DimensioMatemaattis- 5/06. luonnontieteellinen. aikakauslehti. 70. vuosikerta. Irtonumero 10

Koko: px
Aloita esitys sivulta:

Download "DimensioMatemaattis- 5/06. luonnontieteellinen. aikakauslehti. 70. vuosikerta. Irtonumero 10"

Transkriptio

1 luonnontieteellinen aikakauslehti 70. vuosikerta DimensioMatemaattis- 5/06 Irtonumero 10 D i m e n s i o 5/2006

2 D i m e n s i o 5/2006

3 Matemaattisten Aineiden Opettajien Liitto MAOL ry Riksförbundet för Lärare i Matematiska Ämnen MAOL rf HALLITUS Osoite Rautatieläisenkatu 6, Helsinki Telefax (09) Kotisivut *) Puheenjohtaja Pentti Parviainen*) I vpj. talous Lauri Pippola*) II vpj. koulutus Päivi Lehtomäki III vpj. Dimensio, tiedotus Leena Mannila fysiikka ja kemia Jouni Björkman edunvalvonta Eeva Heikkilä oppilastoiminta Irene Hietala tiedotusvaliokunta, jäsen Marita Kukkola kansainväliset asiat Anne Rantanen kerhotoiminta Jarmo Sirviö matematiikka, tietot. Helena Tuomainen ruotsinkiel. palvelut Joakim Häggström lk matematiikka 6 lk matematiikka 9 lk matematiikka Fysiikka Kemia TOIMISTO Toiminnanjohtaja Juha Sola *) (09) Järjestösihteeri Hanna Meriluoto*) (09) Toimistosihteeri Päivi Hyttinen*) (09) dimension toimitus Toimitussihteeri Jarkko Narvanne (09) MFKA-Kustannus Oy Puheenjohtaja Irma Iho*) Vpj. markkinointi Päivi Ojala Opetusvälinepalv. Markku Parkkonen Peruskoulun Tytti Kiiski matematiikka Koepalvelu Jarmo Sirviö Ulkosuhteet Hannele Levävaara ja kehitys Toimisto Toimitusjohtaja Juha Sola*) (09) Tuotepäällikkö Lauri Stark*) (09) Myyntisihteeri Piia Vilkki*) (09) MEILTÄ EDULLISESTI Texas Instruments -laskimet. Pyydä tarjous! MFKA-Kustannus Oy Rautatieläisenkatu 6, Helsinki Puh. (09) Telefax (09) D i m e n s i o 5/2006

4 Dimensio Matemaattisluonnontieteellinen aikakauslehti 70. vuosikerta 5/ Pääkirjoitus 7 Pentti Parviainen in memoriam 8 Dimensio-lehden voimakas uudistumiskausi Peruskoulun opetussuunnitelmakyselyn tuloksia 12 Kevään 2006 valtakunnallinen 9. luokan matematiikan koe 16 Vargan salaisuudet paljastuvat Unkarissa 21 Neljä pronssimitalia kansainvälisistä matematiikkaolympialaisista 23 Maapallo on pyöreä 25 Kuka opettaa matematiikkaa peruskoulussa? 26 Matematiikan opetussuunnitelmien toteutuminen OPS-analyysin pohjalta 28 Mietteitä syksyn 2006 fysiikan ylioppilaskokeesta 30 MAOL-Vantaan malli oppilaskilpailujen palkitsemisesta 31 Suomalaislukiolaisten kaksiviikkoinen kesäkoulu Venäjällä 36 Matematiikkakilpailut ja Kansainvälinen kaupunkien turnaus 39 Teknologia tutuksi tytöille 40 Dir.mus. Leena Suomela 42 Ruotsissa ollaan fysiikan ja lasereiden lumoissa 44 Oppilastoimikunnan kuulumisia 46 Millennium-palkinnon voittanut professori Nakamura suomalaisnuorten parissa 47 Kolmas valtakunnallinenluma-viikko Selittääkö lukusuora reaaliluvut? 52 Rapport över laborationskursen i kemi och fysik för abiturienter, Åbo Akademi Kansainväliset kemian olympialaiset Etelä-Koreassa 56 Suomelle hopea ja kolme pronssia tietotekniikan olympialaisista 58 Kommentteja kirjasta Angels and Demons 60 Benfordin laki 61 Pedagogisia huomioita 62 Uudistuksia ylioppilastutkinnon matematiikan kokeessa 64 Kirjallisuutta: Bensiinihiilivedyt Kansikuva: Timo Suvanto. Katoavaa kansanperinnettä. Uusilla LCD-näyttöisillä televisiolla ei 65 Kolleegoita myytävänä! voi enää demota magneettikentän vaikutusta liikkuvaan varaukseen kuten vanhoilla putkinäytöillä. 66 Kirjallisuutta: Matematiikka Ei voi myöskään pilata television kuvaputkea magneettia kuvaruudun vieressä 67 Pulmasivu heiluttelemalla. Julkaisija: Matemaattisten Aineiden Opettajien Liitto MAOL ry Rautatieläisenkatu 6, Helsinki PÄÄTOIMITTAJA Leena Mannila Puh VASTAAVA PÄätoimittaja: Pentti Parviainen Puh. (09) Toimitussihteeri: Jarkko Narvanne Puh. (09) Telefax (09) Paino: Forssan Kirjapaino Oy ISSN ISO 9002 Tilaukset ja osoitteenmuutokset: MAOL:n toimisto Puh. (09) Tilaushinta: Vuosikerta 40, irtonumero 10, ilmestyy 6 numeroa vuodessa Toimituskunta: Leena Mannila, pj., Kalle Juuti, Pasi Ketolainen, Jari Koivisto, Hannu Korhonen, Marika Nieminen, Juha Oikkonen, Marjut Ojala, Päivi Ojala, Kaisa Vähähyyppä, Maria Vänskä, Jarkko Narvanne, siht. Neuvottelukunta: prof. Maija Ahtee FT Maija Aksela op.neuvos Marja Montonen prof. Kaarle Kurki-Suonio prof. Aatos Lahtinen prof. Ilpo Laine prof. Tapio Markkanen rehtori Jukka O. Mattila prof. Esko Valtaoja prof. Erkki Pehkonen joht. Kari Purhonen prof. Pekka Pyykkö prof Jorma Merikoski toim.joht. Hannu Vornamo D i m e n s i o 5/2006

5 Pääkirjoitus Leena Mannila Erilaisten oppijoiden oikeus oppimiseen Matemaattisten Aineiden Opettajien Liiton pitkäaikainen puheenjohtaja ja Dimension vastaava päätoimittaja Pentti Parviainen menehtyi vaikeaan sairauteen torstaina syyskuun seitsemäntenä päivänä. Hän antoi paljon itsestään MAOL:lle ja Dimensio-lehdelle. Parviainen kirjoitti ensimmäisen pääkirjoituksensa vuoden 1994 Dimensioon. Hän toi esille ajatuksiaan yhteensä 73 pääkirjoituksessa. Hänen pääkirjoituksensa sisälsivät aina ajankohtaista asiaa matemaattisista aineista. Yhtenä viimeaikaisena huolena hänellä oli opetuksen eriyttäminen. Maassamme on nykyään erityisopetukseen siirrettyjä oppilaita Tilastokeskuksen mukaan noin 7 % koko ikäluokasta. Tämän lisäksi noin viidesosa saa osa-aikaista erityisopetusta lievien oppimisvaikeuksien vuoksi. Iso osa näistä on oppilaita, joilla on matemaattisia oppimisvaikeuksia. Suuri osa erityisoppilaista, joilla on oppimisvaikeuksia, integroidaan perusopetusryhmiin. Samalla opetusryhmien koot ovat kasvaneet säästöpaineiden alla. Tämän seurauksena kaikkien oppilaiden mahdollisuus oman tasoiseen oppimiseen on supistunut. Suurissa opetusryhmissä heterogeenisten oppijoiden henkilökohtaisen tason huomioiminen heikentyy. Tilanteesta kärsivät kaikki oppilaat. Hyvin monilla on oppimisvaikeuksia juuri matematiikassa, jonka syvällinen oppiminen perustuu ymmärtämiselle. Oppimisvaikeuksia ehkäisevässä opetuksessa aikaa tulisi käyttää erityisesti matemaattisen ajattelun opettamiselle. Matematiikan opetuksen tehtävänä on luoda hyvä perusta myöhemmälle oppimiselle. Mikäli oppimisessa havaitaan puutteita, niihin on tartuttava heti. Muutoin oppilas jää jälkeen ikätovereidensa tasosta. Jos ongelmiin puututaan liian myöhään, on vaikeaa korjata tilannetta myöhemmin. Oppimisvaikeuksien johdosta oppilaan opiskelumotivaatio ja kiinnostus matematiikkaan laskevat, mikä myös toimii oppimisen jarruna. Matematiikan oppimisvaikeuksista kärsivää oppilasta voidaan harjoituttaa antamalla hänelle sopivia tehtäviä. Tärkeää on se, että opetuksessa palataan taaksepäin ja varmistetaan mahdollisimman nopeasti niitä matemaattisia taitoja, joissa oppilaalla on vaikeuksia. Jos oppimisvaikeuksiin ei puututa ajoissa, oppilaan voi olla vaikeaa päästä takaisin samalle tasolle ikätovereiden kanssa. Toisaalta on myös muistettava nopeasti oppivat oppilaat. Matemaattisesti lahjakkaille ja motivoituneille oppilaille on koulun tarjottava riittävästi haasteita. Nykyään erityistä huomiota kiinnitetään lähinnä huonosti menestyviin oppilaisiin, kun taas hyvin menestyvien oppilaiden odotetaan sopeutuvan tilanteeseen. Tähän epäkohtaan tulisi tarttua mahdollisimman aikaisessa vaiheessa. Lahjakkaille oppilaille tulee tarjota haastavia ja vaativia tehtäviä ja töitä kiinnostuksen ylläpitämiseksi. Lahjakkailla oppijoilla on oltava mahdollisuus saada oman tasoista opetusta. Koulujen tulee tukea myös lahjakkaiden oppilaiden tarpeita ja oppimista. Oppilaiden taso ja kiinnostus on mahdollista huomioida esimerkiksi opetusryhmien joustavalla ryhmityksellä. Ryhmityksillä tulee huomioida oppilaan kiinnostus ja edistyminen opinnoissa. Myös jatko-opintoihin suuntautuminen ammatilliselle puolelle tai lukioon tulee ottaa huomioon jo peruskoulussa. Kyse on oppilaiden omien vahvuuksien ja kiinnostuksen löytämisestä ja tukemisesta. D i m e n s i o 5/2006 5

6 Pentti Parviainen D i m e n s i o 5/2006

7 Pentti Parviainen in memoriam Torstaina syyskuun seitsemäntenä saapui yllättävä suruviesti: rehtori, Matemaattisten Aineiden Opettajien Liitto MAOL ry:n puheenjohtaja, kouluneuvos Pentti Parviainen on siirtynyt ajasta ikuisuuteen kotonaan Vantaalla 61 vuoden iässä. Pentti Parviainen syntyi Helsingin Kalliossa, suoritti ylioppilastutkinnon Mannerheimintien yhteiskoulussa vuonna Sotilasarvoltaan hän oli vänrikki ja valmistui luonnontieteiden kandidaatiksi vuonna 1972 Helsingin yliopistossa. Pätevöidyttyään matemaattisten aineiden opettajaksi, hän työskenteli Helsingissä ja Espoossa opettajana kunnes siirtyi Vantaalle Martinlaakson koulun rehtoriksi vuonna Tämän työn katkaisi vakava sairastuminen tämän vuoden elokuussa. Opettajan ja rehtorin työn ohella hän teki mittavan uran Vantaan kaupungin sivistystoimen, Opetushallituksen ja Opetusministeriön asiantuntijatehtävissä sekä Matemaattisten Aineiden Opettajien Liiton palveluksessa. Hänet valittiin MAOL ry:n hallituksen jäseneksi vuonna 1986 ja vuodesta 1988 lähtien hän toimi ensin toisena varapuheenjohtajana ja sitten 12 vuotta puheenjohtajana kuolemaansa saakka. Puheenjohtajana kouluneuvos Parviainen oli vahva yhteiskunnallinen vaikuttaja. LUMA-projekti, uudistuvat opetussuunnitelmat ja ylioppilastutkinnon uudistukset työllistivät häntä paljon. Isojen ja vaativien projektien lisäksi Pentti kantoi huolta opettajien koulutuksesta. MAOL:ssa hänen vastuualueenaan ja sydäntään lähellä oli koulutus. Matemaattisten ai- neiden opettajat muistavat lähtemättömästi hänen puheenjohtajakautensa esitykset koulutuspäivillä ja seminaareissa. Pohjaa koulutustyölle Pentti oli luonut jo lääninkouluttajavuosinaan Hän oli myös aktiivinen tietotekniikan opetuksen ja käytön edistäjä. Hän kuului Interaktiivinen tekniikka koulutuksessa -konferenssin suunnitteluryhmään 14 vuoden ajan ja oli vuodesta 1995 alkaen The Finnish Academies of Technology FACTE:n koulutusryhmän jäsen. Työ niin MAOL:ssa kuin Martinlaakson koulussa ja Vantaan kaupungin koululaitoksessa merkitsi Pentille paljon. Viime vuosina hän yhä useammin puhui työn sijasta elämäntyöstä. Hän oli perusteellinen ja paneutui asioihin huolella ennen kuin otti kantaa. Hän uskalsi olla eri mieltä, olla tiukka ja tehdä vaikeitakin päätöksiä. Neuvottelutilanteissa hän kuitenkin pyrki lupsakallakin tavalla pääsemään kompromissiin tarjoamalla erilaisia ja uusia vaihtoehtoja. Ajatuksiaan Pentti toi esiin lukuisissa MAOL:n Dimensio-lehden pääkirjoituksissa toimittuaan päätoimittajana ja vastaavana päätoimittajana vuodesta 1994 alkaen. Viimeisimmässä pari viikkoa sitten ilmestyneen lehden pääkirjoituksessa hän kantoi huolta jo seuraavan vuosikymmenen asioista. Tavallinen peruskoulun oppilas oli rehtori Parviaiselle tärkeä. Hän kannusti ja rohkaisi oppimaan niin lahjakkaita kuin tukea tarvitseviakin. Ongelmallisemmat tapaukset hän hoiti jämerästi mutta ymmärtäväisesti niin rehtorina kuin opettajanakin. Tämä näkyy koulun ilmapiirissä. Ulkopuoliset yllättyvät lähiökoulun hyvästä järjestyksestä ja oppilaiden asiallisesta käytöksestä. Työtoverina Pentti oli rauhallinen ja turvallinen. Hän oli seurallinen, joskus särmikäskin, osasi kuunnella, antoi keskustelulle tilaa. Huumori oli usein hurttiakin, mutta hän osasi nauraa myös itselleen. Vaikka Pentti käytti paljon vapaa-aikaa MAOL - toimintaan, oli perhe hänelle hyvin tärkeä ja hänen sydäntään lähinnä. Sirkka-vaimon arvostaminen kuulsi hänen puheissaan ja Salla-tytär sekä lapsenlapset, Marie ja Aaro, ilahduttivat häntä erityisesti. Marien kuva oli työpöydällä tietokoneen näyttöruudulla ja Aaro-pojan syntymä kesällä 2005 oli Pentille juhlahetki. Lomat ja perhejuhlat hän vietti Jyväskylässä, joka oli muodostunut Pentille tärkeäksi paikaksi. Siellä hän sai viettää viimeisen lomansa rakkaan perheensä parissa. Martinlaakson koulusta ja Matemaattisten Aineiden Opettajien Liitosta on poistunut näkijä ja tekijä. Kouluyhteisössä ja MAOL:ssa on tyhjä tila odottamassa visionääriä ja linjanvetäjää, joka Pentin tavoin näkee kauas tulevaisuuteen. Kaipaamme syvästi työtoveria, ystävää ja yhteistyökumppania. Sirkka Parviainen, Salla Eriksson perheineen, Martinlaakson koulun ja lukion henkilökunta, Matemaattisten Aineiden Opettajien Liiton jäsenet ja henkilöstö. Juha Sola ja Irma Iho D i m e n s i o 5/2006 7

