTAILU Tehtävä Välineet Tehtävänä on vertailla eri säteilylähteiden säteilyvoimakkuutta (pulssia/min). Radioaktiiviset säteilylähteet: mineraalinäytteet (330719), Strontium-90

Lisätiedot

ANNOSKAKKU - SUOMALAISTEN KESKIMÄÄRÄINEN EFEKTIIVINEN ANNOS

ANNOSKAKKU - SUOMALAISTEN KESKIMÄÄRÄINEN EFEKTIIVINEN ANNOS ANNOSKAKKU - SUOMALAISTEN KESKIMÄÄRÄINEN EFEKTIIVINEN ANNOS Maarit Muikku Suomen atomiteknillisen seuran vuosikokous 14.2.2008 RADIATION AND NUCLEAR SAFETY AUTHORITY Suomalaisten keskimääräinen säteilyannos

Lisätiedot

Ydinfysiikka lääketieteellisissä sovelluksissa

Ydinfysiikka lääketieteellisissä sovelluksissa Ydinfysiikka lääketieteellisissä sovelluksissa Ari Virtanen Professori Jyväskylän yliopisto Fysiikan laitos/kiihdytinlaboratorio ari.j.virtanen@jyu.fi Sisältö Alkutaival Sädehoito Radiolääkkeet Terapia

Lisätiedot

YMPÄRISTÖN LUONNOLLINEN RADIOAKTIIVISUUS SUOMESSA professori Jukka Lehto Radiokemian laboratorio Helsingin yliopisto SISÄLTÖ Säteilyn lähteet Radioaktiivisuuden lähteet Suomessa Säteilyn terveysvaikutukset

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

Työturvallisuus fysiikan laboratoriossa

Työturvallisuus fysiikan laboratoriossa Työturvallisuus fysiikan laboratoriossa Haarto & Karhunen Tulipalo- ja rajähdysvaara Tulta saa käyttää vain jos sitä tarvitaan Lämpöä kehittäviä laitteita ei saa peittää Helposti haihtuvia nesteitä käsitellään

Lisätiedot

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016 Tapio Hansson 20. lokakuuta 2016 Milloin säteily on ionisoivaa? Milloin säteily on ionisoivaa? Kun säteilyllä on tarpeeksi energiaa irrottaakseen aineesta elektroneja tai rikkoakseen molekyylejä. Milloin

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

Säteilevät naiset -seminaari 15.9.2004, Säätytalo STUK SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Säteilevät naiset -seminaari 15.9.2004, Säätytalo STUK SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Säteilevät naiset -seminaari 15.9.2004, Säätytalo Yleistä säteilyn käytöstä lääketieteessä Mitä ja miten valvotaan Ionisoivan säteilyn käytön keskeisiä asioita Tutkimusten on oltava oikeutettuja Tutkimukset

Lisätiedot

Säteilyannokset ja säteilyn vaimeneminen. Tapio Hansson

Säteilyannokset ja säteilyn vaimeneminen. Tapio Hansson Säteilyannokset ja säteilyn vaimeneminen Tapio Hansson Ionisoiva säteily Milloin säteily on ionisoivaa? Kun säteilyllä on tarpeeksi energiaa irrottaakseen aineesta elektroneja tai rikkoakseen molekyylejä.

Lisätiedot

Säteily ja suojautuminen Joel Nikkola

Säteily ja suojautuminen Joel Nikkola Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Alkuaineita luokitellaan atomimassojen perusteella

Alkuaineita luokitellaan atomimassojen perusteella IHMISEN JA ELINYMPÄRISTÖN KEMIAA, KE2 Alkuaineen suhteellinen atomimassa Kertausta: Isotoopin määritelmä: Saman alkuaineen eri atomien ytimissä on sama määrä protoneja (eli sama alkuaine), mutta neutronien

Lisätiedot

SÄTEILYTURVAKESKUS. Säteily kuuluu ympäristöön

SÄTEILYTURVAKESKUS. Säteily kuuluu ympäristöön Säteily kuuluu ympäristöön Mitä säteily on? Säteilyä on kahdenlaista Ionisoivaa ja ionisoimatonta. Säteily voi toisaalta olla joko sähkömagneettista aaltoliikettä tai hiukkassäteilyä. Kuva: STUK Säteily

Lisätiedot

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki).

