7 SÄTEILYN KÄYTTÖ 7.1 TEOLLISUUS JA TUTKIMUS

Koko: px
Aloita esitys sivulta:

Download "7 SÄTEILYN KÄYTTÖ 7.1 TEOLLISUUS JA TUTKIMUS"

Transkriptio

1 99 7 SÄTEILYN KÄYTTÖ Radioaktiiviset aineet ja ionisoiva säteily kuuluvat ihmisen elinympäristöön. Haittavaikutuksista huolimatta säteilyä käytetään myös hyödyksi. Suomessa säteilyn käyttö voidaan jakaa kolmeen osaan: 1. Teollisuus ja tutkimus (~ 50%) 2. Terveydenhuolto (~ 40%) 3. Eläinröntgentutkimus (~ 10%) On huomattava, että ydinenergian tuotanto ei ole säteilyn käyttöä. Säteily energiantuotannossa on vain haitallinen sivutuote. 7.1 TEOLLISUUS JA TUTKIMUS Teollisuudessa käytetään röntgen- ja gammasäteilyä erilaisten metallirakenteiden laadunvalvontaan. Säteilyn avulla voidaan paljastaa hitsaus- ja valuvirheitä tai rakenteiden halkeamia esimerkiksi paineastioissa, laivoissa, siltarakenteissa tai lentokoneissa. Tällaisen tarkkailun hyvä puoli on se, että se voidaan tehdä rakenteita rikkomatta. Periaate näissä tutkimuksissa on sama kuin lääketieteellisissä röntgen- ja gammakuvauksissa. Erilaisten kohteiden kvalitatiivisia ja kvantitatiivisia koostumuksia analysoidaan teollisuudessa aktivointianalyysien avulla. Esimerkiksi neutroniaktivoinnissa tutkittavaa kohdetta pommitetaan neutroneilla, jolloin osa kohteen ytimistä sieppaa neutronin ja muuttuu radioisotoopeiksi. Radioisotoopien säteilyä mittaamalla voidaan päätellä, mitä aineita tutkittava kappale sisälsi ja myös aineiden pitoisuuksia.

2 100 Tehtävä: Auton moottorin teräksisen männänrenkaan massa oli 30,0 g. Rengasta säteilytettiin reaktorissa, kunnes sen 59 Fe-aktiivisuus oli 0,400 MBq. Aktivoitu männänrengas asennettiin tasan 9 vuorokautta myöhemmin koemoottoriin, joka sai käydä yhtäjaksoisesti 30,0 vuorokautta. Kokeen päättyessä mitattiin kampikammion öljyn 59 Fe-aktiivisuus, jonka todettiin olevan 12,6 hajoamista minuutissa /100 cm 3 öljyä. Kuinka paljon männänrenkaan aineesta oli siirtynyt öljyyn, kun öljyn kokonaistilavuus oli 6000 cm 3? 59 Fe:n puoliintumisaika on 45,1 vuorokautta. Vastaus: 1,72 g Radioaktiivisia nuklideja hyödynnetään teollisuudessa myös erilaisissa mittareissa, esimerkiksi tiheys- ja pinta-alamassan mittareissa. Paperi- ja selluloosateollisuudessa ionisoivaa säteilyä käytetään esimerkiksi paperin paksuusmittauksissa, joissa tutkitaan säteilyn vaimenemista paperissa. Vaimenemisen perusteella pystytään päättelemään paperin paksuus pysäyttämättä valmistusprosessia. Teollisuudessa tehdään myös kosteusmittauksia, jotka perustuvat neutronien ja vetyatomien välisiin kimmoisiin törmäyksiin. Neutronitörmäysten avulla voidaan mitata myös sitoutuneen veden ja kideveden määrä. Muovien polymerisoinnissa voidaan käyttää ionisoivaa säteilyä. Esimerkiksi paperin pinnalla levitettyyn ohueen pinnoitemateriaalikerrokseen ohjataan hiukkaskiihdyttimestä suihku, joka polymeroi pinnoitteen nopeasti. Näin pinnoite myös kiinnittyy hyvin paperiin. Elintarvike-, lääke- ja sairaalatarviketeollisuudessa käytetään ionisoivaa säteilyä pakkausmateriaalien ja tuotteiden sterilointiin. Kohteet voidaan säteilyttää suljetuissa pakkauksissa, jolloin säteily tappaa niissä olevat mikrobit, ja ne säilyvät avaamattomina steriileinä pitkään. Elintarvikkeiden säteilytys on herättänyt viime-

3 101 aikoina paljon keskustelua. Säteilysterilointi tappaa kyllä kohteessa olevat mikrobit, jolloin pilaantuminen ei enää jatku, mutta mikrobien jo tuottamat myrkyt jäävät jäljelle. Lisäksi on väitetty, että säteily muuttaisi valkuaisaineita ihmiselle haitallisiksi samalla tavoin kuin rasvassa käristäminen. Elintarvikkeiden säteilytys onkin Suomessa kielletty lukuunottamatta mausteita ja sairaalaruokia. Edellä mainittuja aktivointianalyysejä käytetään myös muilla aloilla kuin teollisuudessa haluttaessa selvittää jonkin kohteen alkuainekoostumus tarkasti kohdetta rikkomatta. Esimerkiksi arvokkaiden taulujen aitouden selvittämisessä hyödynnetään aktivointianalyysiä. Taideteosta pommitetaan hiukkaskiihdyttimestä saatavalla ionisuihkulla, jolloin tapahtuu erilaisia reaktioita, joissa osa ytimistä muuttuu radioaktiivisiksi. Analysoimalla syntyvää säteilyä saadaan tietoa teoksen sisältämistä alkuaineista. Näin voidaan tunnistaa onko maalauksessa käytetty esimerkiksi moderneja synteettisiä maaleja. Lisäksi voidaan selvittää millainen on vanhojen öljymaalien koostumus. Samaa periaatetta voidaan soveltaa myös selvitettäessä esimerkiksi muinaisilta ajoilta peräisin olevien esineiden alkuainekoostumusta, jolloin pystytään päättelemään niiden valmistuspaikka. Kemiassa ja biologiassa käytetään radionuklideja merkkiaineina ja aktivointianalyysejä pienten ainepitoisuuksien mittaamiseen. Tutkimuksessa esimerkiksi hiilen ja vedyn radioaktiivisilla isotoopeilla tutkitaan ravinteiden kulkeutumista kasveissa. IÄNMÄÄRITYS Radioaktiivisuutta voidaan käyttää hyväksi määritettäessä geologisten, biologisten ja arkeologisten näytteiden ikää. Minkä tahansa radionuklidin hajoaminen on ympäristöstä riippumaton, jolloin radionuklidin ja sen hajoamisen seurauksena syntyvän pysyvän

4 102 tytärnuklidin lukumäärien suhde näytteessä riippuu näytteen iästä. Mitä suurempi on tytärnuklidin osuus sitä vanhempi on näyte. Tarkastellaan seuraavassa miten biologisten ja arkeologisten näytteiden ikää voidaan arvioida radiohiilimenetelmällä, jossa käytetään hyväksi hiili-isotooppia 14 C. Kosminen säteily (aurinko) tuo ilmakehään jatkuvasti protoneita, jotka törmäilevät ilmakehän atomiytimien kanssa synnyttäen uusia hiukkasia, esimerkiksi neutroneja. Nämä neutronit voivat reagoida ilmakehän typen kanssa, jolloin muodostuu radioaktiivista hiiltä 14 C ja syntyy protoni seuraavan reaktion mukaisesti N n C p Syntyvä protoni vangitsee elektronin ja näin syntyy vetyä. Radiohiilessä on liian monta neutronia, jotta se olisi pysyvä ja se hajaantuukin beetahajoamisella typpi-ioniksi 14 N puoliintumisajan ollessa 5730 vuotta. Vaikka radiohiiltä koko ajan hajoaa, sitä myös syntyy kosmisen säteilyn vaikutuksesta lisää, niin että sen määrä ilmakehässä säilyy vakiona. Hyvin pian muodostumisen jälkeen radiohiiliatomit yhtyvät happiatomeihin muodostaen hiilidioksidia. Vihreät kasvit tarvitsevat yhteyttämiseen ilmakehän hiilidioksidia, joten jokainen kasvi sisältää vähän radiohiiltä. Eläinten syödessä kasveja radiohiiltä joutuu myös niiden elimistöön. Koska elävät organismit ottavat jatkuvasti lisää radiohiiltä ympäristöstä, hiili-isotooppien 14 C ja 12 C suhde säilyy niissä vakiona. Kun eliö kuolee, siihen ei enää tule uusia radiohiiliatomeja, sen sijaan siinä olevat atomit hajoavat koko ajan. Kun aikaa on kulunut 5730 vuotta, radiohiiliatomeista on enää puolet jäljellä. Määrittämällä radiohiilen ja tavallisen hiilen suhde näytteessä sen ikä voidaan selvittää. Radiohiilimenetelmää voidaan käyttää esimerkiksi muinaisten eläinten sekä orgaanista materiaalia sisältävien historiallisten ja