8 Dimensio-lehden voimakas uudistumiskausi Päivi Ojala, apulaisrehtori, Kalajoen lukio Vuonna 2002 perusti MAOL ry:n liittokokous kolmannen varapuheenjohtajan toimen. Kolmannen varapuheenjohtajan tehtäviin kuului liiton tiedotuksesta vastaaminen ja samalla Dimensio-lehden päätoimittajana toimiminen. Edeltävä Dimension päätoimittaja, liiton puheenjohtaja Pentti Parviainen siirtyi vastaavaksi päätoimittajaksi. Uusi päätoimittaja tuli toimituskunnan kokousten vetäjäksi ja vastaava päätoimittaja neuvottelukunnan vetäjäksi. Toimitussihteerinä sekä lehden taittajana jatkoi Jukka Noponen. Luontevaa oli myös pitää lehden painopaikkana hyväksi todettu Forssan kirjapaino. Vastaava päätoimittaja Pentti Parviainen vuonna Heti kauden alussa päätoimittajana aloin yhdessä toimituskunnan kanssa määrätietoisen lehden kehitystyön. Kehitystyö aloitettiin lehden ulkoasusta. Timo Suvannon suunnittelemat upeat teemat värittävät edelleenkin lehden kansikuvia. Esimerkiksi vuoden 2003 lehtien kansissa oli ajankohtainen veteen liittyvä luontokuva. Lehti päätettiin säilyttää nykyisen kokoisena, koska nyt se on helppo kuljettaa mukana pienessäkin laukussa ja vaikka oppikirjojen välissä. Dimensio-lehteä alettiin suunnitelmallisesti kehittää niin, että se toimisi tehokkaasti liiton tiedotuskanavana molempaan suuntaan liiton ja jäsenten välillä. Lehden toinen tärkeä tehtävä on antaa opettajalle sellaista lisätietoa, josta on hyötyä opetustyössä. Liiton suunnannäyttäjänä liiton puheenjohtaja jatkoi pääkirjoituksen kirjoittamista. Yhdessä päätoimittajan kanssa mietittiin ajankohtainen pääkirjoituksen aihe lehden sisältöä silmällä pitäen. MAOL:n jäsenten on tärkeä tietää, mitä liiton toimikunnat tekevät jäsentensä hyväksi. Tästä syystä jokainen toimikunta alkoi omassa palstassaan vuorotellen kirjoittaa toiminnastaan. Lisäksi toiminnanjohtaja kertoi liittoon liittyvistä tulevista ajankohtaista tapahtumista ja teki lyhyesti yhteenvetoa menneistä tapahtumista. Näin Dimensio-lehden imago alkoi korostua myös liiton jäsenlehtenä. Dimensio-lehti toimii myös kerhojen tiedotuskanavana, ja kerhot ovatkin laatineet kiitettävästi pulmapalstalle artikkeleita. Toivoisinkin, että kerhot jatkaisivat edelleen tämän palstan ylläpitoa ja lähettäisivät toimitukseen runsaasti matematiikkaan, fysiikkaan ja kemiaan liittyviä ongelmatehtäviä. Kerhojen omille artikkeleillekin varattiin tilaa, mutta tämä artikkelisarja ei saavuttanut kovin suurta suosiota, vaikka monissa kerhoissa on hyvin aktiivista toimintaa liittyen sekä opetukseen että vapaaajan viettoon. Vapaa-ajan virkistystilaisuuksissa tapaa kollegoja, joiden kanssa voi vaihtaa mielipiteitä ja kuulumisia. Juuri tällaisissa tilaisuuksissa saa usein hyviä ideoita ja vahvistusta omaan opetustyöhön. D i m e n s i o 5/2006

9 Suunnitteluseminaarissa annettiin mielikuvituksen lentää ja tehtiin melko lennokkaitakin artikkeliehdotuksia. Tämä vapaa ideointi auttoi vähitellen järkevän kokonaisuuden muodostamisessa. Vähitellen alkoivat julkaisuvuoden lehtien sisällöt muotoutua ja voitiin tarkentaa, missä numerossa on järkevin esittää vuosittain toistuvat artikkelien aiheet kuten valtakunnallisen 9. luokan matematiikan kokeen tulosten ja kevään ylioppilaskirjoitusten tulosten analyysit, niin että opettaja voisi käyttää tietoja hyväkseen ennen seuraavaa koetta. Kesäkursseja ja koulutuspäiviä ennakoivat artikkelit on myös oltava ajoissa koulutusta suunnittelevaa opettajaa varten. Suunnitteluseminaarissa mietittiin myös, missä numerossa alkaa uusi artikkelisarja, niin että tarjonta olisi mahdollisimman monipuolista ja päällekkäisyyksiä ei esiintyisi. Lehden sisällön merkitys alkoi tulla entistä tärkeämmäksi, koska artikkelit haluttiin saada palvelemaan lehden lukijaa työssään. Tästä syystä on erittäin tärkeää, että lehden toimikunnalla on hyvin laaja eri alojen asiantuntemus ja hyvät asiantuntijaverkostot. Toimikunnan jäsenet ovat kirjoittaneet itse tai auttaneet kirjoittajien etsimisessä niin, että on saatu mahdollisimman laaja valikoima artikkeleita matematiikan, fysiikan, kemian ja tietotekniikan alalta. Lehteen alettiin mahdollisuuksien mukaan lisätä didaktisia ohjeita jokaiseen oppiaineeseen. Lisäksi lehdessä julkaistaan ruotsinkielisiä artikkeleita ja samoin pyrittiin saamaan mukaan joitakin englanninkielisiä juttuja. Vuoden 2003 matemaattisten aineiden opettaja alkoi kirjoittaa artikkelisarjaa, jossa hän esitti ajatuksiaan vuoden jokaisessa numerossa ja tästä alkoi jokavuotinen vuoden matemaattisten aineiden opettajan artikkelisarja. Näissä artikkeleissa on ollut niin rohkaisevia ajatuksia opettajan arjesta kuin pedagogisia vinkkejäkin opetustyöhön. Jokainen vuoden opettaja on onnistunut näyttämään edustavan kuvan omasta opetusalastaan. Vuosi 2005 oli MAOL ry:n 70. ja MFKA Kustannus Oy:n 25. toimintavuosi. Juhlavuosi näkyi lehden jokaisen numeron artikkeleissa. Dimensio-lehti haastoi lukijansa kirjoituskilpailuun, jonka parhaimpia artikkeleita olemme saaneet lukea lehdestä. Kilpailun aiheina olivat MAOL ja minä, mitä MAOL on merkinnyt minulle tai Henkilö/Tapahtuma/Asia, joka on vaikuttanut ammatinvalintaani. Voidaankin sanoa, että tähän päättyi aikakausi, joka loi pohjan lehden uudelle kehitykselle, josta uusi päätoimittaja ja toimitussihteeri voivat jatkaa lehden suunnittelua. Dimensio-lehden toimittaminen on ollut hyvin mielenkiintoista ja vaihtelevaa työtä. Opetustyön ohella uuteen toimeen perehtyminen on usein työntäyteistä ja täyttänyt illat ja vienyt viikonloput. Kaiken uurastamisen tuloksen on nähnyt, kun lehti on ilmestynyt ja on voinut todeta sen olevan suunnilleen sellainen kuin odotti ja kehuja sekä moitteita on tullut tasapainoisesti. Sokea piste Ihmisellä on näkökenttäpuutos molemmissa silmissä, jota nimitetään sokeaksi pisteeksi. Sen havaitsee, kun testaa kummankin silmän näkökenttää erikseen. Sulje toinen - esim. vasen - silmä ja katso oikealla silmällä vasenta mustaa (risti) kuviota. Vie kuvaa hitaasti kauemmaksi aloittaen noin 30 senttimetrin etäisyydeltä. Sopivalla etäisyydellä vastakkaisen puolen musta kuvio näyttää katoavan. Kuvio on tällöin sokean pisteen kohdalla. D i m e n s i o 5/2006

10 Peruskoulun opetussuunnitelmakyselyn tuloksia Leena Mannila ja Hannu Korhonen Opetussuunnitelmien uudistuminen ja opetusjärjestelyjen vapautuminen ovat sekä uhka että mahdollisuus. On mahdollisuus tehdä entistä paremmin, mutta uhkana on, että hyviäkin ratkaisuja puretaan säästöpyrkimysten nimissä. Liitto seuraa valtakunnallisia selvityksiä, mutta pyrkii myös keräämään tietoa suoraan kouluilta. Tärkeimpinä syinä on, että näin päästään kysymään opetuksen järjestämisen kannalta keskeisiä asioita ja saadaan tiedot tuoreeltaan liiton ja koulujen käyttöön. Kyselyyn vastanneet Kyselyyn vastasi tammi huhtikuun aikana 61 koulua, siis vain noin kymmenesosa kaikista perusopetuksen päättövaiheen opetusta antavista kouluista. Mukana ei ollut yhtään ruotsinkielistä koulua. Tuloksia ei voida yleistää koko maahan senkään takia, että vastaajien alueellinen jakauma oli vinoutunut. Etelä- ja Länsi-Suomen läänit olivat hyvin mukana, mutta muiden läänien koulut selvästi aliedustettuina, Ahvenanmaa puuttui kokonaan. Vastaajien määrä on pieni, mutta suuruus ei olekaan itsetarkoitus. Kyselyllä pyritään yhtäältä etsimään parhaita käytänteitä ja silloinhan riittää, että muutamat vastaavat. Toisaalta pyritään kokoamaan suuntaa antavaa tietoa siitä, millaisiin ratkaisuihin kouluissa on yleensä päädytty uutta opetussuunnitelmaan käyttöön otettaessa. Tällöin taas on tärkeää, että huomattava osuus vastanneista olisi tavallisia kouluja. Kolmanneksi, ja mikä ehkä tässä kyselyssä tärkeintä, pyritään rakentamaan sähköistä kyselytapaa, jolla sekä kyselyn tekeminen että tietojen käsittely olisi mahdollisimman nopeaa ja taloudellista. Järjestelmä ei ole vielä valmis, joten oli hyväkin, että kaikki koulut eivät vastanneet tällä kerralla. Lukiokysely tulee vielä kuluvan lukuvuoden aikana. Jo nyt on opittu sen verran, että kyselystä on tiedotettava paremmin, sen on näyttävä verkkosivulla selkeämmin ja tietojen esikäsittelyä on parannettava. Parannettavaa on myös vastaamisessa. Puuttuvia tietoja oli aika paljon, 5 10 % vastanneista kysymystä kohti. Puuttuipa joistakin vastauksista koulun nimi tai esimerkiksi lääni. Vastaajien pienen määrän takia tilastoanalyysiä ei tehty, mutta sitä harjoitellaan tästäkin aineistosta tulevaa tarvetta varten. Valta-osa vastanneista kouluista (runsas 3/4) oli yläluokkien kouluja. Koulun koko vaihteli , vastanneiden jakauma suunnilleen sama kuin koko valtakunnassa. Uusi opetussuunnitelma oli otettu käyttöön jo lähes kaikissa kouluissa (enemmän kuin 9/10), yli puolessa kouluista lukuvuonna Yläluokkien matematiikan lisätunnin 3/4 kouluista oli sijoittanut yhdeksännelle luokalle, muut kahdeksannelle. Kaikille yhteistä matematiikan opetusta yli valtakunnallisen minimin tarjoaa vain 2 eli vajaa 5 % vastanneista kouluista. Matemaattis-luonnontieteellisesti painottuneita luokkia on vain muutamissa kouluissa (1/20). Matematiikka Lähes puolet kouluista tarjoaa valinnaisia matematiikan kursseja vähintään kaksi vuosiviikkotuntia; neljännes kouluista ei kuitenkaan yhtään. Kurssi on useimmiten syventävä, laajentava tai lisäkurssi, joskus osoitettu selvästi lukioon tai ammatilliseen koulutukseen pyrkiville. Tukikursseja on myös, samoin joitakin nimettyjä, esimerkiksi loogista päättelyä, pelejä tai geometrista piirtämistä. Matematiikan ryhmän keskikoko on useammassa kuin joka kolmannessa koulussa yli 20 oppilasta, alle 16 vain muutamassa. Valtaosassa (yli 9/10) kouluja matematiikkaa opetetaan kiinteissä he- 10 D i m e n s i o 5/2006