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). TYÖ 68. GAMMASÄTEILYN VAIMENEMINEN ILMASSA Tehtävä Välineet Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). Radioaktiivinen mineraalinäyte

Lisätiedot

- Pyri kirjoittamaan kaikki vastauksesi tenttipaperiin. Mikäli vastaustila ei riitä, jatka konseptilla

- Pyri kirjoittamaan kaikki vastauksesi tenttipaperiin. Mikäli vastaustila ei riitä, jatka konseptilla LUT School of Energy Systems Ydintekniikka BH30A0600 SÄTEILYSUOJELU Tentti 26.1.2016 Nimi: Opiskelijanumero: Rastita haluamasi vaihtoehto/vaihtoehdot: Suoritan pelkän kurssin Tee tehtävät A1 - A4 ja B5

Lisätiedot

A Z X. Ydin ja isotoopit

A Z X. Ydin ja isotoopit Ydinfysiikkaa Ydin ja isotoopit A Z X N Ytimet koostuvat protoneista (+) ja neutroneista (0): nukleonit (Huom! nuklidi= tietty ydinlaji ) Ydin pysyy kasassa, koska vahvan vuorovaikutuksen aiheuttama vetävä

Lisätiedot

PIETARSAAREN SEUDUN RADONTUTKIMUS 2004-2005

PIETARSAAREN SEUDUN RADONTUTKIMUS 2004-2005 1 PIETARSAAREN SEUDUN RADONTUTKIMUS 2004-2005 Kooste: Leif Karlström, radontalkoot yhteyshenkilö. 2 SISÄLLYSLUETTELO 1. Johdanto 2. Mitä radon on 3. Kuinka radon kulkeutuu huoneiston sisäilmaan 4. Huoneistojen

Lisätiedot

GEIGERIN JA MÜLLERIN PUTKI

GEIGERIN JA MÜLLERIN PUTKI FYSP106/K3 GEIGERIN J MÜLLERIN PUTKI 1 Johdanto Työssä tutustutaan Geigerin ja Müllerin putkeen. Geigerin ja Müllerin putkella tarkoitetaan tietynlaista säteilymittaria. Samaisesta laitteesta käytetään

Lisätiedot

FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko , klo 10-11, LS1

FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko , klo 10-11, LS1 FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko 19.12.2012, klo 10-11, LS1 Isotooppilääketiede Radioaktiivisuus Radioaktiivisuuden yksiköt Radiolääkkeet Isotooppien ja radiolääkkeiden valmistus 99m

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

Z = VARAUSLUKU eli JÄRJESTYSLUKU (= protoniluku) N = NEUTRONILUKU A = NUKLEONILUKU; A = N + Z (= neutr. lkm + prot. lkm)

Z = VARAUSLUKU eli JÄRJESTYSLUKU (= protoniluku) N = NEUTRONILUKU A = NUKLEONILUKU; A = N + Z (= neutr. lkm + prot. lkm) SÄTEILY YTIMET JA RADIOAKTIIVISUUS ATOMI -atomin halkaisija 10-10 m -ytimen halkaisija 10-14 m ATOMIN OSAT: 1) YDIN - protoneja (p) ja neutroneja (n) 2) ELEKTRONIVERHO - elektroneja (e - ) - protonit ja

Lisätiedot

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme

Lisätiedot

Kurssin opettaja Timo Suvanto päivystää joka tiistai klo 17 18 koululla. Muina aikoina sopimuksen mukaan.

Kurssin opettaja Timo Suvanto päivystää joka tiistai klo 17 18 koululla. Muina aikoina sopimuksen mukaan. Fysiikka 1 Etäkurssi Tervetuloa Vantaan aikuislukion fysiikan ainoalle etäkurssille. Kurssikirjana on WSOY:n Lukion fysiikka sarjan Vuorovaikutus, mutta mikä tahansa lukion fysiikan ensimmäisen kurssin

Lisätiedot

Säteilyannokset ja säteilyn vaimeneminen

Säteilyannokset ja säteilyn vaimeneminen Säteilyannokset ja säteilyn vaimeneminen Tapio Hansson 26. lokakuuta 2016 Säteilyannos Ihmisen saamaa säteilyannosta voidaan tutkia kahdella tavalla. Absorboitunut annos kuvaa absoluuttista energiamäärää,

Lisätiedot

Radionuklideja on seuraavia neljää tyyppiä jaoteltuna syntyperänsä mukaan: Taulukko VII.1. Eräitä kevyempiä primäärisiä luonnon radionuklideja.