5 103 esihistoriallisten esineiden iän määrittämiseen. Mittauslaitteistojen on oltava tarkkoja, koska tutkittavat aktiivisuudet ovat hyvin pieniä. Vanhimmat näytteet, joita voidaan ajoittaa tällä menetelmällä, ovat jopa vuoden ikäisiä, jolloin niiden alkuperäisestä aktiivisuudesta on jäljellä enää noin 0,25%. Hiiliajoituksen luotettavuus riippuu siitä, kuinka hyvin ilmakehän radiohiilipitoisuus säilyy vakiona. Tämä taas johtuu maan magneettikentästä, jonka vaihtelut vaikuttavat ilmakehään pääsevien protonien määrään. Tehtävä: Radioaktiivinen 14 C syntyy maapallolle kosmisen säteilyn vaikutuksesta. Se hajoaa beetasäteilyllä, jonka maksimienergia on 0,155 MeV. Puoliintumisaika on 5730 vuotta. Luonnossa suhde 14 C/ 12 C on noin ja sen oletetaan säilyvän suurinpiirtein vakiona. a) Laske 14 C:n beetasäteilyn (keskimääräinen absorboituva energia 1/3 maksimienergiasta) aiheuttama vuosiannos ihmisessä. Ihmisessä luonnon hiiltä on noin 15% kehon massasta. b) Radiohiiliajoituksessa näyte A on valmistettu yli vuotta vanhasta hiilestä, jossa ei enää ole jäljellä radioaktiivista 14 C:tä. Näyte B on peräisin tuoreesta puusta, ja näytteen C ikä on määritettävä. Aktiivisuusmittauksessa pulssilaskuri antoi tulokset: näyte A: pulssia 960 minuutissa näyte B: pulssia 180 minuutissa näyte C: pulssia 480 minuutissa Laske näytteen ikä. Vastaus: a) 6,5 µsv = 0,0065 msv, b) noin vuotta Koska radiohiilimenetelmän käyttökelpoisuus rajoittuu vuoteen, sitä ei voida hyödyntää geologiassa, jossa tarkastellaan jopa miljardeja vuosia vanhoja näytteitä. Geologisessa iänmäärityksessä on käytettävä pitkäikäisempiä radionuklideja. Taulukossa alla on annettu joitakin geologien käyttämiä iänmääritysmenetelmiä. Kaikissa tapauksissa on oletettava, että kaikki tutkittavasta kivestä löytyvät stabiilit tytärytimet ovat syntyneet emoytimien hajotessa.

6 104 Vanhimmat maapallolta peräisin olevat kivet, joiden ikä on pystytty radionuklidin avulla määrittämään, ovat Grönlannista ja niiden iäksi on arvioitu 3,8 miljardia vuotta. Kuusta tuotujen näytteista vanhimpien iäksi taas on arvioitu 4,6 miljardia vuotta. 7.2 TERVEYDENHUOLTO Lääketieteessä säteilyä käytetään sekä sairauksien havaitsemiseen että hoitoon. Sairauksien havaitsemiseen käytetään mm. röntgen- ja gammasäteilyä (röntgen- ja isotooppitutkimukset) ja sairauksien hoitoon esimerkiksi röntgen- ja beetasäteilyä (sädehoito). RÖNTGENTUTKIMUKSET Suomessa tehdään vuosittain keskimäärin yksi röntgentutkimus jokaista ihmistä kohti (4,2 milj. röntgentutkimusta ja 1,5 milj. hammaskuvausta). Keskimääräiseksi vuosiannokseksi arvioidaan kertyvän 0,5 msv. Röntgenkuvaus perustuu siihen, että säteily läpäisee eri tavalla erilaisia aineita. Mitä suurempi on aineen järjestysluku, sitä enemmän aine absorboi röntgensäteilyä. Eri kudokset, esimerkiksi

7 105 rasva, pehmeä kudos ja luu, erottuvat toisistaan, koska niiden vaimennuskertoimet ovat erilaisia. Röntgenkuvauksessa filmin tiettyyn kohtaan osuvan säteilyn intensiteetti riippuu siten kuvattavan kohteen materiaalijakaumasta. Kohteen läpäisseen säteilyn intensiteettijakauma muodostaa ns. primäärisen kuvan röntgenfilmille. Kun filmi kehitetään, säteilyn intensiteetin vaihtelut havaitaan filmin tummuuden vaihteluina. Röntgenkuvauksessa voidaan lisäksi käyttää hyväksi varjoaineita, esimerkiksi jodi- tai bariumpitoisia aineita. Varjoaineet muuttavat vaimennuskertoimia, jolloin niiden avulla saadaan näkyviin rajapintoja, jotka eivät muuten näkyisi. Tavallisessa röntgenkuvassa kolmiulotteisesta kohteesta muodostuu kaksiulotteinen projektio filmipinnalle. Syvyyssuunnassa peräkkäin olevat rakenteet kuvautuvat filmille päällekkäin. Tomografia- eli kerroskuvauksessa saadaan aikaan kuva kohteen halutusta tasosta liikuttamalla joko filmiä tai röntgenputkea. Kuva voidaan myös tallentaa tietokoneelle, jolloin kuvan laatua voidaan parantaa kuvanjkäsittelyohjelmilla. Tällöin puhutaan röntgentietokonetomografiasta. SÄDEHOIDOT Sädehoitoa saa noin suomalaista vuosittain. Sädehoidossa eli röntgenterapiassa kohdistetaan suurenergistä röntgensäteilyä syöpäkudokseen. Tarkoituksena on tuhota syöpäkasvain. Huonona puolena on se, että samalla tuhoutuu myös tervettä kudosta. Perinteisen röntgenhoidon rinnalla käytetään nykyisin myös beetasäteilyhoitoa. Tämän hyvänä puolena on se, että lineaarikiihdyttimestä tai beetatronista saatavat elektronit voidaan ohjata tarkasti halutuun kohteeseen, jolloin sivuvaikutukset ovat pienemmät kuin röntgenhoidossa. Sädehoitoa annetaan myös sisäisesti viemällä säteilevä aine itse kohteeseen. Esimerkkinä radiojodin käyttö kilpirauhasen liikatoiminnan hoidossa.