11 terogeenissa ryhmissä. Huomattavassa osassa kouluista (yli 1/3) yleisopetuksen ryhmiin on integroitu myös erityisoppilaita. Kouluavustaja on käytettävissä matematiikan tunneilla joka toisessa koulussa. Lähes puolessa kouluista (4/10) ei ole matematiikan opetukseen varustettuja luokkia. Lähes kaikissa kouluissa (95 %) tarjotaan tuki- tai erityisopetusta oppituntien aikana. Matematiikan oppisisällöt on kurssitettu runsaassa kolmasosassa kouluista. Jaksotus on yhtä yleistä, vaikka ei aina samoissa kouluissa, vaihtelua on vähän kumpaankin suuntaan. Useimmiten kurssitus ja jaksotus käyvät kuitenkin käsi kädessä, jopa niin että joku vastaaja ihmetteli asian kysymistä kahteen kertaan, sillä hänen mielestään kyse on samasta asiasta. Matematiikkaa opetetaan useimmiten koko ajan. Jaksoja, joissa matematiikkaa ei opeteta, on vain jaksolukua noudattavissa kouluissa, mutta ei niissäkään kaikissa. Tyhjien jaksojen määrä vaihtelee luokkatasoittain ja jopa luokittain. Yhtenäisiä luokkien peruskouluja on perusteltu lähinnä pedagogisilla syillä. Siksi voisi olettaa, että tällaisissa kouluissa pedagogiset ratkaisut olisivat yleisempiä. Näin ei kuitenkaan näytä olevan asianlaita, sillä matematiikan ryhmät eivät keskimäärin ole sen pienemmät eikä pedagogista ryhmittelyä käytetä yhtään yleisemmin. Kouluavustaja on käytössä vähän useammin matematiikan tunneilla, mutta yleistyksiä ei kannattane tämän materiaalin pohjalta tehdä, sillä erot ovat pienet ja koulujen määrät vähäiset. Suuntaa antavaa on ehkä kuitenkin se, että luokkien kouluissa erityisoppilaita on integroitu yleisopetuksen matematiikan ryhmiin vähän useammin eikä matematiikkaan opetukseen varustettuja luokkia ole yhtä paljon, siis päinvastoin kuin pedagogisin perustein olisi aihetta uskoa. Ainoa olennainen ero oli, että kaikki alaluokilla matematiikkaa opettavat aineopettajat olivat näissä kouluissa; vain alle puolessa näistäkin kouluista. Fysiikka ja kemia Fysiikan ja kemian lisätunti oli sijoitettu yhtä yleisesti (3/4) kahdeksannelle luokalle, sisältönä lähes kaikissa (9/10) sekä fysiikkaa että kemiaa, vain viidessä koulussa pelkkää fysiikkaa, pelkkää kemiaa ei ainoassakaan. Valinnaisen fysiikan tilanne on huonompi kuin matematiikan. Vain runsas kymmenesosa kouluista tarjoaa valinnaista fysiikkaa ja kemiaa vähintään kaksi vuosiviikkotuntia, runsas puolet kouluista ei lainkaan. Valinnaistarjonta kohdistuu pääasiassa kahdeksannelle ja yhdeksännelle luokalle ja on sisällöltään hyvin kirjavaa painottuen kuitenkin kokeellisuuteen ja ke- Lukion opetussuunnitelmakysely suoritetaan syksyn 2006 aikana. miaan kurssien nimistä päätellen: kemiaa laboratoriossa (8. tai 9.), rakennetaan elektroniikkaa (9.), kokeellinen kemia (8.), arkikemia (8.), elektroniikka (9.), fysiikan ja kemian työkurssi useassa koulussa (8.), pauketta ja rousketta (9.); tähtitiede muutamassa koulussa. Kaikille yhteistä tietotekniikkaa tarjotaan vain noin yhdessä kolmasosassa vastanneista kouluista, valinnaisaineena kuitenkin kaikissa. Kurssit keskittyvät siten luonnollisesti kahdeksannelle ja yhdeksännelle luokalle, vain hyvin harvassa koulussa on tarjontaa myös seitsemännelle luokalle, jossakin luokkien koulussa jopa viidenneltä luokalta alkaen. Opetussisällöt eivät läheskään aina selviä sellaisista kurssinimikkeistä kuin tietotekniikka, valinnainen tietotekniikka tai tietotekniikan peruskurssi. Toisaalta on myös selvästi kohdennettuja kursseja kuten tietokoneen rakenne ja toiminta, ohjelmointi, tekstinkäsittely, taulukkolaskenta, internet ja kotisivujen tekeminen. Huolehdithan, että oma koulusi osallistuu kyselyyn. Kysely löytyy MAOL:n internetsivuilta: D i m e n s i o 5/

12 Kevään 2006 valtakunnallinen 9. luokan matematiikan koe Heimo Latva MAOL ry tuotti keväällä 2006 kolmiosaisen peruskoulun yhdeksännen luokan valtakunnallisen matematiikan kokeen. Koe oli kolmiosainen, viiden tehtävän päässälaskuosa, kymmenen tehtävän peruslaskuosa ja soveltamisosa, joka sisälsi kolme yhteistä tehtävää sekä neljä valinnaista tehtävää. Palautteessa pyydettiin kokonaispistemäärien lisäksi erikseen päässälaskujen pistemäärät. Palaute kokeesta oli rakenteen osalta erittäin positiivista, mutta koetta pidettiin yleisesti erittäin vaativana. Erityisesti soveltavien tehtävien alkuun toivottiin helpompia tehtäviä. Kriteerien pohjalta tarkasteltuna valtakunnallinen tulos osoittaa tehtävien olleen varsin vaativia. Tehtävien laatijoina toimivat lehtori Pirkko Ekdahl Siilinjärveltä ja lehtori Heimo Latva Joutsasta. Opetusneuvos Leo Pahkin toimi neuvonantajana ja ohjaajana tehtävien lopullisessa muotoilussa. Palautuslomakkeen lähetti 110 koulua, joiden yhteinen oppilasmäärä oli Aineisto jakautui lähes puoliksi tyttöjen ja poikien kesken. Tyttöjä oppilaista oli 4380 ja poikia Ruotsinkielisiä kouluja palautuksessa oli vain kolme ja niiden yhteinen oppilasmäärä 271, joista tyttöjä 131 ja poikia 140. Tulokset olivat hieman heikommat kuin edellisenä vuonna ja selvästi alhaisemmat pitkäaikaista keskiarvoa. Tehtävät osoittautuivat vaikeustasoltaan jonkin verran normaalia vaativimmiksi. Valtakunnallinen keskiarvo oli 6,22 (v ,47, v ,23, v ,72, v ,87, v ,97 ja v ,06). Tyttöjen keskiarvo oli 6,17 (v ,41, v ,17, v ,75, v ,92, v ,97 ja v ,09) ja poikien 6,28 (v ,53, v ,28, v ,68, v ,83, v ,97 ja v ,02). Ruotsinkielisten koulujen keskiarvot vastaavasti: tytöt 6,28 (v ,29, v ,23, v ,49, v ,86, v ,60 ja v ,74), pojat 6,39 (v ,48, v ,46, v ,58, v ,38, v ,04 ja v ,14) ja kaikki 6,33 (v ,38, v ,35, v ,53, v ,11, v ,81 ja v ,95). Kouluittain tarkasteltaessa erot ovat edelleen erittäin suuret. Korkein keskiarvo oli 7,74 (v ,36, v ,48, v ,30, v ,62, v ,92 ja v ,78) ja alin keskiarvo 5,26 (v ,34 (v ,35, v ,82, v ,92, v ,86 ja v ,97). Ruotsinkielisillä kouluilla vastaavasti korkein keskiarvo oli 6,80 (v ,94, v ,93, v ,24, v ,08 ja v ,47) ja alin 5,87 (v ,98, v ,08, v ,46, v ,42 ja v ,19). Samalla paikkakunnalla toimivien koulujen äärikeskiarvot olivat 7,74 ja 5,76 (v ,36 ja 6,02, v ,90 ja 5,35, v ,30 ja 6,15, v ,62 ja 6,09, v ,92 ja 6,08 sekä v ,78 ja 6,62). Palautelomakkeessa tiedusteltiin ennen koetta olleen viimeisen oppilasarvostelun arvosanoja. 19 koulua jätti tämän kohdan täyttämättä. Koetulokset poikien osalta poikkesivat annetuista arvosanoista 1,00 alaspäin ja tyttöjen osalta 1,33 alaspäin, kun tarkastellaan koko populaatiota. Poikkeamat edellisiltä vuosilta olivat pojat (v ,70, v ,94, v ,62, v ,39,v ,22 ja v ,21) ja tytöt (v ,09, v ,39, v ,79 v ,60, v ,53 ja v ,36) arvosanoista alaspäin. Näyttää siltä, että tytöt saavat selvästi keskimääräisesti hieman parempia todistusnumeroita kuin pojat. Koulukohtaisessa tarkastelussa annettujen arvosanojen keskiarvo oli usean koulun kohdalla merkittävästi koetulosta korkeampi. Suurin koulukohtainen ero: todistusarvosanojen keskiarvon ja koearvosanojen keskiarvon välillä oli 2,27 (v ,29, v ,50, v ,65, v ,39, v ,69 ja v ,92), tyttöjen kohdalla 2,63 (v ,44, v ,65, v ,70, v ,54, v ,98 ja v ,07) ja poikien kohdalla suurin ero oli 2,01 (v ,00, v ,37, v ,08, v ,58, v ,60 ja v ,67). Toisin päin ei tänä vuonna eroja ollut. Erot toisinpäin aikaisemmilta vuosilta: koko koulu (v ,39, v ,09, v ,56, v ,56, v ,25 ja v ,64), tytöt (v ,28, v ,18, v ,72, v ,64, v ,14 ja v ,65) ja pojat (v ,68, v ,36, v ,79, v ,91, v ,31 ja v ,57). Ääritapaukset ovat jälleen lievässä kasvussa. 12 D i m e n s i o 5/2006

13 Seuraavassa muutama esimerkki koulujen koetuloksista ja arvosanojen keskiarvoista. Koetuloksen ja arvosanan yhtenevyys eroaa melkoisesti toisistaan useiden koulujen kohdalla. Koulu Koekeskiarvo Arvosanakeskiarvo A 5,53 7,50 B 6,68 6,70 Kuva 1. Koulujen lukumäärät koetulosten keskiarvojen mukaan v Esimerkkikoulujen ikäluokan oppilasmäärät ovat , joten kyse ei ole pienistä kouluista. Edellä olevat tulokset ovat vuodesta toiseen olleet saman suuntaiset. Todistusarvosanojen ja koetuloksen välinen ero oli pienempi tai yhtä suuri kuin 0,50 3,6 %:lla kouluista. Ero 0,20 tai pienempi ei yhtään koulua. Vastaavat prosenttiluvut 0,20 erolla vuosina olivat 1,5 %, 43,5 %, 39,5 % 27,5 % 28,9 %, 17,5 %, 4,0 % ja 4,0 %. Tästä on vedettävissä johtopäätös, että oppilasarvostelu ei ole läheskään kaikissa peruskouluissa yhdenmukaista eikä oppilaan oikeusturva ole näin ollen taattu. Asiaan ei ole tullut korjausta, vaikka Opetushallitus on laatinut kaikkiin oppiaineisiin arvosanakriteerit peruskoulun päättövaiheen keskimmäistä arvosanaa kahdeksikkoa (8) varten. Kriteerit tulivat suosituksina voimaan ja kuuluvat nyt opetussuunnitelman perusteisiin. Kriteerien tarkoituksena on juuri yhtenäistää peruskoulun päättöarvostelua. Koulujen lukumäärät koetulosten keskiarvojen mukaan esitetään kuvassa 1. Tämän kevään kokeen arvosanajakautumasta voidaan todeta oppilaiden saaneen arvosanan kahdeksan (8) tai paremman tytöistä 18,8 % ja pojista 21,9 % sekä koko populaatiosta 20,3 %. Prosenttiluvut osoittavat kevään kokeen olleen kriteerien vaatimustasoa korkeampi. Vastaavasti annetuista arvosanoista kahdeksan (8) tai paremman sai tytöistä 34,1 % ja pojista 28,8 % sekä koko oppilasjoukosta 31,4 %. Ero poikien ja tyttöjen välillä on kaventunut ollen kuitenkin edelleen tyttöjä suosiva. Tyttöjen koetulos on annettuja arvosanoja 15,3 prosenttiyksikköä alhaisempi ja vastaavasti poikien koetulos on 6,9 prosenttiyksikköä annettuja arvosanoja alhaisempi (Kuva 2). Palautelomakkeista saatiin myös oppilaiden viimeisen oppilasarvostelun numerot, joista valtakunnalliset keskiarvot muotoutuivat seuraaviksi:. Valitettavasti muutamat koulut jättivät antamatta arvosanansa. Mukana on oppilas- Kuva 2. Valtakunnallisen kokeen arvosanajakautumat. ta, joista 6565 tyttöä ja 6461 poikaa. Todistuksen keskiarvot Tytöt 7,50 7,50 7,50 7,54 7,52 7,49 7,45 Pojat 7,28 7,23 7,22 7,30 7,22 7,19 7,23 Koko populaatio 7,39 7,37 7,36 7,42 7,37 7,34 7,35 Tyttöjen todistuskeskiarvot ovat merkittävästi paremmat kuin poikien keskiarvot. Koetuloksissa tytöt olivat poikia jonkin verran heikompia. Todistusarvosanojen keskiarvot ovat vakiintuneet tyttöjen kohdalla keskimäärin 7,50 ja poikien kohdalla vähän päälle 7,20. Koko oppilasjoukon keskiarvo on vakiintunut 7,35 paikkeille. Koulujen todistusarvosanojen keskiarvo oli 81,3 %:lla (v ,2 %:lla, v ,5 %:lla, v ,6 %:lla ja v ,3 %:lla) seitsemän ja kahdeksan välillä. Näyttää siltä, että vanha ohje, keskiarvon tulee olla seitsemän ja kahdeksan välillä on sitkeästi edelleen käytössä. Kuluu varmasti useita vuosia ennen kuin kriteerit alkavat vaikuttaa annettuihin arvosanoihin (Kuva 3). D i m e n s i o 5/