Radionuklideja on seuraavia neljää tyyppiä jaoteltuna syntyperänsä mukaan: Taulukko VII.1. Eräitä kevyempiä primäärisiä luonnon radionuklideja. VII RADIONUKLIDIT Radionuklideja on seuraavia neljää tyyppiä jaoteltuna syntyperänsä mukaan: primääriset luonnon radionuklidit sekundääriset luonnon radionuklidit kosmogeeniset radionuklidit keinotekoiset

Lisätiedot

Säteily- ja ydinturvallisuus -kirjasarjan toimituskunta: Sisko Salomaa, Roy Pöllänen, Anne Weltner, Tarja K. Ikäheimonen, Olavi Pukkila, Wendla Paile, Jorma Sandberg, Heidi Nyberg, Olli J. Marttila, Jarmo

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

S Ä T E I LY T U R V A L L I S U U S K O U L U T U S J U H A P E L T O N E N / J U H A. P E L T O N E H U S.

S Ä T E I LY T U R V A L L I S U U S K O U L U T U S J U H A P E L T O N E N / J U H A. P E L T O N E H U S. S Ä T E I LY T U R V A L L I S U U S K O U L U T U S 1 4. 9. 2 0 1 7 J U H A P E L T O N E N / J U H A. P E L T O N E N @ H U S. F I YMPÄRISTÖN SÄTEILY SUOMESSA Suomalaisten keskimääräinen vuosittainen

Lisätiedot

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360)

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Jarmo Ala-Heikkilä, VIII/2017 Useissa tämän kurssin laskutehtävissä täytyy ensin muodostaa tilannekuva: minkälaista säteilyä lähteestä tulee, mihin se kohdistuu,

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

Radonkorjausmenetelmien tehokkuus Kyselytutkimus

Radonkorjausmenetelmien tehokkuus Kyselytutkimus Radonkorjausmenetelmien tehokkuus Kyselytutkimus Olli Holmgren, Tuomas Valmari, Päivi Kurttio Säteilyturvakeskus 11.3.2015, Helsinki Esitelmän sisältö Yleistä radonista Esiintyminen, mittaukset, lähteet,

Lisätiedot

55 RADIOAKTIIVISUUS JA SÄTEILY

55 RADIOAKTIIVISUUS JA SÄTEILY 55 RADIOAKTIIVISUUS JA SÄTEILY 55.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu sähkövaraukseltaan positiivisista protoneista ja neutraaleista neutroneista hyvin tiheästi pakkautuneina (ytimen

Lisätiedot

Uraanikaivoshankkeiden ympäristövaikutukset

Uraanikaivoshankkeiden ympäristövaikutukset Uraanikaivoshankkeiden ympäristövaikutukset Fil. tri Tarja Laatikainen Eno, Louhitalo 27.02.2009 Ympäristövaikutukset A. Etsinnän yhteydessä B. Koelouhinnan ja koerikastuksen yhteydessä C. Terveysvaikutukset

Lisätiedot

Säteilyturvakeskuksen määräys työperäisen altistuksen selvittämisestä, arvioinnista ja seurannasta

Säteilyturvakeskuksen määräys työperäisen altistuksen selvittämisestä, arvioinnista ja seurannasta MÄÄRÄYS S/1/2018 Säteilyturvakeskuksen määräys työperäisen altistuksen selvittämisestä, arvioinnista ja seurannasta Annettu Helsingissä 14.12.2018 Säteilyturvakeskuksen päätöksen mukaisesti määrätään säteilylain

Lisätiedot

RAKENNUSMATERIAALIEN JA TUHKAN RADIOAKTIIVISUUS

RAKENNUSMATERIAALIEN JA TUHKAN RADIOAKTIIVISUUS OHJE ST 12.2 / 17.12.2010 RAKENNUSMATERIAALIEN JA TUHKAN RADIOAKTIIVISUUS 1 YLEISTÄ 3 2 RAKENNUSMATERIAALIEN JA TUHKAN RADIOAKTIIVISUUTTA RAJOITETAAN TOIMENPIDEARVOILLA 3 3 TOIMENPIDEARVON YLITTYMISTÄ