8 106 ISOTOOPPITUTKIMUKSET Suomessa tehdään noin isotooppitutkimusta vuosittain. Yhdestä tutkimuksesta aiheutuu potilaalle keskimäärin 4,2 msv:n annos. Isotooppitutkimuksessa käytetään radioaktiivisia isotooppeja merkkiaineina, joiden avulla tutkitaan elimistöä tai jotakin sen osaa. Koska atomien kemialliset ominaisuudet määräytyvät niiden elektronirakenteen perusteella, aineiden radioaktiivisilla ja stabiileilla isotoopeilla on samat kemialliset ominaisuudet ja ne leviävät elimistöön samalla tavalla. Radioaktiivisten nuklidien leviämistä elimistöön on kuitenkin helppo seurata mittaamalla elimistöstä tulevaa gammasäteilyä. Leviämistä voidaan seurata joko mittaamalla suoraan potilasta tai mittaamalla potilaan eritteitä. Mittauksissa tutkitaan joko elinten tai kasvainten sijaintia ja kokoa tai niiden toimintaa. Tietyt radioaktiiviset aineet kulkeutuvat elimistössä tiettyyn elimeen, esimerkiksi jodi-isotooppi 131 I kerääntyy kilpirauhaseen. Siksi samaa isotooppia voidaan usein käyttää sekä kyseisen elimen tutkimiseen että elimessä esiintyvien sairauksien sädehoitoon. Käytettävien isotooppien puoliintumisajan on oltava sopiva. Toisaalta sen on oltava riittävän pitkä, että mittaus ehditään suorittaa ja toisaalta se ei saa olla liian pitkä, koska tällöin tarvitaan suuria aktiivisuuksia luotettavien tulosten saamiseksi ja potilaan saama annos kasvaa. Nuklidien elimistöön aiheuttama absorboitunut annos riippuu aktiivisuudesta, puoliintumisajasta ja syntyvän säteilyn energiasta. Puoliintumisaikana käytetään tässä yhteydessä biologista puoliintumisaikaa, jossa otetaan huomioon se, että nuklidi vähenee elimistössä nopeammin kuin fysikaalisen puoliintumisajan perusteella voitaisiin olettaa, koska nuklidia poistuu kehosta myös aineenvaihdunnan kautta. Useimmat käytettävät nuklidit lähettävät gamma- ja

9 107 beetasäteilyä. Potilan saama annos on sitä pienempi, mitä pienempi on beetasäteilyn energia, jolloin parhaita ovat pelkkää gammasäteilyä lähettävät nuklidit. Sopiva gammakvanttien energia on välillä kev, koska tätä pienemmillä energioilla kvantit absorboituvat voimakkaasti elimistöön ja suurempia energioita on vaikeaa mitata käytettävillä ilmaisimilla. Taulukkoon on koottu joitakin tutkimuksissa ja hoidossa käytettyjä isotooppeja: Nuklidi T 1/ 2 E (kev) Tutkimuskohde 113 In 102 min 393 maksa istukka 125 I 60 vrk 28; 35 veri 131 I 8 vrk 364 kilpirauhanen, aivot, munuaiset 18 F 110 min 511 luusto, haima 51 Cr 14,5 vrk 320 veri 99 Tc 6 h 140 aivot, kilpirauhanen, haima, maksa, luusto Isotooppititkimuksessa potilaalle annetaan radioaktiivista ainetta joko suun kautta tai ruiskuttamalla lihakseen tai laskimoon. Aineenvaihdunnan välityksellä aine hakeutuu tutkimuskohteeseen ja ulkopuolisella ilmaisimella, esimerkiksi gammakameralla tai tuikeilmaisimella, tutkitaan aineen kertymistä. Viereisessä kuvassa radioaktiivinen aine on kiinnitetty merkkiaineeseen, joka hakeutuu luustoon. Gammakamerakuvista voidaan havaita luustossa mahdollisesti oleva kasvain Elimen toimintaa taas voidaan tutkia mittaamalla elimen

10 108 aktiivisuutta ajan funktiona. Isotooppitutkimusten etuna on se, että ne ovat kivuttomia ja aiheuttavat harvoin komplikaatioita. Ne aiheuttavat yleensä potilaalle pienemmän absorboituneen annoksen kuin röntgentutkimus. Isotooppimittauksissa havaitaan joko ytimen viritystilojen muutosten seurauksena emittoituvia gammakvantteja tai beetahajoamisessa syntyneen positronin törmäämistä elektroniin, jolloin seurauksena syntyy myös gammakvantteja (positronikuvaus). Laitteistoon kuuluu usein potilaan ympärillä pyörivä gammakamera, jolloin esimerkiksi tietokoneen avulla saadaan muodostettua poikkileikkauskuva kohteesta, kuten röntgentomografiassa. Radioisotooppeihin perustuvaa merkkiainetutkimusta käytetään muillakin aloilla kuin lääketieteessä. Sitä voidaan käyttää esimerkiksi kemiassa tutkittaessa kemiallisten reaktioiden etenemistä. Jos esimerkiksi reaktion lähtöaineisiin lisätään pieni määrä radioaktiivista merkkiainetta, se on helppo tunnistaa reaktion eri vaiheissa sen lähettämän säteilyn perusteella. Myös kasvinjalostuksessa ja lannoitetutkimuksissa käytetään hyväksi merkkiaineita, joiden avulla voidaan mm. selvittää ravinteiden kulkeutumista kasveissa ja maaperässä. 7.3 ELÄINRÖNTGENTUTKIMUS Suomessa pieneläimille (kissat, koirat,...) ja myös suuremmille (hevoset,...) tehdään noin röntgentutkimusta vuosittain. Kuvauksissa ns. "kiinnipitäjälle" saattaa kohdistua merkittävä annos. Kiinnipitäjä ei saa olla alle 18 vuotias tai raskaana oleva. Kiinnipidon apuna käytetään hiekkasäkkejä ja erilaisia telineitä.

11 Esrt. l1c.>rc e,t: 4ggÄS3 wqt^-s rzä,.rlralu - [ZE,t:c*S 0zrt hv_tltvtn F*l NYl = 3ö? Ao = O,\oo Hr31 =4ookRI t9a L:g:iÅ.1 = (t"i.o\d_=x1.t '+ lka^ra ArcrttvlSuug A Q v6 6, (T,/_. \ f,t A = A,öh^'4/Tr,!"JgIs1t Aenrv/suus (A) o as J R zau-rar,u ut.7å, u Ånl f^teuv-aap (A.,,Mt) la JutvV_ I:"ur\->1.1s"Ep (A^,Mr) urslr,u. QATEE A- AntAu, JoPA uåu e^ Fe, d) 2tn, Gs? ko? ryl1 Ao= 48 = /.J tao 71+\x ( l8ö l_ t*.r tä A.= 2of83 I V 9ö ff t,,*"1 trrir (rn., s ra ) (r.rcae t (udvr-aj T/.= s"3o '3 6 f,.2\, e a n.r^r (,q. /= A=AoA(^"lr'r.)* -Ao) = (Ro - Ai;(%'/rr')* T r/, ol#*^l= {,-, iir,., {,^, /-- z x /OYla, 6L a, x lo roö q Ön4 = ntrt 1 +_ fytl L AUft lv/ Jc-r(_r-l o^) VEekA *tala I t./ _ -ol AtprnÅ'ÅaÅar_r (rr;j4 srrrl y?os t^*lass4i{n-r (*), Jotf,rr A \- ;, Iass4 Ar_= (w^t A :) Nn =!*n*', ^ l2,c B7 Gö /. lcto c."n\ = '!:9 lt =) p,rr. =.12, c (\+ A x (oö0 c/".13 x 211, e s} xrot B 1 = 1,ato glx ta'\? 30,o? * l,y::* ^ '/Jo-,l{h å = ö, frs: fle \-t P p, = 2,.1-s't t7 ev Er". 1, i cx t1 e-v 'ruoc( -R.,oaRsc.ror- At-rrs "s (A- 1 nrll) Er_r ur sråä^, (* = 7C: bv). eots?c.,u., TQ = I 5 h (xnr oln/ru^s Trr) 11 = 2y I h (B,uro I (.uert T,t_) AJ fl optauo L\ pa -? D iru 1i H,qloaa ELtnlsråssa AI LASk ÅBSc '.-R o/)1-.rpr.;r7 Auua. kuij olet-ertq,axt fr-ut u lck,4 s, t14 [ ao 04 *r' Vrn^,r (SI?r 11 01" fu- rr^nt-fts74 )7 */o Ä 65o CIfl oftuu LEt+o o rut