14 Kuva 3. Viimeisten todistusarvosanojen jakautumat. Kuvasta 3 ilmenee arvosanan tyydyttävä 5 ja 6 pistettä, välttävä 3 ja 4 pistettä sekä heikko kymmenen olevan tiukassa. Yläpään arvosanoissa edellisistä vuosista poiketen tyttöjen osuus on Opettajien antamat lausunnot 0, 1 ja 2 pistettä. poikia suurempi. Asteikon alapäässä poikien osuus on edelleen luetaan ja näytetään kokonaisuu- puoltavat käytäntöä, jossa tehtävä merkittävästi suurempi kuin tyttöjen. Kahdeksikko näyttää muodosma opettaja oli entisen käytännön dessaan oppilaalle. Vain muutatuneen opettajienkin arvostelussa kannalla. Perusteluna heillä oli se, keskimmäiseksi arvosanaksi ja nelosia jaetaan todella vähän. naan aiheuttaa hämminkiä joissa- että tehtävän näkeminen koko- Kokeessa pyydettiin yksityiskohtaisempaa palautetta päässä- Palautelomakkeista kävi selvilkin oppilaissa. laskuista. Oph:n ylitarkastaja Leo le, että opetusryhmien koossa on Pahkinin toivomuksesta tehtävä tapahtunut muutoksia. Koulujen yhdeksännen luokan oppilais- luettiin ja näytettiin edellisvuoden tapaan kokonaisuudessaan piirtoheittimellä. Haluttiin selvittää, on- 29,6 %, v ,0 %, v.2002 ta 32,1 % (v ,2 %, v.2004 ko koko tehtävän näkemisellä positiivista vaikutusta oikean ratkai- 29,6 % ja v ,4 %) opiskeli 30,3 %, v ,3 %, v.2000 sun löytämiseen. Tuloksissa näyttää olevan melkoisesti vaihtelua. missä ja 40,8 % (v ,6 %, matematiikkaa yli 20 oppilaan ryh- Ero tyttöjen ja poikien välillä on v ,8 %, v ,1 %, vakiintumassa 0,5 poikien hyväksi. Pistekeskiarvot olivat tytöt 4,26 (v ,63, v ,24, v ,82, v ,55, v ,59), pojat 4,90 (v ,12, v ,42, v ,34, v ,79 ja v ,39) sekä kaikki 4,58 (v ,87, v ,84, v ,08, v ,68 ja v ,99). Tämän vuoden päässälaskut ovat ilmeisesti olleet normaalia huomattavasti vaikeammat (Kuva 4). Kuvassa 4 kiitettävä on 9 ja 10 pistettä, hyvä 7 ja 8 pistettä, Kuva 4. Vuoden 2006 päässälaskut. v ,5 %, v ,6 %, v ,9 % ja v ,4 %) opiskeli oppilaan opetusryhmissä. Ainoastaan 27,1 %:ssa kouluista yhdeksäsluokkalaisten oppilasryhmät olivat korkeintaan 16 oppilaan suuruisia. Tasokurssien poistuttua oppilasryhmän ylärajaksi suositeltiin 16 oppilasta. Tosiasia näyttää olevan, että tuohon suositukseen ei valtakunnallisesti tulla pääsemään, vaan päinvastoin ryhmäkoot kasvavat. Ryhmäkoko voisi olla 20 oppilaan suuruinen mikäli käytettäisiin joustavaa ryhmitystä. Joustavan ryhmityksen osuus kouluissa, joissa käytetään ryhmäkokoa yli 20 oppilasta, on edelleen varsin alhainen ollen nyt ainoastaan 19,2 % (v ,5 % v ,7 %, v ,3 %, v ,4 %, v ,6 %, v ,0 %, v ,7 % ja v ,8 %). Ryhmäkoko eikä joustava ryhmitys sittenkään näytä olevan selkeästi selittävä tekijä oppilaiden suorituksiin. Todettakoon, että 25 parhaan koulun joukosta neljä (v.2005 seitsemän, v.2004 seitsemän, v.2003 kolme, v.2002 yhdeksän, v ja v.2000 viisi) käytti joustavaa ryhmitystä ja 20 ei käyttänyt. Näistä 20:stä 10 koululla ryhmäkoko oli yli heikoimmin menestyneistä kouluista kolme käytti joustavaa ryhmitys- 14 D i m e n s i o 5/2006

15 tä. Voitaneen vetää johtopäätös, ettei suinkaan joustava ryhmitys eikä välttämättä ryhmäkokokaan ole tuonut sellaisia tuloksia, joilla sijoituttaisiin edes listan keskivaiheille. Lisäksi palautelomakkeista ilmeni, että valtaosa kouluista käytti joustavaa ryhmittelyä erityisesti yhdeksännellä kouluvuodella. Kevään kokeen tuloksista näkyy, että parhaat tulokset on saavutettu 3-sarjaisissa kouluissa. 4- ja sitä suurempi sarjaisissa kouluissa, 2-sarjaisissa kouluissa ja 1-sarjaisissa kouluissa (enintään 32 oppilasta luokka-asteella) tulokset olivat lähes yhtä hyvät. Yleisin tuntijako yläasteella oli , mutta joukosta löytyi myös muutama matematiikkaan painottanut yläaste, jossa tuntijako oli Muita variaatioita oli mm , ja 3 + 3,5 + 3,5. Kouluista 38,2 % (v ,1 %:lla, v ,1 %lla, v ,6 %:lla, v ,7 %, v ,8 %, v ,9 %, v ,9 % ja v ,6 %) tunteja oli 10 yläkoulun kaikilla oppilailla. Tuntimäärien lisäyksellä ei kuitenkaan näytä olevan tuloksiin merkittävää vaikutusta. 25 parhaan koulun joukossa 15 koululla oli 10 tuntia koko yläkoulun ajan ja yhdeksällä edelleen yhdeksän tuntia. Uuden tuntijaon tullessa käyttöön, jolloin luokille 6 9 saadaan yhteensä 14 viikkotuntia tai vastaavasti 38 tunnin kursseja 14. Kouluista lähes kaikki ilmoittivat lisätunnin sijoittamispäätöksestä. Näissä kouluissa lisätunti tullaan sijoittamaan 3,3 % seitsemännelle, 20,1 % kahdeksannelle ja 76,4 % yhdeksännelle luokalle. Osa jakaa lisätunnin kahdelle luokalle. Valinnaiskursseja oli sekä 38 tunnin että 19 tunnin ja pääasiassa kahdeksannella ja yhdeksännellä kouluvuodella lähes kaikissa kouluissa. Valinnaiskursseista valtaosa oli lukioon meneville tarkoitettuja täydennyskursseja ja geometrian kursseja. Selvitystä pyydettiin myös opetuksen järjestelyistä. Varsin monessa peruskoulussakin on siirrytty opetuksen jaksotukseen ja siten myös kurssimuotoiseen opetukseen. Hajautettu opetus oli 63,4 (v ,1 %:lla, v ,7 %:lla, v ,0 %:lla, v ,3 %, v ,0 % ja v ,6 %) vastanneista ja jaksotettu 36,6 %:lla (v ,8 %:lla, v ,3 %lla, v ,0 %:lla, v ,7 %, v ,0 % ja v ,4 %). Koulut ovat selvästi palaamassa matematiikan opetuksessa takaisin hajautettuun opetukseen, jolloin oppilaat opiskelevat matematiikkaa ilman taukoja. Useat koulut kertoivat kyseisenä vuotena palanneensa takaisin hajautettuun järjestelmään eli matematiikkaa on jokaisessa jaksossa, vaikka opetus muutoin olisi jaksotettu. 25 parhaasta koulusta vain kahdeksan käytti matematiikan opetuksessa jaksotusta. Palautelomakkeessa kysyttiin koulussa käytettyä oppikirjaa sekä mahdollista lisämateriaalia. Suosituin oppikirja oli Kolmio 30,2 % (v ,6 %, v ,7 %, v ,9 %, v ,1 %, v ,7 %, v ,7 %, v ,9 % ja v ,7 %), toiseksi suosituin Kerroin 28,3 % (v ,9 %, v ,3 %, v ,8 %), kolmantena Matematiikan maailma 15,1 % (v ,0 %, v ,2 %, v ,3 %, v ,8 %) ja Lasku-Matikainen 15,1 % (v ,4 %, v ,7 %, v ,0 %) sekä viidentenä Kartio 7,5 %. Kemian ja bioteknologian huipputapahtuma FINEXPO Ilmoitus 1/ Helsingin Messukeskuksessa Samanaikaisesti Mediayhteistyökumppani Varaa aika kalenteriin tervetuloa! D i m e n s i o 5/

16 Vargan salaisuudet paljastuvat Unkarissa Markku Oksanen, opettajaopiskelija, Helsingin Yliopisto Varga-metodilla voi opettaa monella tavalla. Siksi se onkin enemmän osa koko opetuskulttuuria, kuin yksittäinen pedagoginen metodi. Mikä ihmeen Varga metodi? Sen verran aihetta oli sivuttu Helsingin Yliopiston Soveltavan kasvatustieteen laitoksen (SOKLA) matikan aineenopettajan koulutuksessa, että tilaisuuden tullen päätin lähteä Unkariin ja Budapestiin ottamaan itse selvää. Fazekas Mihály lukio sijaitsee keskellä Pestin kaupunginosaa, pienen puistikon laidalla. Naapurina kadun toisella puolen on roomalaiskatolinen kirkko. Koulun pitkäaikainen matikan ope, Fazekas Tunde suhtautui ymmärryksellä ulkomaalaisen kollegan uteliaisuuteen - Se on unkarilainen matematiikanopetuksen menetelmä, joka minullekin opetettiin yliopistossa 1980 luvulla. Etkö ole vieraillut koulumme matikan portaalissa? Siellä on paljon tietoa meistä ja metodistamme. Hän vie minut opettajainhuoneen vieressä olevaan opettajien ATK huoneeseen. Sanon, että erityisesti minua kiinnostaisi tietää, miten Varga metodilla opetetaa yläkoulussa ja lukiossa. - Alakoulussa tällä metodilla opettaminen on kaikkein näyttävintä, koska siellä siihen kuuluu erilaisia pelejä ja leikkejä, jotka ovat suoraan osa opetusta. Tunde näyttää alakoulun matematiikan sivuja netistä. - Mutta sinua kiinnostaa siis vart- Fazekas Tunde oppilaidensa kera. Luokka 8 c. tuneempien opettaminen; en juuri nyt löydä netistä tietoa siitä. Mutta kyllä me opetamme Varga metodilla myös yläkoulussa ja lukiossa. Metodin käyttö siellä on hieman erilaista, kuin mitä se on pienillä lapsilla, jotka vasta tutustuvat matematiikkaan ja sen kieleen. Hän kertoo minulle mahdollisuudesta tulla heti huomenna kuuntelemaan yläkoulun ja lukion tunteja. Otan tietenkin tarjouksen hanakasti vastaan. - Mutta huomenna sinun pitää olla sitten täällä jo ennen kahdeksaa, koska tulee myös eräs ryhmä suomalaisia ja tuntien alkua ei voi vedättää. Lupaan olla ajoissa paikalla, vaikka majapaikastani onkin yli tunnin matka kouluun ratikoilla, metrolla ja bussilla. - Älä kuitenkaan odota tunneilta liikoja, koska kuten jo sanoin, ylemmillä luokilla opetus on enemmän tietopohjaista ja metodin käyttö ei ole niin näyttävää kuin alaluokilla. Tunde lisää vielä. Vargaa käytännössä 1. Tunti. Seuraavana päivänä juoksen hikipäässä puistikon poikki kouluun; olen pari minuuttia myöhässä. Alaaulassa minua odottaa jo eilen tapaamani rehtorin sijainen. Suomalaisryhmää ei kuitenkaan näy. Heidän majapaikastaan oli saatu tieto, että ryhmä ei olekaan tullut. Pääsen kuitenkin seuraamaan tunteja. Varga Tamàs luvulla matemaatikko Tamàs (Thomas) Varga ja hänen työryhmänsä, johon kuuluivat mm. Nemènyi Eszter ja Szendrei Julianna kehittivät uuden matematiikan opetuksen menetelmän, joka toi matematiikan opetuksen jo alaluokille. Varga ja kollegat huomasivat edeltävissä tutkimuksissaan, että vaikka opiskelijat osasivatkin laskea hyvin, heidän ajattelunsa oli kaavamaista ja näin ollen siitä puuttui luovuus. Lisäksi opiskelijoiden ongelmantunnistus, -käsittely ja ratkaisutaidot olivat heikot. Opiskelijat eivät pitäneet matematiikasta, ja heidän matematiikanopiskelulleen tunnusomaista olivat monet epäonnistumiset. Uusi opetusmetodi merkitsi paitsi uusia välineitä matematiikan opetukseen, myös vaatimuksia opettajalle uusien välineitten luovaa käyttöä ajatellen. Tämä merkitsi käytännössä tuntien ja ajankäytön entistä parempaa suunnittelua. lähde: alsos.fazekas.hu 16 D i m e n s i o 5/2006

17 Kahdeksalta pääsen seuraamaan 9 c. (eli lukion ensimmäinen) luokan tuntia, aiheena ovat erilaisiin peleihin ja matemaattisiin arvoituksiin liittyvät algoritmit. Opettaja on Hraskó András, nuorehko, tuoreella väitöskirjalla varustettu mies. Koko tunti (45 min.) kuluu kahden kotitehtävän ratkaisemiseen. Ensimmäinen on Viimeinen tikku pelin eräs variaatio, jossa pitää tietenkin keksiä voiton tuottava algoritmi. Opettajajohtoisesti kyselemällä käydään läpi pelin eri tilanteita, joista ope kehittelee taululle formaalin järjestelmän. Sitten pohditaan, mitä pelin eri tilanteissa kannattaa kulloinkin tehdä, että päästään omalta kannalta suotuisaan vastavuoroon. Tähän pelin kulun pukemiseen formaaliin muotoon, logiikkaan ja induktioon kuluu aikaa 20 min. Toinen käsiteltävä ongelma on Rubikin kuutio. Tutkitaan tilannetta, jossa ratkaistua kuutiota sekoitetaan tietyn algoritmin mukaan. Kysymys kuuluu, onko mahdollista, että kuutio palautuu tietyn siirtosarjan jälkeen jälleen alkutilanteeseen, eli ratkaistuksi. Tätä mahdollista periodisuutta etsitään suunnilleen samalla metodilla, kuin äskenkin, erona on se, että oppilaat tulevat nyt taululle piirtämään ja selittämään omia ratkaisuyrityksiään. Tunnilla huokuu opiskelijoitten aktiivisuus ja perehtyneisyys asiaan. Kotitehtävät on tullut tehtyä ajallaan. Opettaja kyselee satunnaisesti mielipiteitä, ja jokaisella kysytyllä on jotain sanottavan asiaan liittyen. Myös viittaaminen on ahkeraa. Luokassa on suurin piirtein yhtä paljon poikia ja tyttöjä. Joku oppilaista uskaltaa jopa väittää, että siirtosarjasta riippumatta kuutio palautuu aina järjestetyksi. Väite saa tohtorin jo innostumaan ja hän kannustaa oppilastaan jatkamaan kertomaan, miten oli noin rohkean ajatuksen keksinyt. Tunnin jälkeen vaihdan muutaman sanan opettajan kanssa. Kerron hänelle, ettei Suomessa opeteta näin juuri koskaan; tällaiseen ei yksinkertaisesti ole aikaa. András kertoo vakavalla ilmeellä pitäneensä ihan tavallisen opetustunnin. Toki hän myöntää vetävänsä joskus ihan tavallisiakin tunteja. Hänen mielestään yksi juuri nähdyn ongelmaperustaisen opetuksen etu on, että siinä tulee kerratuksi useita tärkeitä teemoja samalla tunnilla. Menen koulun käytävään ja alan etsiä seuraavan tunnin luokkaa. Silmiini osuu taas rehtorin sijainen; pieni pallomainen mies, joka on innoissaan: Suomalainen ryhmä on saapunut. Ryhmä koostuu parista kymmenestä erityisopettaja tytöstä Jyväskylän Yliopistosta. Ainakin erityisopettajuus tuntuu olevan tukevasti naisten hellissä käsissä. Sulaudun ryhmään muitta mutkitta; suomalaisia tulee vastaan nykyään maailman joka kolkassa. Tyttöjen aika tuntuu kuluvan erityisopettamisen funktion selittämiseen unkarilaisille isännille. Lukion ensimmäisen luokan (9 c) oppilaita ratkomassa rubikin kuutiota. Opettaja Hraskò Andràs oikealla. 2. Tunti: Funktion kuvaaja, leikkauspisteet, yhteiset pisteet ja tangentti Luokka 11 c. (lukion kolmas) opettaja Pataki János. Tämä muistuttaa jo kotoisia matematiikan tunteja. Ensin edetään aiheeseen yrittämällä löytää suoran ja kolmannen asteen funktion kuvaajan yhteisiä pisteitä. Tähän käytetään 20 min., ja sen aikana moni opiskelija käy taululla yrittämässä viedä tehtävää ratkaisua kohden. Kun yhteiset pisteet on löydetty, mennään tunnin varsinaiseen aiheeseen ja pohditaan, leikkaavatko funktiot näissä pisteissä vai sivuavatko ne vaan toisiaan. Tunnin päätteeksi opettaja antaa kotitehtäviä. 3. Tunti: kertaustunti, 8 c. peruskoulun viimeinen luokka Kilpailumielinen kertaustunti. Oppilaat tekevät ryhmissä monisteen, jossa on 8 tehtävää, joista kaksi sanallista, neljä geometriaan liittyvää ja kaksi yhtälöryhmää. vastauksista muodostuu ristikon ratkaisu, ensimmäisenä oikein ratkaissut ryhmä saa yllätyspalkinnon (palkinto piti hakea luokan ulkopuolelta, ilmeisesti keittiöstä tai kahvilasta). Tehtävän ratkaisuun käytettiin n. 20 min., loppuaika tunnista (45 min. tämäkin) meni tarkistukseen. Tunnin pitäjä, vanha tuttuni Fazekas Tunde ei myöskään unohda rasittaa oppilaitaan kotitehtävillä. Johtopäätökset Oikeastaan vain aamutunnista tuli minulle vargamainen olo, kaksi muuta tuntia olisin ehkä saattanut käydä seuraamassa jossain kotisuomessakin. Oppisivatko suomalaiset oppilaat sitten vargamaisella tunnilla? Ehkä, ehkä ei. Jos oppilaat olisivat kotonakin yhtä innoissaan kuin Fazekas matikkakoulussa, oppiminen ja opettaminen olisi helppoa. Nythän Suomessa usein yläkoulussa ja vielä lukiossakin matikan tunnit perustuvat suoraan mallioppimiseen: Opettaja selittää uuden opittavan asian ja näyttää yhden D i m e n s i o 5/