Lisätiedot

SISÄINEN SÄTEILY. Matti Suomela, Tua Rahola, Maarit Muikku

SISÄINEN SÄTEILY. Matti Suomela, Tua Rahola, Maarit Muikku 7 SISÄINEN SÄTEILY Matti Suomela, Tua Rahola, Maarit Muikku SISÄLLYSLUETTELO 7.1 Kehon radioaktiivisten aineiden käyttäytymismallit... 246 7.2 Annoslaskujen perusyhtälöt... 250 7.3 Radionuklidien biokinetiikan

Lisätiedot

Säteilyn aiheuttamat riskit vedenlaadulle

Säteilyn aiheuttamat riskit vedenlaadulle Säteilyn aiheuttamat riskit vedenlaadulle Turvallista ja laadukasta talousvettä! seminaari 27.11.2012 Kaisa Vaaramaa Esitelmän sisältö 1. JOHDANTO 2. LUONNOLLINEN RADIOAKTIIVISUUS 3. KEINOTEKOINEN RADIOAKTIIVISUUS

Lisätiedot

CBRNE-aineiden havaitseminen neutroniherätteen avulla

CBRNE-aineiden havaitseminen neutroniherätteen avulla CBRNE-aineiden havaitseminen neutroniherätteen avulla 18.11.2015 Harri Toivonen, projektin johtaja* Kari Peräjärvi, projektipäällikkö Philip Holm, tutkija Ari Leppänen, tutkija Jussi Huikari, tutkija Hanke

Lisätiedot

1 Johdanto. 2 Lähtökohdat

1 Johdanto. 2 Lähtökohdat FYSP106/K4 VIRITYSTILAN ELINAIKA 1 Johdanto Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan 661.7 kev keskimääräinen elinaika ja puoliintumisaika. 2 Lähtökohdat 2.1 Radioaktiivinen

Lisätiedot

RADON Rakennushygienian mittaustekniikka

RADON Rakennushygienian mittaustekniikka Mika Tuukkanen T571SA RADON Rakennushygienian mittaustekniikka Ympäristöteknologia Kesäkuu 2013 SISÄLTÖ 1 JOHDANTO... 1 2 MENETELMÄT... 1 2.1 Radonin mittaaminen... 2 2.2 Kohde... 2 2.3 Alpha Guard...

Lisätiedot

Kaikki ympärillämme oleva aine koostuu alkuaineista.

Kaikki ympärillämme oleva aine koostuu alkuaineista. YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme

Lisätiedot

Sädehoidosta, annosten laskennasta ja merkkiaineista. Outi Sipilä sairaalafyysikko, TkT Outi.Sipila@hus.fi

Sädehoidosta, annosten laskennasta ja merkkiaineista. Outi Sipilä sairaalafyysikko, TkT Outi.Sipila@hus.fi Sädehoidosta, annosten laskennasta ja merkkiaineista Outi Sipilä sairaalafyysikko, TkT Outi.Sipila@hus.fi 15.9.2004 Sisältö Terapia Diagnostiikka ionisoiva sädehoito röntgenkuvaus säteily tietokonetomografia

Lisätiedot

Ydinfysiikkaa. Tapio Hansson

Ydinfysiikkaa. Tapio Hansson 3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10

Lisätiedot

RADIOAKTIIVISUUS JA SÄTEILY

RADIOAKTIIVISUUS JA SÄTEILY RADIOAKTIIVISUUS JA SÄTEILY 1 Johdanto 1.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu positiivisesti varautuneista protoneista ja neutraaleista neutroneista. Samalla alkuaineella on aina

Lisätiedot

Säteilyn historia ja tulevaisuus

Säteilyn historia ja tulevaisuus Säteilyn historia ja tulevaisuus 1. Mistä Maassa oleva uraani on peräisin? 2. Kuka havaitsi röntgensäteilyn ensimmäisenä ja millä nimellä hän sitä kutsui? 3. Miten alfa- ja beetasäteily löydettiin? Copyright

Lisätiedot

Ionisoiva Säteily Koe-eläintöissä. FinLAS Seminaari 3.12.2012 Mari Raki, FT Lääketutkimuksen keskus Helsingin yliopisto