12 Pot stzt,,t Storo 6ts gtl \,3 =,/- Z/ty h = 4, SrBt t to- Ts -, aj Hnlol+.-r ALLA \n =,.&^ a / tst-, = l,z*26 y lc>-f, s-r ^nruo - yr/ n I ELr LLn KåF+ö s.r4 NG) = po- {}B+} o)a.,no At-trssz( AKr?ru, r ruuj ^.rfr:." \n!, _ l r/o( Bl Ett nrsaåssä Ta ae HTvtt l+ajaqnrsr a AVn ( vt Suu \ u*e AR= \u!(*) = Are ('\B+)a)( Jn vat tr,e,-: va t gy74^*, ELtnrJ ra.syå UnJoaq & d) j,< a,pt = A" Ia (trsr) a-\ * ö : ---4: (;1j")= A.. \\ v./ -(lun\*j',\n+)ra_ = 1,3y11v (cs'oooa /")!ZS t I+AJöA,t ttens TLnrS;14 \t+r>erl /l.. *,,? J^ \ H o7,,u p., a^ 1 Jorp- HDE*., fr,e, ELt m ( 5775-ga ar so er o rtr.tu U'L E\LC Inr+ ö, ssg trev * ö,j/,?,?,:1 l-(ev t 4,2v, 1,162 rt.v =2,?Ytl"rcr-,3J Å ru,uos å ^vrrr. t,jo o = 1{1t1:d' J' l'o,jo a. Gx?o t 6t,

7 SÄTEILYN KÄYTTÖ 7.1 TEOLLISUUS JA TUTKIMUS

7 SÄTEILYN KÄYTTÖ 7.1 TEOLLISUUS JA TUTKIMUS 99 7 SÄTEILYN KÄYTTÖ Radioaktiiviset aineet ja ionisoiva säteily kuuluvat ihmisen elinympäristöön. Haittavaikutuksista huolimatta säteilyä käytetään myös hyödyksi. Suomessa säteilyn käyttö voidaan jakaa

Lisätiedot

Radon aiheuttaa keuhkosyöpää

Radon aiheuttaa keuhkosyöpää 86 radonin hajoamisen seurauksena muodostuneet tytärytimet ovat kuitenkin haitallisia, koska ne ovat kiinteitä aineita ja voivat kulkeutua pölyhiukkasten mukana ihmisen keuhkoihin. Talon alla oleva maaperä

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI

SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI SÄTEILEVÄ KALLIOPERÄ OPETUSMATERIAALIN TEORIAPAKETTI 1 Sisällysluettelo 1. Luonnossa esiintyvä radioaktiivinen säteily... 2 1.1. Alfasäteily... 2 1.2. Beetasäteily... 3 1.3. Gammasäteily... 3 2. Radioaktiivisen

Lisätiedot

Ydinfysiikka lääketieteellisissä sovelluksissa

Ydinfysiikka lääketieteellisissä sovelluksissa Ydinfysiikka lääketieteellisissä sovelluksissa Ari Virtanen Professori Jyväskylän yliopisto Fysiikan laitos/kiihdytinlaboratorio ari.j.virtanen@jyu.fi Sisältö Alkutaival Sädehoito Radiolääkkeet Terapia

Lisätiedot

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016

Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016 Tapio Hansson 20. lokakuuta 2016 Milloin säteily on ionisoivaa? Milloin säteily on ionisoivaa? Kun säteilyllä on tarpeeksi energiaa irrottaakseen aineesta elektroneja tai rikkoakseen molekyylejä. Milloin

Lisätiedot

Säteilevät naiset -seminaari 15.9.2004, Säätytalo STUK SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Säteilevät naiset -seminaari 15.9.2004, Säätytalo STUK SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Säteilevät naiset -seminaari 15.9.2004, Säätytalo Yleistä säteilyn käytöstä lääketieteessä Mitä ja miten valvotaan Ionisoivan säteilyn käytön keskeisiä asioita Tutkimusten on oltava oikeutettuja Tutkimukset

Lisätiedot

Alkuaineita luokitellaan atomimassojen perusteella

Alkuaineita luokitellaan atomimassojen perusteella IHMISEN JA ELINYMPÄRISTÖN KEMIAA, KE2 Alkuaineen suhteellinen atomimassa Kertausta: Isotoopin määritelmä: Saman alkuaineen eri atomien ytimissä on sama määrä protoneja (eli sama alkuaine), mutta neutronien

Lisätiedot

Työturvallisuus fysiikan laboratoriossa

Työturvallisuus fysiikan laboratoriossa Työturvallisuus fysiikan laboratoriossa Haarto & Karhunen Tulipalo- ja rajähdysvaara Tulta saa käyttää vain jos sitä tarvitaan Lämpöä kehittäviä laitteita ei saa peittää Helposti haihtuvia nesteitä käsitellään

Lisätiedot

Ionisoiva säteily. Radioaktiiviset aineet ja ionisoiva säteily kuuluvat luonnollisena osana elinympäristöömme.

Ionisoiva säteily. Radioaktiiviset aineet ja ionisoiva säteily kuuluvat luonnollisena osana elinympäristöömme. Ionisoiva säteily Radioaktiiviset aineet ja ionisoiva säteily kuuluvat luonnollisena osana elinympäristöömme. Ionisoivan säteilyn ominaisuuksia ja vaikutuksia on vaikea hahmottaa arkipäivän kokemusten

Lisätiedot

FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko , klo 10-11, LS1

FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko , klo 10-11, LS1 FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko 19.12.2012, klo 10-11, LS1 Isotooppilääketiede Radioaktiivisuus Radioaktiivisuuden yksiköt Radiolääkkeet Isotooppien ja radiolääkkeiden valmistus 99m

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

A Z X. Ydin ja isotoopit

A Z X. Ydin ja isotoopit Ydinfysiikkaa Ydin ja isotoopit A Z X N Ytimet koostuvat protoneista (+) ja neutroneista (0): nukleonit (Huom! nuklidi= tietty ydinlaji ) Ydin pysyy kasassa, koska vahvan vuorovaikutuksen aiheuttama vetävä

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki).

Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). TYÖ 68. GAMMASÄTEILYN VAIMENEMINEN ILMASSA Tehtävä Välineet Tehtävänä on tutkia gammasäteilyn vaimenemista ilmassa ja esittää graafisesti siihen liittyvä lainalaisuus (etäisyyslaki). Radioaktiivinen mineraalinäyte

Lisätiedot

Sädehoidosta, annosten laskennasta ja merkkiaineista. Outi Sipilä sairaalafyysikko, TkT Outi.Sipila@hus.fi

Sädehoidosta, annosten laskennasta ja merkkiaineista. Outi Sipilä sairaalafyysikko, TkT Outi.Sipila@hus.fi Sädehoidosta, annosten laskennasta ja merkkiaineista Outi Sipilä sairaalafyysikko, TkT Outi.Sipila@hus.fi 15.9.2004 Sisältö Terapia Diagnostiikka ionisoiva sädehoito röntgenkuvaus säteily tietokonetomografia

Lisätiedot

- Pyri kirjoittamaan kaikki vastauksesi tenttipaperiin. Mikäli vastaustila ei riitä, jatka konseptilla

- Pyri kirjoittamaan kaikki vastauksesi tenttipaperiin. Mikäli vastaustila ei riitä, jatka konseptilla LUT School of Energy Systems Ydintekniikka BH30A0600 SÄTEILYSUOJELU Tentti 26.1.2016 Nimi: Opiskelijanumero: Rastita haluamasi vaihtoehto/vaihtoehdot: Suoritan pelkän kurssin Tee tehtävät A1 - A4 ja B5

Lisätiedot

Säteilyannokset ja säteilyn vaimeneminen. Tapio Hansson

Säteilyannokset ja säteilyn vaimeneminen. Tapio Hansson Säteilyannokset ja säteilyn vaimeneminen Tapio Hansson Ionisoiva säteily Milloin säteily on ionisoivaa? Kun säteilyllä on tarpeeksi energiaa irrottaakseen aineesta elektroneja tai rikkoakseen molekyylejä.