18 tehtävän malliksi. Sen jälkeen oppilaat tekevät muutaman samanlaisen vihkoihinsa. Yksikään Unkarissa seuraamani tunti ei ollut suoraa mallioppimista, vaan opettaja edellytti oppilailta aktiivista osallistumista ja ajattelua. Tällainen tapa opettaa vaatii myös opettajalta hieman enemmän, kuten dr. Hraskó András huomasi kohdatessaan opiskelijan taholta heitetyn uuden haasteen Rubikin kuution tilaisotropiaa ratkoessaan. Fazekas Mihaly lukion pääportti. Varga metodin periaatteet: 1. Aktiivinen kokemuksellisuus Metodin tärkein periaate on käytäntöön pohjautuva, aktiiviseen kokemusten keräämiseen perustuva oppiminen. Toiminta käsin kosketeltavilla objekteilla muokkaa ajatustoimintoja. Lapsi oivaltaa toimintansa kautta, miten hänen ajatuksensa rakentuvat. Tavoitteena on, että toimimalla tapahtuvassa tiedon keräämisessä lapselle jää muistikuva kaikista tärkeistä matematiikan käsitteistä, jonka muistiinpalautus myöhemmin auttaa paitsi ratkaisemaan tehtäviä, myös tekee mahdolliseksi uusien käsitteiden oppimisen. Koulu on aivan Pestin kaupunginosan keskustassa, siksi piha on pieni ja vaatimaton. 2. Välineiden runsas ja laajapohjainen käyttö Edellä esitettyjen tavoitteiden saavuttamisen mahdollistaa välineistön laaja skaala ja välineitten runsas käyttö oppitunneilla. Matematiikka liittyy kaikkeen elämässä. lapsen ympäristö on matematiikkaa. Opetuksen välineet voivat olla vakioita, kuten värisauvat, logiikkasarja tai (leikki) rahat. Välineet voivat myös olla tilapäisiä, kuten esim. tikapuut tai naulakosta tehty vaaka. Välineiden tulee olla helppokäyttöisiä ja niiden käytön opettamiseen tulee kiinnittää erityistä huomiota. 3. Yhtenäinen ja laaja perusta Eräs tärkeä periaate on yhtenäisen ja laajan perustan luominen matematiikan oppimista varten. Laskento on vain yksi osa matematiikasta. Lapsen matemaattisen ajattelun kehittäminen vaati kuitenkin laajempaa pohjaa. Varga metodissa on paikka kaikille tärkeille teemoille: Joukko-oppi, logiikka, funktiot, jonot, kombinatoriikka, todennäköisyydet, tilastot, geometria, mittaukset. Keskeiset teemat ovat lukujen ja laskutoimitusten oppiminen käsitetasolla sekä laskutoimitusten muokkaaminen. Useat muut teemat palautuvat tähän tavalla tai toisella. Fazekas Mihály harjoittelukoulu (normaalikoulu) 1911 Aloitti kuusiluokkainen poika - ja tyttökoulu. Samaan aikaan rakennuksessa aloitti myös pedegoginen seminaari. Toisessa Maailmansodassa koulu tuhoutui täysin, mutta pystyi aloittamaan uudelleen jo Vasta 1948 tuhot saatiin täydellisesti korjattua. Myös 1956 kansannousu aiheutti keskeytyksen koulun toimintaan. Koulun kuuluisaksi tehnyt matematiikkalinja aloitti Nykyään koulu on valtionkoulu, jossa harjoittelevat tulevat opettajat. Jo valmistuneille järjestetään täydennyskoulutusta. Koulussa toimii ala- ja yläkoulu, jotka Unkarissa käsittävät 8 vuosiluokkaa. Koulussa toimii myös lukio. Lukiossa on mahdollista valita joko 4 tai 6 vuosiluokkaa. Lukio alkaa joko 6 tai 8 peruskouluvuoden jälkeen. Alakouluun pääsee hakemuksesta ilman pääsykoetta, mutta lukioon haluavilla on pääsykoe. Kolmasosa hakijoista pääsee opiskelemaan. Koulu on erikoistunut matematiikan opetukseen, (kuusivuotinen lukiolinja) ja sinne pääsevät opettajistakin vain parhaat. Opettajat opettavat myös auskultantteja, koska Unkarissa yliopistossa opitaan vain aineiden teoria; opettaminen on opittava käytännössä. Unkarissakin koulusysteemi on EU-jäsenyyden myötä muutosten kourissa. Maasta puuttuu esim. yhtenäinen lukiojärjestelmä. Erityisoppilaille on omat koulunsa, mutta nyt heidät olisi integroitava yleisopetukseen. Lähde: fazekas.hu 18 D i m e n s i o 5/2006

19 Muutamat teemat, kuten geometria, kombinatoriikka ja todennäköisyyslaskenta esiintyvät omina lukuinaan opetussuunnitelmassa, ja niiden opiskelu tarkoittaa ensisijaisesti käsitteenmuodostusta ja kokemuksen kartuttamista. Näitä ei ole opetussuunnitelmassa kahden ensimmäisen vuosiluokan aikana. Opetussuunnitelman teemoihin liittyvää lasten aktiivista toimintaa ei ole rajattu. Tärkeää on eri toimintatapojen kokeilu ja toiminnan tarkkailu. Siten opettaja voi tulla vakuuttuneeksi toimintatavan hyödyllisyydestä, koska lapsi näkee ja kokee; ymmärtää. 4. Eri ikäkausien tyypillisten kehitysvaiheiden huomioiminen Tämä ei liity pelkästään menetelmään, vaan pedagogiaan yleensä. Pitää ottaa huomioon 6-12 vuotiaiden henkinen taso ja kypsyys, täytyy ottaa selvää siitä, mitä asioita ja käsitteitä he jo tuntevat, millainen on heidän sanavarastonsa. Ei saa unohtaa huomioida heidän tarkkaavaisuutensa kestoa ja laajuutta. Lapset pitää myös ottaa huomioon yksilöinä. Pitää hyväksyä lapsi yksilönä ja kehittää jokaista lasta hänen omalta tasoltaan lähtien. Juuri tästä juontuu se periaate, että opettamisen pääasiallinen toimintatapa on toiminnallisuus eikä valmiiden selitysten antaminen. Muuttamalla opetusmetodeja ja tyylejä on mahdollista sopeuttaa opetus lasten eri kehitysvaiheisiin: Ensiluokkalaisten tarkkaavaisuus kestää korkeintaan min. Nelosten kymmenvuotiaidenkin vielä maksimissaankin vain 20 min. Kiinnostavilla ja kehittävillä peleillä voi turvata oppimisen leikkimielisyyden. Onhan pelaaminen ja leikkiminen osa lapsen luontoa. Tämä ei kuitenkaan merkitse hellittelyyn tai lepertelyyn sortumista. On tärkeää käyttää kieltä, jota lapsi ymmärtää. Esim. ei tarvitse sanoa joukko, voi puhua lajittelusta tai kasoista. Kuusivuotiaalle on turha puhua relaatiosta, sen sijaan voi pyytää lasta näyttämään esim. pidemmän sauvan, vaaleammat hiukset tms. 5. Käytännöstä abstraktiin Tärkeä periaate on abstraktioiden muodostaminen oppiaineksesta. Alaluokilla oppiminen ja käsitteisiin tutustuminen voi olla vain induktiivista. Tämä seikka määrää alkeistason matematiikanopetuksen metodiset periaatteet (välineistö, lapsen oman tempon ja tunnistus- sekä ajattelutapojen huomioiminen, abstraktioiden muodostuskyky ja avuntarve). Oppiaineksen huolellinen suunnittelu varmistaa käsitteiden oppimisen pitkällä aikavälillä. Samat opetusteemat toistuvat, vain näkökulma niihin muuttuu. Alkeiden päälle rakentuu uutta oppisisältöä, kunnes matemaattinen käsite varsinaisesti määrittyy ehkä vuotiaalle. Esim. todennäköisyyslaskenta alakoulussa on pelkästään havainnointia ja huomioimista, vasta lukiossa alkaa varsinainen laskeminen, kaavat ja kypsynyt käsite. Matematiikan oppimisvaikeuksiin on syynä se, että abstrahoimisketju katkeaa jossain vaiheessa. Muutama tärkeä oppimiskokemus jää pois, sen ajan täytti ehkä luentomainen opetus. Tamás Vargan yksi oivallus oli, että alakoulussa pitää opettaa muutakin kuin vertailemista ja laskentoa. On tärkeää saada kokemuksia myös muilta matematiikan osaalueilta, koska on tärkeää, että kokemuksia kertyy pitkältä ajanjaksolta. Esimerkkinä voisi tarkastella murtolukuja osana oppiainesta. Ensimmäisen luokan oppilas käyttää samankokoisia palikoita laskiessaan. Toisella luokalla palikoita aletaan jakaa. Yksi palikkakin jaetaan, ensin puoliksi ja sitten neljään osaan. Kolmannella luokalla tutustutaan yksikkömurtolukuihin ja niiden monikertoihin. Neljännellä pääteemana ovat murtolukujen nimeämistavat ja murtolukujen täydentäminen yhdeksi tai kahdeksi kokonaiseksi. Viidennellä ja kuudennella vuosiluokalla aletaan suorittamaan laskutoimituksia positiivisilla ja negatiivisilla murtoluvuilla. Konkreettisten kokemusten kerääminen on vain yksi abstrahointiprosessin vaihe, ja on tärkeää että prosessi etenee vaihe vaiheelta: luova toiminta, leikkiminen rakentaminen (palikat toim. huom) havainnollistaminen piirtämällä tunnuksin tapahtuva havainnollistaminen oppilaan muistiinpanot luvuilla tai tunnuksilla Abstrahointiprosessi ei tarkoita suoraviivaista etenemistä konkreettisesta toiminnasta sen kuvaamiseen erilaisin tunnuksin. Sama teema toistuu toisella tunnilla, toisenlaisena toiminnallisuutena, toisina lukuina siihen asti, kunnes itse abstrahoitava laskutoimitus tai käsite tulee käsitettäväksi monen eri yhteyden kautta. Eri tehtävien lomassa tarjoamme lapselle mahdollisuuksia palata taaksepäin, lähemmäksi konkretiaa, niin kauan kuin tähän on tarvetta. Näin voimme kulkea abstrahointiprosessia myös toiseen suuntaan: Abstrahoituihin tunnuksiin lukuihin ja laskutoimituksiin voi kysyä konkreettista havoinnollistamista ja selitystä. Näiden periaatteiden kanssa käsi kädessä kulkee välineistön monipuolinen käyttö. D i m e n s i o 5/

20 6. Erehtymisen vapaus, väittely Koko matematiikanopetuksessamme on periaatteena vapaus erehtymiseen. Erehtyminen kuuluu luonnollisena osana oppimiseen. Erehtymisen korjaamme oikeaoppisesti siten, että johdamme lapsen uudelleen loppuun asti abstrahointiprosessissa. Näin hän itse näkee syyn erehtymiseensä ja osaa korjata sen. Esimerkki: Kun leikimme kauppaa, meillä on muutamia tuotteita: 1 kg jauhoja, sokeria, riisiä, ½ kg. korppujauhoa ja 1,5 kg. omenoita korissa. Punnitsemme kunkin tuotteen erikseen ja laitamme takaisin koriin. Kun kysymme lapsilta, paljonko kori painaa, joku sanoo koria kg. painoiseksi. Emme arvoi vastausta, vaan punnitsemme uudelleen. Uudelleen punnitsemisten jälkeen lapsi on huvittunut omasta virheestään, koska yhteispainon olisi voinut helposti laskea. Tamás Vargan klassinen esimerkki havainnollistaa, kuin suhtaudumme lapsen erehdykseen: Jos vähän varttuneemmalta lapselta kysymme, paljonko on 100 x 100, ja hän vastaa 1000, emme korjaa vastausta, vaan kysymme häneltä, paljonko on 10 x Emme korjaa, vaan johdatamme virheen korjaukseen. Kun lapsi itse näkee ja löytää, hän osaa myös korjata. Ei sanota, että huono, typerä vastaus, korkeintaan sen verran, että tapahtui erehdys. Tunnilla tapahtuva väittely vei ongelmanratkaisua eteenpäin, auttaa oppimisessa ja luuo edellytykset yksilön tasapainoiselle kehitykselle. Keskustelu ja väittely mah- dollistaa vapautuneessa ilmapiirissä oppimisen. Lähde: alsos.fazekas.hu Kemian työ. Unkarilaiset ovat ylpeitä matemaatikoistaan ja luonnontieteilijöistään. ENERGIA LIIKENNE YMPÄRISTÖ MAOL Kevätpäivät Kouvolassa Paikka Kymenlaakson ammattikorkeakoulu Liiketalous, Kouvola Business Campus Aika Pe klo 16- La klo 9-16 Luentoaiheina mm. Logistiikka, polttoaineet, lääkekemia, ilman aerosolit ja sulautetut järjestelmät Viihdettä Kouvolan kaupunkikierros Iltajuhla Upseerikerholla Lisätietoja Tervetuloa 20 D i m e n s i o 5/2006

tehdä itsensä tunnetuksi aktiivisena, jäsenistään huolehtivana ja vastuunsa kantavana järjestönä.

tehdä itsensä tunnetuksi aktiivisena, jäsenistään huolehtivana ja vastuunsa kantavana järjestönä. MAOL TIEDOTTAA Liiton tavoitteena on sisäisen ja ulkoisen tiedotuksen avulla tehdä itsensä tunnetuksi aktiivisena, jäsenistään huolehtivana ja vastuunsa kantavana järjestönä. Liiton eri tiedotuskanavat

Lisätiedot

Äidinkielen valtakunnallinen koe 9.luokka

Äidinkielen valtakunnallinen koe 9.luokka Keväällä 2013 Puumalan yhtenäiskoulussa järjestettiin valtakunnalliset kokeet englannista ja matematiikasta 6.luokkalaisille ja heille tehtiin myös äidinkielen lukemisen ja kirjoittamisen testit. 9.luokkalaisille

Lisätiedot

työskentelee matemaattis-luonnontieteellisen suomalaisessa yhteiskunnassa.

työskentelee matemaattis-luonnontieteellisen suomalaisessa yhteiskunnassa. TOIMINTA-AJATUS AJATUS MAOL ry on pedagoginen ainejärjestö, joka työskentelee matemaattis-luonnontieteellisen kulttuurin ja osaamisen puolesta suomalaisessa yhteiskunnassa. 18 LIITTOKOKOUS kerhojen edustajat

Lisätiedot

Mika Setälä Lehtori Lempäälän lukio

Mika Setälä Lehtori Lempäälän lukio LOPS 2016 matematiikka Mika Setälä Lehtori Lempäälän lukio Millainen on input? Oppilaiden lähtötaso edellisiin lukion opetussuunnitelmiin nähden pitää huomioida kun lukion uutta opetussuunnitelmaa tehdään.