Ionisoiva Säteily Koe-eläintöissä. FinLAS Seminaari 3.12.2012 Mari Raki, FT Lääketutkimuksen keskus Helsingin yliopisto Ionisoiva Säteily Koe-eläintöissä FinLAS Seminaari 3.12.2012 Mari Raki, FT Lääketutkimuksen keskus Helsingin yliopisto Sisältö Mitä ionisoiva säteily on Säteilyn käytön valvonta Työturvallisuus säteilytyössä

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

Vapaasti tuulettuvan radonputkiston vaikutus sisäilman radonpitoisuuteen

Vapaasti tuulettuvan radonputkiston vaikutus sisäilman radonpitoisuuteen Vapaasti tuulettuvan radonputkiston vaikutus sisäilman radonpitoisuuteen kenttätutkimuksia Olli Holmgren ja Hannu Arvela Säteilyturvakeskus i i 13.3.2013, 3 Helsinki Esitelmän sisältö Yleistä radonista

Lisätiedot

Gammaspektrometristen mittausten yhdistäminen testbed-dataan inversiotutkimuksessa

Gammaspektrometristen mittausten yhdistäminen testbed-dataan inversiotutkimuksessa Gammaspektrometristen mittausten yhdistäminen testbed-dataan inversiotutkimuksessa Satu Kuukankorpi, Markku Pentikäinen ja Harri Toivonen STUK - Säteilyturvakeskus Testbed workshop, 6.4.2006, Ilmatieteen

Lisätiedot

PIXE:n hyödyntäminen materiaalitutkimuksessa

PIXE:n hyödyntäminen materiaalitutkimuksessa PIXE:n hyödyntäminen materiaalitutkimuksessa Syventävien opintojen seminaari Ella Peltomäki 30.10.2014 Sisällys PIXE perustuu alkuainekohtaisiin elektronikuorirakenteisiin Tulosten kannalta haitallisen

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Säteily on aaltoja ja hiukkasia

Säteily on aaltoja ja hiukkasia BIOS 3 jakso 3 Säteily on aaltoja ja hiukkasia Auringosta tuleva valo- ja lämpösäteily ylläpitää elämää maapallolla Ravintoketjujen tuottajat sitovat auringon valoenergiaa kemialliseksi energiaksi fotosynteesissä

Lisätiedot

40D. RADIOAKTIIVISUUSTUTKIMUKSIA

40D. RADIOAKTIIVISUUSTUTKIMUKSIA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 40D. RADIOAKTIIVISUUSTUTKIMUKSIA 1. TYÖN TAVOITE 2. TEORIAA Työssä tutustutaan radioaktiiviseen säteilyn kuvaamisessa käytettäviin käsitteisiin ja fysikaalisiin lakeihin,

Lisätiedot

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate. Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu

Lisätiedot

RADIOAKTIIVISUUS JA SÄTEILY

RADIOAKTIIVISUUS JA SÄTEILY RADIOAKTIIVISUUS JA SÄTEILY 1 Johdanto 1.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu sähkövaraukseltaan positiivisista protoneista ja neutraaleista neutroneista hyvin tiheästi pakkautuneina

Lisätiedot

25A40B 4h. RADIOAKTIIVINEN SÄTEILY

25A40B 4h. RADIOAKTIIVINEN SÄTEILY TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/9 25A40B 4h. RADIOAKTIIVINEN SÄTEILY TYÖN TAVOITE Työn tavoitteena on tutustua radioaktiiviseen säteilyyn ja mahdollisuuksiin suojautua siltä. RADIOAKTIIVISEN SÄTEILYN

Lisätiedot

Sisäilma, juomavesi ja ionisoiva säteily

Sisäilma, juomavesi ja ionisoiva säteily Sisäilma, juomavesi ja ionisoiva säteily Ajankohtaista laboratoriorintamalla 10.10.2012 Esitelmän sisältö 1. JOHDANTO 2. TÄRKEIMMÄT SISÄILMAN JA JUOMAVEDEN SÄTEILYANNOKSEN AIHEUTTAJAT 3. SISÄILMAN RADON

Lisätiedot

Radon ja sisäilma Työpaikan radonmittaus

Radon ja sisäilma Työpaikan radonmittaus Radon ja sisäilma Työpaikan radonmittaus Pasi Arvela, FM TAMK, Lehtori, Fysiikka Radon Radioaktiivinen hajuton ja väritön jalokaasu Rn-222 puoliintumisaika on 3,8 vrk Syntyy radioaktiivisten hajoamisten