Lisätiedot

Ydinfysiikkaa. Tapio Hansson

Ydinfysiikkaa. Tapio Hansson 3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10

Lisätiedot

CBRNE-aineiden havaitseminen neutroniherätteen avulla

CBRNE-aineiden havaitseminen neutroniherätteen avulla CBRNE-aineiden havaitseminen neutroniherätteen avulla 18.11.2015 Harri Toivonen, projektin johtaja* Kari Peräjärvi, projektipäällikkö Philip Holm, tutkija Ari Leppänen, tutkija Jussi Huikari, tutkija Hanke

Lisätiedot

Säteily ja suojautuminen Joel Nikkola

Säteily ja suojautuminen Joel Nikkola Säteily ja suojautuminen 28.10.2016 Joel Nikkola Kotitehtävät Keskustele parin kanssa aurinkokunnan mittakaavasta. Jos maa olisi kolikon kokoinen, minkä kokoinen olisi aurinko? Jos kolikko olisi luokassa

Lisätiedot

GEIGERIN JA MÜLLERIN PUTKI

GEIGERIN JA MÜLLERIN PUTKI FYSP106/K3 GEIGERIN J MÜLLERIN PUTKI 1 Johdanto Työssä tutustutaan Geigerin ja Müllerin putkeen. Geigerin ja Müllerin putkella tarkoitetaan tietynlaista säteilymittaria. Samaisesta laitteesta käytetään

Lisätiedot

1 Johdanto. 2 Lähtökohdat

1 Johdanto. 2 Lähtökohdat FYSP106/K4 VIRITYSTILAN ELINAIKA 1 Johdanto Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan 661.7 kev keskimääräinen elinaika ja puoliintumisaika. 2 Lähtökohdat 2.1 Radioaktiivinen

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

SÄTEILY- JA YDINTURVALLISUUSKATSAUKSIA. Ihmisen radioaktiivisuus. Säteilyturvakeskus Strålsäkerhetscentralen Radiation and Nuclear Safety Authority

SÄTEILY- JA YDINTURVALLISUUSKATSAUKSIA. Ihmisen radioaktiivisuus. Säteilyturvakeskus Strålsäkerhetscentralen Radiation and Nuclear Safety Authority SÄTEILY- JA YDINTURVALLISUUSKATSAUKSIA Ihmisen radioaktiivisuus Säteilyturvakeskus Strålsäkerhetscentralen Radiation and Nuclear Safety Authority Ihmisen radioaktiivisuus Jokaisessa ihmisessä on radioaktiivisia

Lisätiedot

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. Fysiikan laboratorio Työohje 1 / 5 Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty. 1. Työn tavoite Työn tavoitteena on tutustua ionisoivaan sähkömagneettiseen säteilyyn ja tutkia sen absorboitumista

Lisätiedot

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen) 1. Ylöspäin liikkuvan hissin, jonka massa on 480 kg, nopeus riippuu ajasta oheisen kuvion mukaisesti. Laske kannatinvaijeria jännittävä voima liikkeen eri vaiheissa. (YO, S 84) 0-4s: 4,9 kn, 4..10s: 4,7

Lisätiedot

SKV-LAATUKÄSIKIRJA Ohje SKV 9.2 Liite 1 1(7)

SKV-LAATUKÄSIKIRJA Ohje SKV 9.2 Liite 1 1(7) SKV-LAATUKÄSIKIRJA Ohje SKV 9.2 Liite 1 1(7) SUUREET, MITTAUSALUEET JA MITTAUSEPÄVARMUUDET Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut

Lisätiedot

Säteilyannokset ja säteilyn vaimeneminen

Säteilyannokset ja säteilyn vaimeneminen Säteilyannokset ja säteilyn vaimeneminen Tapio Hansson 26. lokakuuta 2016 Säteilyannos Ihmisen saamaa säteilyannosta voidaan tutkia kahdella tavalla. Absorboitunut annos kuvaa absoluuttista energiamäärää,

Lisätiedot

Tehtävä 1. (6 p). Nimi Henkilötunnus Maankuori koostuu useista litosfäärilaatoista. Kahden litosfäärilaatan törmätessä raskaampi mereinen laatta

Tehtävä 1. (6 p). Nimi Henkilötunnus Maankuori koostuu useista litosfäärilaatoista. Kahden litosfäärilaatan törmätessä raskaampi mereinen laatta Tehtävä 1. (6 p). Nimi Henkilötunnus Maankuori koostuu useista litosfäärilaatoista. Kahden litosfäärilaatan törmätessä raskaampi mereinen laatta painuu törmäyssaumassa kevyemmän mantereisen laatan alle.

Lisätiedot

RADIOAKTIIVISUUS JA SÄTEILY

RADIOAKTIIVISUUS JA SÄTEILY RADIOAKTIIVISUUS JA SÄTEILY 1 Johdanto 1.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu positiivisesti varautuneista protoneista ja neutraaleista neutroneista. Samalla alkuaineella on aina

Lisätiedot

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen

Lisätiedot

Säteilyturvakeskuksen määräys turvallisuusluvasta ja valvonnasta vapauttamisesta

Säteilyturvakeskuksen määräys turvallisuusluvasta ja valvonnasta vapauttamisesta 1 (33) LUONNOS 2 -MÄÄRÄYS STUK SY/1/2017 Säteilyturvakeskuksen määräys turvallisuusluvasta ja valvonnasta vapauttamisesta Säteilyturvakeskuksen päätöksen mukaisesti määrätään säteilylain ( / ) 49 :n 3

Lisätiedot

55 RADIOAKTIIVISUUS JA SÄTEILY

55 RADIOAKTIIVISUUS JA SÄTEILY 55 RADIOAKTIIVISUUS JA SÄTEILY 55.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu sähkövaraukseltaan positiivisista protoneista ja neutraaleista neutroneista hyvin tiheästi pakkautuneina (ytimen

Lisätiedot

40D. RADIOAKTIIVISUUSTUTKIMUKSIA

40D. RADIOAKTIIVISUUSTUTKIMUKSIA TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 40D. RADIOAKTIIVISUUSTUTKIMUKSIA 1. TYÖN TAVOITE 2. TEORIAA Työssä tutustutaan radioaktiiviseen säteilyn kuvaamisessa käytettäviin käsitteisiin ja fysikaalisiin lakeihin,

Lisätiedot

Tehtävänä on vertailla eri säteilylähteiden säteilyvoimakkuutta (pulssia/min).

Tehtävänä on vertailla eri säteilylähteiden säteilyvoimakkuutta (pulssia/min). TYÖ 66. SÄTEILYLÄHTEIDEN VERTAILU Tehtävä Välineet Tehtävänä on vertailla eri säteilylähteiden säteilyvoimakkuutta (pulssia/min). Radioaktiiviset säteilylähteet: mineraalinäytteet (330719), Strontium-90

Lisätiedot

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1 10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen

Lisätiedot

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360)

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Jarmo Ala-Heikkilä, VIII/2017 Useissa tämän kurssin laskutehtävissä täytyy ensin muodostaa tilannekuva: minkälaista säteilyä lähteestä tulee, mihin se kohdistuu,

Lisätiedot

Ionisoiva Säteily Koe-eläintöissä. FinLAS Seminaari 3.12.2012 Mari Raki, FT Lääketutkimuksen keskus Helsingin yliopisto

Ionisoiva Säteily Koe-eläintöissä. FinLAS Seminaari 3.12.2012 Mari Raki, FT Lääketutkimuksen keskus Helsingin yliopisto Ionisoiva Säteily Koe-eläintöissä FinLAS Seminaari 3.12.2012 Mari Raki, FT Lääketutkimuksen keskus Helsingin yliopisto Sisältö Mitä ionisoiva säteily on Säteilyn käytön valvonta Työturvallisuus säteilytyössä