Lisätiedot

Pohjoisen yhteistyöalueen kommentteja perusopetuksen kieliohjelmaluonnoksesta. Laivaseminaari 27.11.2014

Pohjoisen yhteistyöalueen kommentteja perusopetuksen kieliohjelmaluonnoksesta. Laivaseminaari 27.11.2014 Pohjoisen yhteistyöalueen kommentteja perusopetuksen kieliohjelmaluonnoksesta 1 A1-kielenä kaikilla oppilailla alkaa englanti. Nykyiseen tuntijakoon verrattuna vuoden 2016 tuntijaossa yksi vuosiviikkotunti

Lisätiedot

Joustavien opetusjärjestelyiden kehittäminen

Joustavien opetusjärjestelyiden kehittäminen Joustavien opetusjärjestelyiden kehittäminen - oppilaslähtöinen näkökulma Helsinki 27.4.2012 Marja Kangasmäki Kolmiportainen tuki Erityinen tuki Tehostettu tuki Yleinen tuki Oppimisen ja koulunkäynnin

Lisätiedot

MAOL ry / Rautatieläisenkatu 6 / 00520 Helsinki / puh. 09 150 2338 / www.maol.fi / maol-toimisto@maol.fi

MAOL ry / Rautatieläisenkatu 6 / 00520 Helsinki / puh. 09 150 2338 / www.maol.fi / maol-toimisto@maol.fi 75 vuotta 2010 MAOL ennen MAOL perustetaan Kerhotoiminnan alkuvaiheet Kerhojen perustamisvuodet Liiton toiminnan alkuvaiheita Liiton hallituksen puheenjohtajat Toimintaa 70- ja 80-luvulla MAOL-julkaisut

Lisätiedot

Luova opettaja, luova oppilas matematiikan tunneilla

Luova opettaja, luova oppilas matematiikan tunneilla Luova opettaja, luova oppilas matematiikan tunneilla ASKELEITA LUOVUUTEEN - Euroopan luovuuden ja innovoinnin teemavuoden 2009 päätösseminaari Anni Lampinen konsultoiva opettaja, Espoon Matikkamaa www.espoonmatikkamaa.fi

Lisätiedot

Perusopetuksen matematiikan pitkittäisarviointi 2005-2012

Perusopetuksen matematiikan pitkittäisarviointi 2005-2012 5.10.2015 MAOL RAUMA / JoJo 1 Perusopetuksen matematiikan pitkittäisarviointi 2005-2012 5.10.2015 MAOL RAUMA / JoJo 2 Opetushallitus Koulutuksen seurantaraportti 2013:4 5.10.2015 MAOL RAUMA / JoJo 3 1

Lisätiedot

Kielten opiskelu Oulussa

Kielten opiskelu Oulussa Kielten opiskelu Oulussa Kielten nimitykset Varhennettu leikinomainen ja toiminnallinen kielenopetus 1. tai 2. luokalla (koulukohtainen) A-kieli (A1) on peruskoulun ensimmäinen vieras kieli, joka alkaa

Lisätiedot

Perusopetuksen fysiikan ja kemian opetussuunnitelmien perusteiden uudistaminen

Perusopetuksen fysiikan ja kemian opetussuunnitelmien perusteiden uudistaminen Perusopetuksen fysiikan ja kemian opetussuunnitelmien perusteiden uudistaminen Tiina Tähkä tiina.tahka@oph.fi MAOL Pori 6.10.2012 1 Perusopetuksen fysiikan ja kemian opetussuunnitelmien perusteiden uudistaminen

Lisätiedot

Valinnaisopas Lukuvuosi 2015 2016 Veromäen koulu

Valinnaisopas Lukuvuosi 2015 2016 Veromäen koulu Valinnaisopas Lukuvuosi 2015 2016 Veromäen koulu 7.luokka Johdanto Valinnaisina aineina voidaan opiskella yhteisten oppiaineiden syventäviä tai soveltavia oppimääriä, useasta oppiaineesta muodostettuja

Lisätiedot

Opetuksen pyrkimyksenä on kehittää oppilaiden matemaattista ajattelua.

Opetuksen pyrkimyksenä on kehittää oppilaiden matemaattista ajattelua. Matematiikkaluokkien opetussuunnitelma 2016 Alakoulu Matematiikkaluokilla opiskelevalla oppilaalla on perustana Kokkolan kaupungin yleiset matematiikan tavoitteet. Tavoitteiden saavuttamiseksi käytämme

Lisätiedot

Opiskelu Vantaankosken koulussa

Opiskelu Vantaankosken koulussa Opiskelu Vantaankosken koulussa tulevat 7. luokat Lukuvuosi 2015 2016 Sisältää koululle palautettavan taustatietolomakkeen! Hei, sinä tuleva seitsemäsluokkalainen! Me Vantaankosken koulun opettajat toivotamme

Lisätiedot

TVA LOMAKKEET SELITYKSINEEN 2015

TVA LOMAKKEET SELITYKSINEEN 2015 TVA LOMAKKEET SELITYKSINEEN 2015 TVA-LOMAKKEET JA NIIDEN KÄYTTÖ 2015 Tämän vuoden TVA-lomakkeissa on vain pieniä muutoksia. Lomakkeiden lisäksi niistä on kirjoitettu tarkennukset erilliselle lomakkeelle.

Lisätiedot

Yhtenäiskoulu. Louhentie 3 00610 HELSINKI PL 3312 00099 HELSINGIN KAUPUNKI. www.ynk.edu.hel.fi YHTENÄISKOULU. opas. peruskoulun.

Yhtenäiskoulu. Louhentie 3 00610 HELSINKI PL 3312 00099 HELSINGIN KAUPUNKI. www.ynk.edu.hel.fi YHTENÄISKOULU. opas. peruskoulun. Yhtenäiskoulu Louhentie 3 00610 HELSINKI PL 3312 00099 HELSINGIN KAUPUNKI www.ynk.edu.hel.fi YHTENÄISKOULU opas peruskoulun luokille 7 9 Yhtenäiskoulun 7. - 9. luokkien tuntijako Vuosiluokka 7 8 9 Kaikille

Lisätiedot

DimensioMatemaattis- 3/07. luonnontieteellinen. aikakauslehti. 71. vuosikerta. Irtonumero 10

DimensioMatemaattis- 3/07. luonnontieteellinen. aikakauslehti. 71. vuosikerta. Irtonumero 10 luonnontieteellinen aikakauslehti 71. vuosikerta DimensioMatemaattis- 3/07 Irtonumero 10 Dimensio Matemaattisluonnontieteellinen aikakauslehti 71. vuosikerta 3/2007 5 Pääkirjoitus...Leena Mannila 6 Kokkolan

Lisätiedot

Ohjaus, eriyttäminen ja tuki liikunnassa Terhi Huovinen, Jyväskylän yliopisto

Ohjaus, eriyttäminen ja tuki liikunnassa Terhi Huovinen, Jyväskylän yliopisto 4.11.2015 Liikkuva koulu seminaari Hämeenlinna Ohjaus, eriyttäminen ja tuki liikunnassa Terhi Huovinen, Jyväskylän yliopisto Vähän liikkuville liikuntatunnit merkityksellisiä: Vapaa-ajallaan fyysisesti

Lisätiedot

Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009

Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009 Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009 Anastasia Vlasova Peruskoulun matematiikkakilpailutyöryhmä Tämän työn tarkoituksena oli saada käsitys siitä,

Lisätiedot

Erityistä tukea saavan oppilaan arvioinnin periaatteet määritellään henkilökohtaisessa opetuksen järjestämistä koskevassa suunnitelmassa (HOJKS).

Erityistä tukea saavan oppilaan arvioinnin periaatteet määritellään henkilökohtaisessa opetuksen järjestämistä koskevassa suunnitelmassa (HOJKS). 8. OPPILAAN ARVIOINTI 8.1. Arviointi opintojen aikana 8.1.1. Tukea tarvitsevan oppilaan arviointi Oppimisvaikeudet tulee ottaa huomioon oppilaan arvioinnissa. Tämä koskee myös oppilaita, joiden vaikeudet

Lisätiedot

Perusopetuksen päättövaiheessa maahan tulleiden opetusjärjestelyt II

Perusopetuksen päättövaiheessa maahan tulleiden opetusjärjestelyt II Perusopetuksen päättövaiheessa maahan tulleiden opetusjärjestelyt II Esimerkkejä Vaasa: Nivelluokat Jyväskylä: JOPO mmt oppilaille Kontiolahti: Jatkoluokat MOKU 18.9.2009 Vaasan nivelluokat 1 Nivelluokat

Lisätiedot

Kolmiportainen tuki alakoulun arjessa. 29.3.2012 Ikaalinen

Kolmiportainen tuki alakoulun arjessa. 29.3.2012 Ikaalinen Kolmiportainen tuki alakoulun arjessa 29.3.2012 Ikaalinen Ohjelma Klo 14-14.20 Yleinen, tehostettu ja erityinen tuki opetussuunnitelman perusteissa aluekoordinaattorit Marika Korpinurmi, Mari Silvennoinen

Lisätiedot

Kota- hanke. Kohdennetun tuen antaminen

Kota- hanke. Kohdennetun tuen antaminen Kota- hanke Kohdennetun tuen antaminen 1 Joustava yksilöllisen llisen oppimisen pienryhmä Toiminnan tavoitteena on: Lähikouluperiaatteen turvaaminen/säilytt ilyttäminen ja soveltaminen Torkinmäen koululle

Lisätiedot

A2-kielen valinnoista ja opetuksesta

A2-kielen valinnoista ja opetuksesta A2-kielen valinnoista ja opetuksesta A2-kieli A2-kieli alkaa 5. luokalta ja sitä opiskellaan kaksi tuntia viikossa viidennellä ja kuudennella luokalla. Opiskelu jatkuu 9. luokan loppuun saakka. Metsokankaan

Lisätiedot

Näkökulmia tietoyhteiskuntavalmiuksiin

Näkökulmia tietoyhteiskuntavalmiuksiin Näkökulmia tietoyhteiskuntavalmiuksiin Tietotekniikka oppiaineeksi peruskouluun Ralph-Johan Back Imped Åbo Akademi & Turun yliopisto 18. maaliskuuta 2010 Taustaa Tietojenkäsittelytieteen professori, Åbo

Lisätiedot

MATEMATIIKKA. Elina Mantere Helsingin normaalilyseo elina.mantere@helsinki.fi. Elina Mantere

MATEMATIIKKA. Elina Mantere Helsingin normaalilyseo elina.mantere@helsinki.fi. Elina Mantere MATEMATIIKKA Helsingin normaalilyseo elina.mantere@helsinki.fi OPPIAINEEN TEHTÄVÄ Kehittää loogista, täsmällistä ja luovaa matemaattista ajattelua. Luoda pohja matemaattisten käsitteiden ja rakenteiden

Lisätiedot

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014 Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014 MFKA-Kustannus Oy Rautatieläisenkatu 6, 0020 HELSINKI, puh. (09) 102 378 http://www.mfka.fi Peruskoulun

Lisätiedot

portfolion ohjeet ja arviointi

portfolion ohjeet ja arviointi 2015 portfolion ohjeet ja arviointi EIJA ARVOLA (5.10.2015) 2 Sisällysluettelo 1. TYÖPORTFOLIO (ei palauteta opettajalle)... 3 2. NÄYTEPORTFOLIO (palautetaan opettajalle)... 3 3. NÄYTEPORTFOLION SISÄLLÖN

Lisätiedot

lehtipajaan! Opettajan aineisto

lehtipajaan! Opettajan aineisto Tervetuloa lehtipajaan! Opettajan aineisto Opettajalle Ennen kuin ryhdyt lehtipajaan lue myös oppilaan aineisto Lehtipaja on tarkoitettu tt 3.-6.-luokkalaisille l ill Voit käyttää aineistoa myös 1.-2.-luokkalaisille,

Lisätiedot

Ajankäyttötutkimuksen satoa eli miten saan ystäviä, menestystä ja hyvän arvosanan tietojenkäsittelyteorian perusteista

Ajankäyttötutkimuksen satoa eli miten saan ystäviä, menestystä ja hyvän arvosanan tietojenkäsittelyteorian perusteista Ajankäyttötutkimuksen satoa eli miten saan ystäviä, menestystä ja hyvän arvosanan tietojenkäsittelyteorian perusteista Harri Haanpää 18. kesäkuuta 2004 Tietojenkäsittelyteorian perusteiden kevään 2004

Lisätiedot

Valinnaisopas Lukuvuosi 2015 2016 Veromäen koulu 5.luokka

Valinnaisopas Lukuvuosi 2015 2016 Veromäen koulu 5.luokka Valinnaisopas Lukuvuosi 2015 2016 Veromäen koulu 5.luokka Johdanto Valinnaisina aineina voidaan opiskella yhteisten oppiaineiden syventäviä tai soveltavia oppimääriä, useasta oppiaineesta muodostettuja

Lisätiedot

SISÄLLYSLUETTELO. KASKO, 19.5.2015 17:30, Pöytäkirja. 40 OPETUSSUUNNITELMA 2016 TUNTIJAKO... 1 Pykälän liite: Tuntijakoesitys 2016...