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

Tehtävä 1. (6 p). Nimi Henkilötunnus Maankuori koostuu useista litosfäärilaatoista. Kahden litosfäärilaatan törmätessä raskaampi mereinen laatta

Tehtävä 1. (6 p). Nimi Henkilötunnus Maankuori koostuu useista litosfäärilaatoista. Kahden litosfäärilaatan törmätessä raskaampi mereinen laatta Tehtävä 1. (6 p). Nimi Henkilötunnus Maankuori koostuu useista litosfäärilaatoista. Kahden litosfäärilaatan törmätessä raskaampi mereinen laatta painuu törmäyssaumassa kevyemmän mantereisen laatan alle.

Lisätiedot

Sisäilman radon osana säteilylainsäädännön uudistusta

Sisäilman radon osana säteilylainsäädännön uudistusta Sisäilman radon osana säteilylainsäädännön uudistusta Tuukka Turtiainen, Olli Holmgren, Katja Kojo, Päivi Kurttio Säteilyturvakeskus 29.1.2019 1 Radon on radioaktiivinen kaasu syntyy jatkuvasti kaikessa

Lisätiedot

SKV-LAATUKÄSIKIRJA Ohje SKV 9.2 Liite 1 1(7)

SKV-LAATUKÄSIKIRJA Ohje SKV 9.2 Liite 1 1(7) SKV-LAATUKÄSIKIRJA Ohje SKV 9.2 Liite 1 1(7) SUUREET, MITTAUSALUEET JA MITTAUSEPÄVARMUUDET Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut

Lisätiedot

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1 10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen

Lisätiedot

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus Massaspektrometria IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Määritelmä Massaspektrometria on tekniikka-menetelmä, jota käytetään 1) mitattessa orgaanisen molekyylin molekyylimassaa ja 2) määritettäessä

Lisätiedot

Ydinvoiman käytön terveysvaikutukset normaalioloissa ja poikkeustilanteissa

Ydinvoiman käytön terveysvaikutukset normaalioloissa ja poikkeustilanteissa ENERGIA-TERVEYS-TURVALLISUUS LSV 18.11.2006 Ydinvoiman käytön terveysvaikutukset normaalioloissa ja poikkeustilanteissa Wendla Paile RADIATION AND NUCLEAR SAFETY AUTHORITY Ydinvoiman käytön vaikutukset

Lisätiedot

Soklin radiologinen perustila

Soklin radiologinen perustila Soklin radiologinen perustila Tämä powerpoint esitys on kooste Dina Solatien, Raimo Mustosen ja Ari Pekka Leppäsen Savukoskella 12.1.2010 pitämistä esityksistä. Muutamissa kohdissa 12.1. esitettyjä tutkimustuloksia

Lisätiedot

Työ 55, Säteilysuojelu

Työ 55, Säteilysuojelu Työ 55, Säteilysuojelu Ryhmä: 18 Pari: 1 Joas Alam Atti Tehiälä Selostukse laati: Joas Alam Mittaukset tehty: 7.4.000 Selostus jätetty: 1.5.000 1. Johdato Tutkimme työssämme kolmea eri säteilylajia:, ja

Lisätiedot

Väestön cesiummäärät ja sisäisen säteilyn aiheuttamat annokset Pohjois-Lapin poronhoitajat

Väestön cesiummäärät ja sisäisen säteilyn aiheuttamat annokset Pohjois-Lapin poronhoitajat YMPÄRISTÖN SÄTEILYVALVONTA / LOKAKUU 2017 Väestön cesiummäärät ja sisäisen säteilyn aiheuttamat annokset Pohjois-Lapin poronhoitajat Ympäristön säteilyvalvonnan toimintaohjelma Maarit Muikku, Tiina Torvela

Lisätiedot

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen) 1. Ylöspäin liikkuvan hissin, jonka massa on 480 kg, nopeus riippuu ajasta oheisen kuvion mukaisesti. Laske kannatinvaijeria jännittävä voima liikkeen eri vaiheissa. (YO, S 84) 0-4s: 4,9 kn, 4..10s: 4,7