Lisätiedot

FYSN300 Nuclear Physics I. Välikoe

FYSN300 Nuclear Physics I. Välikoe Välikoe Vastaa neljään viidestä kysymyksestä 1. a) Hahmottele stabiilien ytimien sidosenergiakäyrä (sidosenergia nukleonia kohti B/A massaluvun A funktiona). Kuvaajan kvantitatiivisen tulkinnan tulee olla

Lisätiedot

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen

Lääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä

Lisätiedot

ANNOSKAKKU - SUOMALAISTEN KESKIMÄÄRÄINEN EFEKTIIVINEN ANNOS

ANNOSKAKKU - SUOMALAISTEN KESKIMÄÄRÄINEN EFEKTIIVINEN ANNOS ANNOSKAKKU - SUOMALAISTEN KESKIMÄÄRÄINEN EFEKTIIVINEN ANNOS Maarit Muikku Suomen atomiteknillisen seuran vuosikokous 14.2.2008 RADIATION AND NUCLEAR SAFETY AUTHORITY Suomalaisten keskimääräinen säteilyannos

Lisätiedot

PIXE:n hyödyntäminen materiaalitutkimuksessa

PIXE:n hyödyntäminen materiaalitutkimuksessa PIXE:n hyödyntäminen materiaalitutkimuksessa Syventävien opintojen seminaari Ella Peltomäki 30.10.2014 Sisällys PIXE perustuu alkuainekohtaisiin elektronikuorirakenteisiin Tulosten kannalta haitallisen

Lisätiedot

Radionuklideja on seuraavia neljää tyyppiä jaoteltuna syntyperänsä mukaan: Taulukko VII.1. Eräitä kevyempiä primäärisiä luonnon radionuklideja.

Radionuklideja on seuraavia neljää tyyppiä jaoteltuna syntyperänsä mukaan: Taulukko VII.1. Eräitä kevyempiä primäärisiä luonnon radionuklideja. VII RADIONUKLIDIT Radionuklideja on seuraavia neljää tyyppiä jaoteltuna syntyperänsä mukaan: primääriset luonnon radionuklidit sekundääriset luonnon radionuklidit kosmogeeniset radionuklidit keinotekoiset

Lisätiedot

Kurssin opettaja Timo Suvanto päivystää joka tiistai klo 17 18 koululla. Muina aikoina sopimuksen mukaan.

Kurssin opettaja Timo Suvanto päivystää joka tiistai klo 17 18 koululla. Muina aikoina sopimuksen mukaan. Fysiikka 1 Etäkurssi Tervetuloa Vantaan aikuislukion fysiikan ainoalle etäkurssille. Kurssikirjana on WSOY:n Lukion fysiikka sarjan Vuorovaikutus, mutta mikä tahansa lukion fysiikan ensimmäisen kurssin

Lisätiedot

w%i rf* meccanoindex.co.uk

w%i rf* meccanoindex.co.uk &, w% r* lr,ryd* kro g ; - C +gä!! r -. ä.;'! dg+s Zt t0, y < 9 -! 8 tü;r" lun.'-y; ',ä lrl;!tä u l - 9 9! - ä 6 ^ 9 b - q - cz * ; *'a! a = ;6 f

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

Työ 55, Säteilysuojelu

Työ 55, Säteilysuojelu Työ 55, Säteilysuojelu Ryhmä: 18 Pari: 1 Joas Alam Atti Tehiälä Selostukse laati: Joas Alam Mittaukset tehty: 7.4.000 Selostus jätetty: 1.5.000 1. Johdato Tutkimme työssämme kolmea eri säteilylajia:, ja

Lisätiedot

Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut DOS-laboratoriossa.

Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut DOS-laboratoriossa. Säteilyturvakeskus Toimintajärjestelmä #3392 1 (7) SUUREET, MITTAUSALUEET JA MITTAUSEPÄVARMUUDET Taulukko 1. Ionisoiva säteily. Kansallisena mittanormaalilaboratoriona tarjottavat kalibrointi- ja säteilytyspalvelut

Lisätiedot

YMPÄRISTÖN LUONNOLLINEN RADIOAKTIIVISUUS SUOMESSA professori Jukka Lehto Radiokemian laboratorio Helsingin yliopisto SISÄLTÖ Säteilyn lähteet Radioaktiivisuuden lähteet Suomessa Säteilyn terveysvaikutukset

Lisätiedot

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinofysiikka Tvärminne 27.5.2010 Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinon keksiminen Ongelma 1900-luvun alusta: beetahajoamisessa syntyvän neutriinon energiaspektri on jatkuva.

Lisätiedot

VALMISTEYHTEENVETO. Tämä lääkevalmiste on tarkoitettu ainoastaan diagnostiseen käyttöön.

VALMISTEYHTEENVETO. Tämä lääkevalmiste on tarkoitettu ainoastaan diagnostiseen käyttöön. VALMISTEYHTEENVETO 1. LÄÄKEVALMISTEEN NIMI Indium ( 111 In) chloride kantaliuos radioaktiivista lääkettä varten 2. VAIKUTTAVAT AINEET JA NIIDEN MÄÄRÄT Yhden millilitran koostumus referenssiajankohtana:

Lisätiedot

VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT

VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT Radioaktiivisessa hajoamisessa on neljä perusmuotoa: fissio alfahajoaminen betahajoaminen sisäinen siirtymä Viime vuosikymmeninä on havaittu paljon harvinaisempiakin

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

25A40B 4h. RADIOAKTIIVINEN SÄTEILY

25A40B 4h. RADIOAKTIIVINEN SÄTEILY TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/9 25A40B 4h. RADIOAKTIIVINEN SÄTEILY TYÖN TAVOITE Työn tavoitteena on tutustua radioaktiiviseen säteilyyn ja mahdollisuuksiin suojautua siltä. RADIOAKTIIVISEN SÄTEILYN

Lisätiedot

)x -)! ^i, + lu" x---',!^,y+je+ov. z'?+t' -t e +v A,ft1 = ffi*- my. Am= ft1x- fhy. A R-*t+AJa^HtNeN. lla.f J^ YA r e. LAtTE^l,NeN YDtMFffi

)x -)! ^i, + lu x---',!^,y+je+ov. z'?+t' -t e +v A,ft1 = ffi*- my. Am= ft1x- fhy. A R-*t+AJa^HtNeN. lla.f J^ YA r e. LAtTE^l,NeN YDtMFffi Yl ast.qvaj lv zrn Ja Re/4Frto M pg,4f{_g LAtTE^l,NeN YDtMFffi lla.f J^ YA r e Ä^W: frtxhrä- Yrr;rer rn Tulo 6- Y7' r, T' t? Atcrr o,vg R CIA a elt H^J o*>1r M n AÅ = R

Lisätiedot

RADIOAKTIIVISUUS JA SÄTEILY

RADIOAKTIIVISUUS JA SÄTEILY RADIOAKTIIVISUUS JA SÄTEILY 1 Johdanto 1.1 Radioaktiivinen hajoaminen ja säteily Atomin ydin koostuu sähkövaraukseltaan positiivisista protoneista ja neutraaleista neutroneista hyvin tiheästi pakkautuneina

Lisätiedot

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. 1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana

Lisätiedot

Säteilysuojausten arvioiminen laskennallisesti

Säteilysuojausten arvioiminen laskennallisesti Käyttötilojen suunnittelu: Säteilysuojausten arvioiminen laskennallisesti Outi Sipilä ylifyysikko HUS-Kuvantaminen 10.12.2015 Huom! etäisyydet sallitut viikkoannokset yksiköt.. Miten ulkoista säteilyannosta

Lisätiedot

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen KE4, KPL. 3 muistiinpanot Keuruun yläkoulu, Joonas Soininen KPL 3: Ainemäärä 1. Pohtikaa, miksi ruokaohjeissa esim. kananmunien ja sipulien määrät on ilmoitettu kappalemäärinä, mutta makaronit on ilmoitettu