SISÄLLYSLUETTELO. KASKO, 19.5.2015 17:30, Pöytäkirja. 40 OPETUSSUUNNITELMA 2016 TUNTIJAKO... 1 Pykälän liite: Tuntijakoesitys 2016... i SISÄLLYSLUETTELO KASKO, 19.5.2015 17:30, Pöytäkirja 40 OPETUSSUUNNITELMA 2016 TUNTIJAKO... 1 Pykälän liite: Tuntijakoesitys 2016... 4 40, KASKO 19.5.2015 17:30 Sivu 2 OPETUSSUUNNITELMA 2016 TUNTIJAKO

Lisätiedot

maija.aksela@helsinki.fi

maija.aksela@helsinki.fi Oivaltamisen ja onnistumisen iloa! Johtaja prof Maija Aksela Johtaja, prof. Maija Aksela maija.aksela@helsinki.fi ESITYKSEN SISÄLLYS: Ajankohtaista LUMA-toiminnassa: LUMA-toiminta opetussuunnitelmaperusteiden

Lisätiedot

Sisukas pärjää aina sijoitettu lapsi koulussa. opetusneuvos Aki Tornberg

Sisukas pärjää aina sijoitettu lapsi koulussa. opetusneuvos Aki Tornberg Sisukas pärjää aina sijoitettu lapsi koulussa opetusneuvos Aki Tornberg Varhaiskasvatus Varhaiskasvatuksen ja päivähoitopalvelujen lainsäädännön valmistelu, hallinto ja ohjaus siirretään sosiaali- ja terveysministeriöstä

Lisätiedot

YMPÄRISTÖOPPI. Marita Kontoniemi Jyväskylän normaalikoulu marita.kontoniemi@norssi.jyu.fi

YMPÄRISTÖOPPI. Marita Kontoniemi Jyväskylän normaalikoulu marita.kontoniemi@norssi.jyu.fi YMPÄRISTÖOPPI Marita Kontoniemi Jyväskylän normaalikoulu marita.kontoniemi@norssi.jyu.fi OPPIAINEEN TEHTÄVÄ Rakentaa perusta ympäristö- ja luonnontietoaineiden eri tiedonalojen osaamiselle Tukea oppilaan

Lisätiedot

INARIN KUNTA LISÄOPETUKSEN OPETUSSUUNNITELMA. Sivistyslautakunta 13.5.2009/47

INARIN KUNTA LISÄOPETUKSEN OPETUSSUUNNITELMA. Sivistyslautakunta 13.5.2009/47 INARIN KUNTA LISÄOPETUKSEN OPETUSSUUNNITELMA Sivistyslautakunta 13.5.2009/47 1 LISÄOPETUKSEN OPETUSSUUNNITELMAN SISÄLTÖ 1. Lisäopetuksen järjestämisen lähtökohdat ja opetuksen laajuus 3 2. Lisäopetuksen

Lisätiedot

TIETO- JA VIESTINTÄTEKNIIKAN OPETUSKÄYTTÖ JA SUKUPUOLI. Ella Kiesi Opetushallitus

TIETO- JA VIESTINTÄTEKNIIKAN OPETUSKÄYTTÖ JA SUKUPUOLI. Ella Kiesi Opetushallitus TIETO- JA VIESTINTÄTEKNIIKAN OPETUSKÄYTTÖ JA SUKUPUOLI Ella Kiesi Opetushallitus Tieto ja viestintätekniikkataidot kouluissa Valtakunnalliset opetussuunnitelmien perusteet lähtökohtana Tieto- ja viestintätekniikalla

Lisätiedot

O L A R I N K O U L U

O L A R I N K O U L U Tervetuloa! Olarin koulun matematiikka- ja luonnontiedeluokan tiedotustilaisuuteen Olarin koulu Olarin lukion ja Olarin matematiikkaja luonnontiede lukion yhteydessä luokat 7-9 yksi pienluokka 8lk:lla

Lisätiedot

Kun vauhti ei riitä Elämänkoulu-lehti 2006

Kun vauhti ei riitä Elämänkoulu-lehti 2006 Kun vauhti ei riitä Elämänkoulu-lehti 2006 Eija Voutilainen pedagoginen yhteyshenkilö, Helsingin Matikkamaa Tämän syksyn koulukirjoittelua yleisönosastoissa on hallinnut lahjakkaan oppijan teema: Lahjakas

Lisätiedot

Koonti huoltajien OPS 2016 arvokeskustelusta 11.1.2014

Koonti huoltajien OPS 2016 arvokeskustelusta 11.1.2014 Koonti huoltajien OPS 2016 arvokeskustelusta 11.1.2014 1 a) Miksi lapsesi opiskelee koulussa? Oppiakseen perustietoja ja -taitoja sekä sosiaalisuutta Oppiakseen erilaisia sosiaalisia taitoja ja sääntöjä

Lisätiedot

Sähköiset oppimateriaalit osana opetusta

Sähköiset oppimateriaalit osana opetusta Tutkimus opettajien odotuksista ja asenteista: Sähköiset oppimateriaalit osana opetusta #digikoulu Tutkimuksen taustaa Tutkimuksen tavoitteena oli selvittää peruskoulun ja lukion opettajien odotuksia ja

Lisätiedot

Seuraavat talvikoulutuspäivät pidetään. Lappeenrannassa 11. 13.2.2011. Ilmoittautuminen osoitteessa: www.maol.fi/lappeenranta

Seuraavat talvikoulutuspäivät pidetään. Lappeenrannassa 11. 13.2.2011. Ilmoittautuminen osoitteessa: www.maol.fi/lappeenranta Seuraavat talvikoulutuspäivät pidetään Lappeenrannassa 11. 13.2.2011. Ilmoittauduthan koulutuspäiville; tiedossa mielenkiintoisia luentoja ja työpajoja. Ilmoittautuminen osoitteessa: www.maol.fi/lappeenranta

Lisätiedot

SUBSTANTIIVIT 1/6. juttu. joukkue. vaali. kaupunki. syy. alku. kokous. asukas. tapaus. kysymys. lapsi. kauppa. pankki. miljoona. keskiviikko.

SUBSTANTIIVIT 1/6. juttu. joukkue. vaali. kaupunki. syy. alku. kokous. asukas. tapaus. kysymys. lapsi. kauppa. pankki. miljoona. keskiviikko. SUBSTANTIIVIT 1/6 juttu joukkue vaali kaupunki syy alku kokous asukas tapaus kysymys lapsi kauppa pankki miljoona keskiviikko käsi loppu pelaaja voitto pääministeri päivä tutkimus äiti kirja SUBSTANTIIVIT

Lisätiedot

Oppilaiden motivaation ja kiinnostuksen lisääminen matematiikan opiskeluun ja harrastamiseen. Pekka Peura 28.01.2012

Oppilaiden motivaation ja kiinnostuksen lisääminen matematiikan opiskeluun ja harrastamiseen. Pekka Peura 28.01.2012 Oppilaiden motivaation ja kiinnostuksen lisääminen matematiikan opiskeluun ja harrastamiseen Pekka Peura 28.01.2012 MOTIVAATIOTA JA AKTIIVISUUTTA LISÄÄVÄN OPPIMISYMPÄRISTÖN ESITTELY (lisätietoja maot.fi)

Lisätiedot

6/2013. Matemaattis-luonnontieteellinen aikakauslehti 77. vuosikerta Irtonumero 15

6/2013. Matemaattis-luonnontieteellinen aikakauslehti 77. vuosikerta Irtonumero 15 6/2013 Matemaattis-luonnontieteellinen aikakauslehti 77. vuosikerta Irtonumero 15 Julkaisija Matemaattisten Aineiden Opettajien Liitto MAOL ry Rautatieläisenkatu 6, 00520 Helsinki Päätoimittaja Pasi Konttinen,

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Opas 3. luokalle siirtyvälle

Opas 3. luokalle siirtyvälle Kuopion kaupunki, kasvun ja oppimisen palvelualue Opas 3. luokalle siirtyvälle Lukuvuosi 2014-2015 Valinnat 2. luokan kevätlukukaudella Oppilas valitsee 2. luokan kevätlukukauden alussa ensimmäisen vieraan

Lisätiedot

KIHNIÖN KUNTA ESITYSLISTA / KOKOUSPÖYTÄKIRJA Nro 3/2016. Sivistyslautakunta 18.04.2016 1

KIHNIÖN KUNTA ESITYSLISTA / KOKOUSPÖYTÄKIRJA Nro 3/2016. Sivistyslautakunta 18.04.2016 1 ESITYSLISTA / KOKOUSPÖYTÄKIRJA Nro 3/2016 Sivistyslautakunta 18.04.2016 1 Kokousaika Kokouspaikka Saapuvilla olleet et Maanantai 18.04.2016 klo 18.00 Kunnanviraston kokoushuone Inkinen Anneli Oksanen Annika

Lisätiedot

Tuettu oppimispolku. Tietoa kasvun ja oppimisen tuesta huoltajille ja oppilaiden kanssa työskenteleville

Tuettu oppimispolku. Tietoa kasvun ja oppimisen tuesta huoltajille ja oppilaiden kanssa työskenteleville Porvoo - Borgå Tuettu oppimispolku Tietoa kasvun ja oppimisen tuesta huoltajille ja oppilaiden kanssa työskenteleville Porvoo - Borgå Turvallinen ja yhtenäinen oppimispolku Porvoossa halutaan turvata lapsen

Lisätiedot

Kevään 2010 fysiikan valtakunnallinen koe

Kevään 2010 fysiikan valtakunnallinen koe 120 Kevään 2010 fysiikan valtakunnallinen koe 107 114 100 87 93 Oppilasmäärä 80 60 40 20 0 3 5 7 14 20 30 20 30 36 33 56 39 67 48 69 77 76 56 65 35 25 10 9,75 9,5 9,25 9 8,75 8,5 8,25 8 7,75 7,5 7,25 7

Lisätiedot

Perusopetuksen arviointi. Koulun turvallisuus 2010. oppilaiden näkemyksiä RJ 26.2.2010. Tampere. Tampereen kaupunki Tietotuotanto ja laadunarviointi

Perusopetuksen arviointi. Koulun turvallisuus 2010. oppilaiden näkemyksiä RJ 26.2.2010. Tampere. Tampereen kaupunki Tietotuotanto ja laadunarviointi Perusopetuksen arviointi Koulun turvallisuus 2010 oppilaiden näkemyksiä RJ 26.2.2010 Tietotuotanto ja laadunarviointi Tampere Kyselyn taustaa Zef kysely tehtiin tuotannon toimeksiannosta vuosiluokkien

Lisätiedot

Osallisuutta etsimässä Hepolan koululla

Osallisuutta etsimässä Hepolan koululla Osallisuutta etsimässä Hepolan koululla Pienryhmän erityisluokanopettaja Kati Evinsalo Yhdessä osallisuuteen Yläkoulun erityistä tukea tarvitsevien nuorten pienryhmässä kahdeksan 13-17-vuotiaan (7.-9.lk)

Lisätiedot

Perusopetuksen yleiset valtakunnalliset tavoitteet ovat seuraavat:

Perusopetuksen yleiset valtakunnalliset tavoitteet ovat seuraavat: Maailma muuttuu - miten koulun pitäisi muuttua? Minkälaista osaamista lapset/ nuoret tarvitsevat tulevaisuudessa? Valtioneuvosto on päättänyt perusopetuksen valtakunnalliset tavoitteet ja tuntijaon. Niiden

Lisätiedot

Yleisiä kommentteja kokeesta.

Yleisiä kommentteja kokeesta. Lukuvuoden fysiikan valtakunnallisen kokeen palaute.6. Palautteita yhteensä 454 oppilaan tuloksesta. Pistekeskiarvo 7,6 joka vastaa arvosanaa 6,5. Oppilaita per pistemäärä 5 5 5 5 4 6 8 4 6 8 4 6 8 4 6

Lisätiedot

HUOMAUTUS LUKIJALLE: Tässä on esitelty kaikkien aineiden palaute. Kysymyksestä 1. ilmenee mitä aineita oppilas on kurssilla lukenut.

HUOMAUTUS LUKIJALLE: Tässä on esitelty kaikkien aineiden palaute. Kysymyksestä 1. ilmenee mitä aineita oppilas on kurssilla lukenut. Kurssipalaute HUOMAUTUS LUKIJALLE: Tässä on esitelty kaikkien aineiden palaute. Kysymyksestä 1. ilmenee mitä aineita oppilas on kurssilla lukenut. OPPILAS 1 Vastaa seuraaviin kysymyksiin asteikolla 1 5.

Lisätiedot

Joensuun seudun opetussuunnitelma. Keskeiset uudistukset

Joensuun seudun opetussuunnitelma. Keskeiset uudistukset Joensuun seudun opetussuunnitelma Keskeiset uudistukset Opetussuunnitelman käyttöönotto Uuden opetussuunnitelman mukainen opetus alkaa kaikissa kouluissa 1.8.2016 Luokissa 1-6 uusi opetussuunnitelma kokonaisuudessaan

Lisätiedot

Ajankohtaista perusopetuksen aamu- ja iltapäivätoiminnassa ja koulun kerhotoiminnassa ja toiminnan tulevaisuus 7.2.2013

Ajankohtaista perusopetuksen aamu- ja iltapäivätoiminnassa ja koulun kerhotoiminnassa ja toiminnan tulevaisuus 7.2.2013 Ajankohtaista perusopetuksen aamu- ja iltapäivätoiminnassa ja koulun kerhotoiminnassa ja toiminnan tulevaisuus 7.2.2013 Erityisasiantuntija Riitta Rajala, Opetushallitus JOUSTAVA KOULUPÄIVÄ SEMINAARI 23.1.2013

Lisätiedot

PÄIVI PORTAANKORVA-KOIVISTO

PÄIVI PORTAANKORVA-KOIVISTO 7.4.2013 PÄIVI PORTAANKORVA-KOIVISTO HARRY SILFVERBERG: Matematiikka kouluaineena yläkoulun oppilaiden tekemien oppiainevertailujen paljastamia matematiikkakäsityksiä Juho Oikarinen 7.4.2013 PÄIVI PORTAANKORVA-KOIVISTO

Lisätiedot

Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa

Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa kirjoitustaito. Kokeet järjestetään eri päivinä: esimerkiksi tänä

Lisätiedot

MUSIIKKI. Sari Muhonen Helsingin yliopiston Viikin normaalikoulu sari.muhonen@helsinki.fi. Sari Muhonen

MUSIIKKI. Sari Muhonen Helsingin yliopiston Viikin normaalikoulu sari.muhonen@helsinki.fi. Sari Muhonen MUSIIKKI Helsingin yliopiston Viikin normaalikoulu sari.muhonen@helsinki.fi OPPIAINEEN TEHTÄVÄ luoda edellytykset monipuoliseen musiikilliseen toimintaan ja aktiiviseen kulttuuriseen osallisuuteen ohjata