Lisätiedot

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus 11.5.2017 Massaspektrometria IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Määritelmä Massaspektrometria on tekniikka-menetelmä, jota käytetään 1) mitattessa orgaanisen molekyylin molekyylimassaa ja 2) määritettäessä

Lisätiedot

Säteilysuojausten arvioiminen laskennallisesti

Säteilysuojausten arvioiminen laskennallisesti Käyttötilojen suunnittelu: Säteilysuojausten arvioiminen laskennallisesti Outi Sipilä ylifyysikko HUS-Kuvantaminen 10.12.2015 Huom! etäisyydet sallitut viikkoannokset yksiköt.. Miten ulkoista säteilyannosta

Lisätiedot

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinofysiikka Tvärminne 27.5.2010 Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinon keksiminen Ongelma 1900-luvun alusta: beetahajoamisessa syntyvän neutriinon energiaspektri on jatkuva.

Lisätiedot

Puhtaat aineet ja seokset

Puhtaat aineet ja seokset Puhtaat aineet ja seokset KEMIAA KAIKKIALLA, KE1 Määritelmä: Puhdas aine sisältää vain yhtä alkuainetta tai yhdistettä. Esimerkiksi rautatanko sisältää vain Fe-atomeita ja ruokasuola vain NaCl-ioniyhdistettä

Lisätiedot

Radioaktiivisen säteilyn vaikutus

Radioaktiivisen säteilyn vaikutus TAMPEREEN TEKNILLINEN YLIOPISTO Sähkömagnetiikan laitos SMG-4050 Energian varastointi ja uudet energialähteet Ryhmä 9: Radioaktiivisen säteilyn vaikutus Sirke Lahtinen Tuukka Ahonen Petri Hannuksela Timo

Lisätiedot

2.2 RÖNTGENSÄTEILY. (yli 10 kv).

2.2 RÖNTGENSÄTEILY. (yli 10 kv). 11 2.2 RÖNTGENSÄTEILY Erilaisiin sovellutustarkoituksiin röntgensäteilyä synnytetään ns. röntgenputkella, joka on anodista (+) ja katodista () muodostuva tyhjiöputki, jossa elektrodien välille on kytketty

Lisätiedot

Talousvesien radioaktiivisten aineiden mittaukset

Talousvesien radioaktiivisten aineiden mittaukset Talousvesien radioaktiivisten aineiden mittaukset Ajankohtaista laboratoriorintamalla Evira 1.10.2015 Esitelmän sisältö 1. Johdanto 2. STM:n asetus talousveden laatuvaatimuksista ja valvontatutkimuksista

Lisätiedot

VALMISTEYHTEENVETO. Tämä lääkevalmiste on tarkoitettu ainoastaan diagnostiseen käyttöön.

VALMISTEYHTEENVETO. Tämä lääkevalmiste on tarkoitettu ainoastaan diagnostiseen käyttöön. VALMISTEYHTEENVETO 1. LÄÄKEVALMISTEEN NIMI Indium ( 111 In) chloride kantaliuos radioaktiivista lääkettä varten 2. VAIKUTTAVAT AINEET JA NIIDEN MÄÄRÄT Yhden millilitran koostumus referenssiajankohtana:

Lisätiedot

Hyvä tietää säteilystä

Hyvä tietää säteilystä Hyvä tietää säteilystä Sisällysluettelo Säteily on energiaa ja hiukkasia... 3 Ionisoiva säteily... 5 Hiukkassäteily... 5 Sähkömagneettinen säteily... 6 Ionisoimaton säteily... 6 Säteilyn käsitteet, yksiköt

Lisätiedot

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen KE4, KPL. 3 muistiinpanot Keuruun yläkoulu, Joonas Soininen KPL 3: Ainemäärä 1. Pohtikaa, miksi ruokaohjeissa esim. kananmunien ja sipulien määrät on ilmoitettu kappalemäärinä, mutta makaronit on ilmoitettu

Lisätiedot

Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut DOS-laboratoriossa.

Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut DOS-laboratoriossa. Säteilyturvakeskus Toimintajärjestelmä #3392 1 (7) SUUREET, MITTAUSALUEET JA MITTAUSEPÄVARMUUDET Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut

Lisätiedot

Soklin kaivoshankkeen radiologinen perustilaselvitys

Soklin kaivoshankkeen radiologinen perustilaselvitys Soklin kaivoshankkeen radiologinen perustilaselvitys Säteilyilta Savukoskella 12.1.2010 Dina Solatie STUK-Säteilyturvakeskus Pohjois-Suomen aluelaboratorio RADIATION AND NUCLEAR SAFETY AUTHORITY Sisältö

Lisätiedot

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin.