Lisätiedot

Kosmologia ja alkuaineiden synty. Tapio Hansson

Kosmologia ja alkuaineiden synty. Tapio Hansson Kosmologia ja alkuaineiden synty Tapio Hansson Alkuräjähdys n. 13,7 mrd vuotta sitten Alussa maailma oli pistemäinen Räjähdyksen omainen laajeneminen Alkuolosuhteet ovat hankalia selittää Inflaatioteorian

Lisätiedot

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate.

eriste C K R vahvistimeen Kuva 1. Geigerilmaisimen periaate. Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 5: RADOAKTVSUUSTYÖ Teoriaa Radioaktiivista säteilyä syntyy, kun radioaktiivisen aineen ytimen viritystila purkautuu

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

2.2 RÖNTGENSÄTEILY. (yli 10 kv).

2.2 RÖNTGENSÄTEILY. (yli 10 kv). 11 2.2 RÖNTGENSÄTEILY Erilaisiin sovellutustarkoituksiin röntgensäteilyä synnytetään ns. röntgenputkella, joka on anodista (+) ja katodista () muodostuva tyhjiöputki, jossa elektrodien välille on kytketty

Lisätiedot

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus Massaspektrometria IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Määritelmä Massaspektrometria on tekniikka-menetelmä, jota käytetään 1) mitattessa orgaanisen molekyylin molekyylimassaa ja 2) määritettäessä

Lisätiedot

S Ä T E I LY T U R V A L L I S U U S K O U L U T U S J U H A P E L T O N E N / J U H A. P E L T O N E H U S.

S Ä T E I LY T U R V A L L I S U U S K O U L U T U S J U H A P E L T O N E N / J U H A. P E L T O N E H U S. S Ä T E I LY T U R V A L L I S U U S K O U L U T U S 1 4. 9. 2 0 1 7 J U H A P E L T O N E N / J U H A. P E L T O N E N @ H U S. F I YMPÄRISTÖN SÄTEILY SUOMESSA Suomalaisten keskimääräinen vuosittainen

Lisätiedot

Z = VARAUSLUKU eli JÄRJESTYSLUKU (= protoniluku) N = NEUTRONILUKU A = NUKLEONILUKU; A = N + Z (= neutr. lkm + prot. lkm)

Z = VARAUSLUKU eli JÄRJESTYSLUKU (= protoniluku) N = NEUTRONILUKU A = NUKLEONILUKU; A = N + Z (= neutr. lkm + prot. lkm) SÄTEILY YTIMET JA RADIOAKTIIVISUUS ATOMI -atomin halkaisija 10-10 m -ytimen halkaisija 10-14 m ATOMIN OSAT: 1) YDIN - protoneja (p) ja neutroneja (n) 2) ELEKTRONIVERHO - elektroneja (e - ) - protonit ja

Lisätiedot

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme

Lisätiedot

CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén

CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN ja Hiukkasfysiikan kokeet Mikä se on? Mitä siellä tehdään? Miksi? Mitä siellä vielä aiotaan tehdä, ja miten? Tapio Lampén CERN = maailman suurin hiukkastutkimuslaboratorio Sveitsin ja Ranskan rajalla,

Lisätiedot

Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan kev keskimääräinen elinaika ja puoliintumisaika.

Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan kev keskimääräinen elinaika ja puoliintumisaika. FYSP106/K4 VIRITYSTILAN ELINAIKA 1 Johdanto Työssä tutustutaan hajoamislakiin ja määritetään 137 Ba:n viritystilan 661.7 kev keskimääräinen elinaika ja puoliintumisaika. 2 Lähtökohdat 2.1 Radioaktiivinen

Lisätiedot

NEN PAINOVOIMAMITTAUS N:o OU 10/7b

NEN PAINOVOIMAMITTAUS N:o OU 10/7b I RAUTARUUKKI Oy I RAUTUVAARAN YlVlPÄ.RISTi-)N ALUEELLI- MALMINETSINTÄ NEN PAINOVOIMAMITTAUS N:o OU 0/7b I 3.2. - 30.4.976 osa II -- TUTKIMUSALUE LAATIJA I JAKELU KUNTA LAAT.PVM HYV. SlVlOY OU ma KARTTALEHTI

Lisätiedot

Radioaktiivisten jätteiden kartoitus kiihdytinlaboratoriossa

Radioaktiivisten jätteiden kartoitus kiihdytinlaboratoriossa Radioaktiivisten jätteiden kartoitus kiihdytinlaboratoriossa Aki Puurunen JYVÄSKYLÄN YLIOPISTO FYSIIKAN LAITOS Pro Gradu -tutkielma Ohjaaja: Jaana Kumpulainen 3. lokakuuta 2011 Tiivistelmä Kiihdytinlaboratoriossa

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus 11.5.2017 Massaspektrometria IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Määritelmä Massaspektrometria on tekniikka-menetelmä, jota käytetään 1) mitattessa orgaanisen molekyylin molekyylimassaa ja 2) määritettäessä

Lisätiedot

3 *ä;r ä:e 5ä ä{ :i. c oo) S g+;!qg *r; Er ; l[$ E ;;iä F:ä ä :E ä: a bo. =. * gäf$iery g! Eä. a is äg*!=."fl: ä; E!, \ ins:" qgg ;._ EE üg.

3 *ä;r ä:e 5ä ä{ :i. c oo) S g+;!qg *r; Er ; l[$ E ;;iä F:ä ä :E ä: a bo. =. * gäf$iery g! Eä. a is äg*!=.fl: ä; E!, \ ins: qgg ;._ EE üg. t AJ 1., t4 t4 \J : h J \) (.) \ ( J r ) tḡr (u (1) m * t *h& r( t{ L.C g :LA( g9; p ö m. gr iop ö O t : U 0J (U.p JJ! ä; >

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

Hiukkaskiihdyttimet ja -ilmaisimet

Hiukkaskiihdyttimet ja -ilmaisimet Hiukkaskiihdyttimet ja -ilmaisimet Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan

Lisätiedot

Radioaktiivinen hajoaminen

Radioaktiivinen hajoaminen radahaj2.nb 1 Radioaktiivinen hajoaminen Radioaktiivinen hajoaminen on ilmiö, jossa aktivoitunut, epästabiili atomiydin vapauttaa energiaansa a-, b- tai g-säteilyn kautta. Hiukkassäteilyn eli a- ja b-säteilyn

Lisätiedot

Röntgenkuvaus, digitaalinen kuvaus ja tietokonetomografia

Röntgenkuvaus, digitaalinen kuvaus ja tietokonetomografia Röntgenkuvaus, digitaalinen kuvaus ja tietokonetomografia Hyvinvointiteknologian koulutusohjelma 1 Saatteeksi... 2 1. Atomi- ja röntgenfysiikan perusteita... 2 Sähkömagneettinen säteily...3 Valosähköinen

Lisätiedot

Määräys STUK SY/1/ (34)

Määräys STUK SY/1/ (34) Määräys SY/1/2018 4 (34) LIITE 1 Taulukko 1. Vapaarajat ja vapauttamisrajat, joita voidaan soveltaa kiinteiden materiaalien vapauttamiseen määrästä riippumatta. Osa1. Keinotekoiset radionuklidit Radionuklidi

Lisätiedot

Sukunimi: Etunimi: Henkilötunnus:

Sukunimi: Etunimi: Henkilötunnus: K1. Onko väittämä oikein vai väärin. Oikeasta väittämästä saa 0,5 pistettä. Vastaamatta jättämisestä tai väärästä vastauksesta ei vähennetä pisteitä. (yhteensä 10 p) Oikein Väärin 1. Kaikki metallit johtavat

Lisätiedot

VALMISTEYHTEENVETO. Tämä lääkevalmiste on tarkoitettu ainoastaan diagnostiseen käyttöön.

VALMISTEYHTEENVETO. Tämä lääkevalmiste on tarkoitettu ainoastaan diagnostiseen käyttöön. VALMISTEYHTEENVETO 1. LÄÄKEVALMISTEEN NIMI RENOCIS Valmisteyhdistelmä teknetium ( 99m Tc)-sukkimeeri -injektionestettä varten. 2. VAIKUTTAVAT AINEET JA NIIDEN MÄÄRÄT Dimerkaptomeripihkahappo (DMSA) : 1

Lisätiedot

Avolähteet. Hanna Tuovinen SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Avolähteet. Hanna Tuovinen SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Avolähteet Hanna Tuovinen Säteilyaltistuksen ja säteilylähteiden luokat Valtioneuvoston asetus ionisoivasta säteilystä 16 ja liite 4 Säteilyaltistuksen luokka Työperäinen altistus Väestön altistus Annos

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

Vakaiden isotooppien käytön periaatteet ravitsemustutkimuksessa

Vakaiden isotooppien käytön periaatteet ravitsemustutkimuksessa Vakaiden isotooppien käytön periaatteet ravitsemustutkimuksessa Mikko Kiljunen Raisio 21.4.2015 Mitä ovat vakaat isotoopit? Alkuaineen isotoopit ovat atomeja, joissa on sama määrä protoneja, mutta eri

Lisätiedot

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni 3.1 Atomin rakenneosat Kaikki aine matter koostuu alkuaineista elements. Jokaisella alkuaineella on omanlaisensa atomi. Mitä osia ja hiukkasia parts and particles atomissa on? pieni ydin, jossa protoneja

Lisätiedot

25A40B 4h. RADIOAKTIIVINEN SÄTEILY

25A40B 4h. RADIOAKTIIVINEN SÄTEILY TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/8 25A40B 4h. RADIOAKTIIVINEN SÄTEILY TYÖN TAVOITE Työn tavoitteena on tutustua radioaktiiviseen säteilyyn ja mahdollisuuksiin suojautua siltä. RADIOAKTIIVISEN SÄTEILYN

Lisätiedot

RADIOHIILIAJOITUS. Pertti Hautanen. Pro Gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 2017 Ohjaaja: Matti Leino

RADIOHIILIAJOITUS. Pertti Hautanen. Pro Gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 2017 Ohjaaja: Matti Leino RADIOHIILIAJOITUS Pertti Hautanen Pro Gradu -tutkielma Jyväskylän yliopisto, Fysiikan laitos 2017 Ohjaaja: Matti Leino Esipuhe Päädyin tekemään Pro Gradu -tutkielmani radiohiiliajoituksesta löydettyäni

Lisätiedot

3 SÄTEILYN JA AINEEN VUOROVAIKUTUS

3 SÄTEILYN JA AINEEN VUOROVAIKUTUS 35 3 SÄTEILYN JA AINEEN VUOROVAIKUTUS Säteilyn hiukkaset ja kvantit vuorovaikuttavat aineen rakenneosasten kanssa. Vuorovaikutusten aiheuttamat prosessit voivat muuttaa aineen rakennetta ja ominaisuuksia,

Lisätiedot

Väliraportin liitetiedostot

Väliraportin liitetiedostot 1 (21) Talvivaaran ympäristön Sisältö LIITE 1. Radiologisia suureita ja yksiköitä sekä yleistä tietoa luonnon radioaktiivisuudesta... 2 LIITE 2. Analysoidut näytteet 2010... 5 LIITE 3. Gammaspektrometristen

Lisätiedot

Säteilyvaikutuksen synty. Erikoistuvien lääkärien päivät 25 26.1.2013 Kuopio

Säteilyvaikutuksen synty. Erikoistuvien lääkärien päivät 25 26.1.2013 Kuopio Säteilyvaikutuksen synty Erikoistuvien lääkärien päivät 25 26.1.2013 Kuopio Säteilyn ja biologisen materian vuorovaikutus Koska ihmisestä 70% on vettä, todennäköisin (ja tärkein) säteilyn ja biologisen

Lisätiedot

TYÖNTEKIJÖIDEN SÄTEILYALTISTUKSEN SEURANTA

TYÖNTEKIJÖIDEN SÄTEILYALTISTUKSEN SEURANTA TYÖNTEKIJÖIDEN SÄTEILYALTISTUKSEN SEURANTA Säteilyturvallisuus ja laatu röntgendiagnostiikassa 19.-21.5.2014 Riina Alén STUK - Säteilyturvakeskus RADIATION AND NUCLEAR SAFETY AUTHORITY Lainsäädäntö EU-lainsäädäntö

Lisätiedot

Säteilyn suureet ja yksiköt. Jussi Aarnio sairaalafyysikko Lääketieteellisen fysiikan tulosyksikkö Etelä-Savon sairaanhoitopiirin ky

Säteilyn suureet ja yksiköt. Jussi Aarnio sairaalafyysikko Lääketieteellisen fysiikan tulosyksikkö Etelä-Savon sairaanhoitopiirin ky Säteilyn suureet ja yksiköt Jussi Aarnio sairaalafyysikko Lääketieteellisen fysiikan tulosyksikkö Etelä-Savon sairaanhoitopiirin ky n ESD Y CTDI CTDI FDA nctdi100, x FDD FSD 1 S 7S 7S D 2 Q BSF Sd 1 M

Lisätiedot

VALMISTEYHTEENVETO. N- (3-bromo-2,4,6 trimetyylifenyylikarbomyylimetyyli) iminodietikkahapon (mebrofeniinin) natriumsuolaa 40,0 mg / injektiopullo.

VALMISTEYHTEENVETO. N- (3-bromo-2,4,6 trimetyylifenyylikarbomyylimetyyli) iminodietikkahapon (mebrofeniinin) natriumsuolaa 40,0 mg / injektiopullo. VALMISTEYHTEENVETO 1. LÄÄKEVALMISTEEN NIMI BRIDATEC Valmisteyhdistelmä ( 99m Tc) mebrofeniiniliuosta varten 2. VAIKUTTAVAT AINEET JA NIIDEN MÄÄRÄT N- (3-bromo-2,4,6 trimetyylifenyylikarbomyylimetyyli)

Lisätiedot

SISÄINEN SÄTEILY. Matti Suomela, Tua Rahola, Maarit Muikku

SISÄINEN SÄTEILY. Matti Suomela, Tua Rahola, Maarit Muikku 7 SISÄINEN SÄTEILY Matti Suomela, Tua Rahola, Maarit Muikku SISÄLLYSLUETTELO 7.1 Kehon radioaktiivisten aineiden käyttäytymismallit... 246 7.2 Annoslaskujen perusyhtälöt... 250 7.3 Radionuklidien biokinetiikan

Lisätiedot

Säteilyturvakeskuksen määräys radioaktiivisista jätteistä ja radioaktiivisten aineiden päästöistä avolähteiden käytössä

Säteilyturvakeskuksen määräys radioaktiivisista jätteistä ja radioaktiivisten aineiden päästöistä avolähteiden käytössä MÄÄRÄYS S/2/2019 Säteilyturvakeskuksen määräys radioaktiivisista jätteistä ja radioaktiivisten aineiden päästöistä avolähteiden käytössä Annettu Helsingissä 4.4.2019 Säteilyturvakeskuksen päätöksen mukaisesti

Lisätiedot

Kaikki ympärillämme oleva aine koostuu alkuaineista.

Kaikki ympärillämme oleva aine koostuu alkuaineista. YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme

Lisätiedot

Solun toiminta. II Solun toiminta. BI2 II Solun toiminta 7. Fotosynteesi tuottaa ravintoa eliökunnalle

Solun toiminta. II Solun toiminta. BI2 II Solun toiminta 7. Fotosynteesi tuottaa ravintoa eliökunnalle Solun toiminta II Solun toiminta 7. Fotosynteesi tuottaa ravintoa eliökunnalle 1. Avainsanat 2. Fotosynteesi eli yhteyttäminen 3. Viherhiukkanen eli kloroplasti 4. Fotosynteesin reaktiot 5. Mitä kasvit

Lisätiedot