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin. KERTAUSKOE, KE1, SYKSY 2013, VIE Tehtävä 1. Kirjoita kemiallisia kaavoja ja olomuodon symboleja käyttäen seuraavat olomuodon muutokset a) etanolin CH 3 CH 2 OH höyrystyminen b) salmiakin NH 4 Cl sublimoituminen

Lisätiedot

VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT

VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT Radioaktiivisessa hajoamisessa on neljä perusmuotoa: fissio alfahajoaminen betahajoaminen sisäinen siirtymä Viime vuosikymmeninä on havaittu paljon harvinaisempiakin

Lisätiedot

Lääketieteellinen kuvantaminen. Biofysiikan kurssi Liikuntabiologian laitos Jussi Peltonen

Lääketieteellinen kuvantaminen. Biofysiikan kurssi Liikuntabiologian laitos Jussi Peltonen Lääketieteellinen kuvantaminen Biofysiikan kurssi Liikuntabiologian laitos Jussi Peltonen 1 Muista ainakin nämä Kuinka energia viedään kuvauskohteeseen? Aiheuttaako menetelmä kudostuhoa? Kuvataanko anatomiaa

Lisätiedot

Säteilyturvakeskuksen määräys radioaktiivisista jätteistä ja radioaktiivisten aineiden päästöistä avolähteiden käytössä

Säteilyturvakeskuksen määräys radioaktiivisista jätteistä ja radioaktiivisten aineiden päästöistä avolähteiden käytössä MÄÄRÄYS S/2/2019 Säteilyturvakeskuksen määräys radioaktiivisista jätteistä ja radioaktiivisten aineiden päästöistä avolähteiden käytössä Annettu Helsingissä 4.4.2019 Säteilyturvakeskuksen päätöksen mukaisesti

Lisätiedot

TYÖNTEKIJÖIDEN SÄTEILYALTISTUKSEN SEURANTA

TYÖNTEKIJÖIDEN SÄTEILYALTISTUKSEN SEURANTA TYÖNTEKIJÖIDEN SÄTEILYALTISTUKSEN SEURANTA Säteilyturvallisuus ja laatu röntgendiagnostiikassa 19.-21.5.2014 Riina Alén STUK - Säteilyturvakeskus RADIATION AND NUCLEAR SAFETY AUTHORITY Lainsäädäntö EU-lainsäädäntö

Lisätiedot

Suomalaisten keskimääräinen efektiivinen annos

Suomalaisten keskimääräinen efektiivinen annos / MAALISKUU 2014 A Suomalaisten keskimääräinen efektiivinen annos Annoskakku 2012 Maarit Muikku, Ritva Bly, Päivi Kurttio, Juhani Lahtinen, Maaret Lehtinen, Teemu Siiskonen, Tuukka Turtiainen, Tuomas Valmari,

Lisätiedot

Taustasäteily maanalaisissa mittauksissa

Taustasäteily maanalaisissa mittauksissa Ensimmäinen Maanalaisen Fysiikan Kesäkoulu, Pyhäjärvi, 2003-1 - Kansallinen Maanalaisen Fysiikan Kesäkoulu Pyhäjärvi, 9. 13. kesäkuuta 2003 Timo Enqvist Taustasäteily maanalaisissa mittauksissa Ensimmäinen

Lisätiedot

Säteilyturvakeskuksen määräys luonnonsäteilylle altistavasta toiminnasta

Säteilyturvakeskuksen määräys luonnonsäteilylle altistavasta toiminnasta 1 (10) LUONNOS 2 MÄÄRÄYS STUK S/XX/2019 Säteilyturvakeskuksen määräys luonnonsäteilylle altistavasta toiminnasta Säteilyturvakeskuksen päätöksen mukaisesti määrätään säteilylain (859/2018 ) nojalla: 1

Lisätiedot

CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén

CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN = maailman suurin hiukkastutkimuslaboratorio Sveitsin ja Ranskan rajalla,

Lisätiedot