Lisätiedot

Pääkaupunkiseudun lukioiden palvelukyky 2012-2013. Vantaan tulokset 26.3.2013 Heikki Miettinen

Pääkaupunkiseudun lukioiden palvelukyky 2012-2013. Vantaan tulokset 26.3.2013 Heikki Miettinen Pääkaupunkiseudun lukioiden palvelukyky 0-0 n tulokset..0 Heikki Miettinen Lukion. vuosikurssin palvelukykykysely 0-0 Vastaukset Opiskelijat Vastaukset Vastaus% Espoo 0 0 % Helsinki, kaupungin lukiot %

Lisätiedot

Terveisiä ops-työhön. Heljä Järnefelt 18.4.2015

Terveisiä ops-työhön. Heljä Järnefelt 18.4.2015 Terveisiä ops-työhön Heljä Järnefelt 18.4.2015 Irmeli Halinen, Opetushallitus Opetussuunnitelman perusteet uusittu Miksi? Mitä? Miten? Koulua ympäröivä maailma muuttuu, muutoksia lainsäädännössä ja koulutuksen

Lisätiedot

Lapinlahden kunta. Perusopetukseen valmistavan opetuksen opetussuunnitelma

Lapinlahden kunta. Perusopetukseen valmistavan opetuksen opetussuunnitelma Lapinlahden kunta Perusopetukseen valmistavan opetuksen opetussuunnitelma Sivistyslautakunta 14.8.2012 Peruspalvelulautakunta xx.xx.2012 Tämä opetussuunnitelma perustuu opetushallituksen määräykseen DNO

Lisätiedot

Seinäjoen opetustoimi. Koulu työyhteisönä 28.4 9.5.2008 Vastausprosentti 66,3% (222 vastaajaa)

Seinäjoen opetustoimi. Koulu työyhteisönä 28.4 9.5.2008 Vastausprosentti 66,3% (222 vastaajaa) Seinäjoen opetustoimi Koulu työyhteisönä 28.4 9.5.2008 Vastausprosentti 66,3% (222 vastaajaa) Yhteistulos, koulu työyhteisönä Koulu työyhteisönä 5 4 3 2 1 Ka 1 Miten yhteistyö koulussanne toimii opetushenkilöstön

Lisätiedot

TIETO- JA VIESTINTÄTEKNIIKAN OPETUSKÄYTÖN OSAAMINEN (1-6 lk.) OSAAMISEN KEHITTÄMISTARVEKARTOITUS

TIETO- JA VIESTINTÄTEKNIIKAN OPETUSKÄYTÖN OSAAMINEN (1-6 lk.) OSAAMISEN KEHITTÄMISTARVEKARTOITUS 1/4 Koulu: Yhteisön osaamisen kehittäminen Tämä kysely on työyhteisön työkalu osaamisen kehittämistarpeiden yksilöimiseen työyhteisön tasolla ja kouluttautumisen yhteisölliseen suunnitteluun. Valtakunnallisen

Lisätiedot

Fysiikan ja kemian opetussuunnitelmat uudistuvat. 3.10.2015 Tiina Tähkä, Opetushallitus

Fysiikan ja kemian opetussuunnitelmat uudistuvat. 3.10.2015 Tiina Tähkä, Opetushallitus Fysiikan ja kemian opetussuunnitelmat uudistuvat 3.10.2015 Tiina Tähkä, Opetushallitus MAHDOLLINEN KOULUKOHTAINEN OPS ja sen varaan rakentuva vuosisuunnitelma PAIKALLINEN OPETUSSUUNNITELMA Paikalliset

Lisätiedot

Matematiikan osaaminen ja osaamattomuus

Matematiikan osaaminen ja osaamattomuus 1 Matematiikan osaaminen ja osaamattomuus Peda-Forum 21.8.2013 Seppo Pohjolainen Tampereen teknillinen yliopisto Matematiikan laitos 2 Esityksen sisältö Taustaa Matematiikan osaaminen ja osaamattomuus

Lisätiedot

Pinta-ala- ja tilavuuskäsitteiden oppimispeli

Pinta-ala- ja tilavuuskäsitteiden oppimispeli Pinta-ala- ja tilavuuskäsitteiden oppimispeli Kari Mikkola, FM, OSAO, Kaukovainion yksikkö, tekniikka Geometriaa on perinteisesti osattu heikoiten matematiikan osa-alueista peruskoulun päättyessä [1],

Lisätiedot

VALTIONEUVOSTON ASETUS PERUSOPETUSASETUKSEN MUUTTAMISESTA

VALTIONEUVOSTON ASETUS PERUSOPETUSASETUKSEN MUUTTAMISESTA OPETUS- JA KULTTUURIMINISTERIÖ Muistio Opetusneuvos 5.5.2014 Jussi Pihkala VALTIONEUVOSTON ASETUS PERUSOPETUSASETUKSEN MUUTTAMISESTA 1 Johdanto 2 Nykytila Koulunkäyntiavustajien lukeminen osaksi opettaja-oppilassuhdetta

Lisätiedot

Julkisia esiintymisiäni vuodesta 2000 teknologian opetuksen puolestapuhujana

Julkisia esiintymisiäni vuodesta 2000 teknologian opetuksen puolestapuhujana 1 LIITE 4 Julkisia esiintymisiäni vuodesta 2000 teknologian opetuksen puolestapuhujana H. Levävaara 20.1.2006 Omien pilottien seminaarit aloitusseminaari (syysseminaari) 1. 2.9.2000, Messilä kevätseminaari

Lisätiedot

Arviointi Isojoen Koulukolmiossa

Arviointi Isojoen Koulukolmiossa Arviointi Isojoen Koulukolmiossa Aikaisemmilla luokka-asteilla oppilasta arvioidaan sanallisesti ja numeroilla. Lisäksi vanhemmat saavat ajankohtaista tietoa lapsensa koulunkäynnistä arviointikeskusteluissa.

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille

S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden

Lisätiedot

TERVETULOA VANHEMPAINILTAAN 21.10.2015

TERVETULOA VANHEMPAINILTAAN 21.10.2015 TERVETULOA VANHEMPAINILTAAN 21.10.2015 21.10.2015 Kaurialan lukio Mistä kouluun liittyvistä asioista olette keskustelleet kotona? Yhteystietoja koulumme kotisivut: www.kktavastia.fi/ ryhmänohjaajan sähköpostiosoite:

Lisätiedot

Opetussuunnitelman perusteiden uudistaminen

Opetussuunnitelman perusteiden uudistaminen Opetussuunnitelman perusteiden uudistaminen Irmeli Halinen Opetussuunnitelmatyön päällikkö OPETUSHALLITUS LUMA-seminaari 15.1.2013 1 Opetussuunnitelmatyön kokonaisuus 2 Yleissivistävän koulutuksen uudistaminen

Lisätiedot

KIEPO-projektin kieliohjelmavaihtoehdot (suomenkieliset koulut, yksikielinen opetus)

KIEPO-projektin kieliohjelmavaihtoehdot (suomenkieliset koulut, yksikielinen opetus) Tekijä: Pakkoruotsi.net. Mahdolliset oikaisut: info@pakkoruotsi.net KIEPO-projektin kieliohjelmavaihtoehdot (suomenkieliset koulut, yksikielinen opetus) KIEPO-projektin keskeiset suositukset, sivut 50

Lisätiedot

- 1 - Lasten kotihoidontuen kuntalisää maksetaan edelleen ajalla 1.1.2015-31.12.2016 (nykyinen sopimus Kelan kanssa päättyy 31.12.2014).

- 1 - Lasten kotihoidontuen kuntalisää maksetaan edelleen ajalla 1.1.2015-31.12.2016 (nykyinen sopimus Kelan kanssa päättyy 31.12.2014). - 1-1..1 Koululautakunta 1..1.1 Varhaiskasvatus Kunnan varhaiskasvatussuunnitelmaa (VASU) toteutetaan kaikissa varhaiskasvatuksen yksiköissä ja lasten vanhempien kanssa käydään kasvatuskumppanuusneuvottelu

Lisätiedot

Ajattelu ja oppimaan oppiminen (L1)

Ajattelu ja oppimaan oppiminen (L1) Ajattelu ja oppimaan oppiminen (L1) Mitä on oppimaan oppiminen? Kirjoita 3-5 sanaa, jotka sinulle tulevat mieleen käsitteestä. Vertailkaa sanoja ryhmässä. Montako samaa sanaa esiintyy? 1 Oppimaan oppiminen

Lisätiedot

VALITSE LUKIO-OPINNOT

VALITSE LUKIO-OPINNOT VALITSE LUKIO-OPINNOT OVI MAHDOLLISUUKSIEN MAAILMAAN. Lukio on tärkeä ponnahduslauta tulevaisuuteesi. Se tarjoaa Sinulle hyvät valmiudet ja suoran väylän eri alojen jatko-opintoihin sekä lisäaikaa tulevaisuutesi

Lisätiedot

Juliet-ohjelma: monipuolisia osaajia alaluokkien englannin opetukseen

Juliet-ohjelma: monipuolisia osaajia alaluokkien englannin opetukseen Juliet-ohjelma: monipuolisia osaajia alaluokkien englannin opetukseen Marja-Kaisa Pihko, Virpi Bursiewicz Varhennettua kielenopetusta, kielisuihkuttelua, CLIL-opetusta Alakoulun luokkien 1 6 vieraiden

Lisätiedot

AMMATTILUKIOTOIMINTA TORNIOSSA Toisen asteen koulutuksen yhteistyö Torniossa

AMMATTILUKIOTOIMINTA TORNIOSSA Toisen asteen koulutuksen yhteistyö Torniossa Toisen asteen koulutuksen yhteistyö Torniossa Mikä on ammattilukiotoiminta Torniossa? Mitä tahansa ammatillista perustutkintoa opiskeleva opiskelija voi opiskella perustutkinnon rinnalle myös ylioppilastutkinnon

Lisätiedot

Perusopetukseen valmistavan opetuksen. opetussuunnitelma. Outokummun kaupunki

Perusopetukseen valmistavan opetuksen. opetussuunnitelma. Outokummun kaupunki Perusopetukseen valmistavan opetuksen opetussuunnitelma Outokummun kaupunki 2 Sisältö 1 Perusopetuksen valmistavan opetuksen lähtökohdat... 3 2 Perusopetuksen valmistavan opetuksen tavoitteet ja keskeiset

Lisätiedot

Matemaattis-luonnontieteellinen aikakauslehti 74. vuosikerta MAOL 75 vuotta. Irtonumero 10

Matemaattis-luonnontieteellinen aikakauslehti 74. vuosikerta MAOL 75 vuotta. Irtonumero 10 Matemaattis-luonnontieteellinen aikakauslehti 74. vuosikerta MAOL 75 vuotta 4/ 2010 Irtonumero 10 Matemaattisluonnontieteellinen aikakauslehti 74. vuosikerta 4/2010 5 Pääkirjoitus Irma Iho 6 MAOL-juhlaristeily

Lisätiedot

Kotunet. - julkaisuja 1. Kehitysvammaliiton jäsenkysely: toiminnalla jäsenten kannatus. Leena Matikka. Sisältö. Julkaisija

Kotunet. - julkaisuja 1. Kehitysvammaliiton jäsenkysely: toiminnalla jäsenten kannatus. Leena Matikka. Sisältö. Julkaisija Kotunet - julkaisuja 1 Sisältö Kehitysvammaliiton monipuolisella toiminnalla jäsenten kannatus 2 Kyselyn toteutus 2 Vastausten edustavuus 3 Vastanneiden henkilöiden kuvailu 4 Tulokset 4 Leena Matikka Kehitysvammaliiton

Lisätiedot

PÖYTÄKIRJA 2/2014 11

PÖYTÄKIRJA 2/2014 11 Sivistystoimen suomenkielinen jaosto PÖYTÄKIRJA 2/2014 11 Aika 11.03.2014 kl. 18.30 Paikka Metsäkulman koulu Käsiteltävät asiat 9 Kokouksen avaaminen, laillisuus ja päätösvaltaisuus 133 10 Pöytäkirjantarkastajien

Lisätiedot

Vastuu on meidän! Ansvaret är vårt!

Vastuu on meidän! Ansvaret är vårt! Lions Clubs International MD 107 Finland Vastuu on meidän! Ansvaret är vårt! Aktiviteetti lionsklubeille Netin turvallinen käyttö perheissä 1 Leijonien oma palveluaktiviteetti! Netin turvallinen käyttö

Lisätiedot

Aikuisten perusopetus

Aikuisten perusopetus Aikuisten perusopetus Laaja-alainen osaaminen ja sen integrointi oppiaineiden opetukseen ja koulun muuhun toimintaan 23.1.2015 Irmeli Halinen Opetussuunnitelmatyön päällikkö OPETUSHALLITUS Uudet opetussuunnitelman

Lisätiedot

Opintopalaute Wilmassa Wilmaohje. 17.9.2015 Turun ammatti-instituutti Primus työryhmä

Opintopalaute Wilmassa Wilmaohje. 17.9.2015 Turun ammatti-instituutti Primus työryhmä Opintopalaute Wilmassa Wilmaohje 1792015 Turun ammatti-instituutti Primus työryhmä Opintopalautekyselyn luominen valmiista kyselypohjasta Suositellaan, että opettaja ottaisi palautetta opettamiltaan ryhmiltä

Lisätiedot

Arvioinnin monipuolistaminen lukion opetussuunnitelman perusteiden (2015) mukaan

Arvioinnin monipuolistaminen lukion opetussuunnitelman perusteiden (2015) mukaan Arvioinnin monipuolistaminen lukion opetussuunnitelman perusteiden (2015) mukaan OPS-koulutus Joensuu 16.1.2016 Marja Tamm Matematiikan ja kemian lehtori, FM, Helsingin kielilukio 3.vpj. ja OPS-vastaava,

Lisätiedot

Numeeriset arviot. Opintojaksolla vallinnut ilmapiiri loi hyvät puitteet oppimiselle. Saavutin opintojaksolle määritellyt osaamistavoitteet

Numeeriset arviot. Opintojaksolla vallinnut ilmapiiri loi hyvät puitteet oppimiselle. Saavutin opintojaksolle määritellyt osaamistavoitteet Tämä asiakirja sisältää opiskelijoiden antaman palautteen opettajan Metropoliassa vuoteen 2014 mennessä opettamista kursseista. Palautteet on kerätty Metropolian anonyymin sähköisen palautejärjestelmän

Lisätiedot

E-oppimateriaalit. Opinaika vs. CD-verkko-ohjelmat

E-oppimateriaalit. Opinaika vs. CD-verkko-ohjelmat Nokian N8 puhelimessa Uutta Toimii netin kautta, ei ohjelmien asennuksia eikä ylläpitoa, koulun lisäksi käytettävissä myös kotona ja muualla 24/7, lisäksi muita opiskelua helpottavia verkko-opetuksen mahdollistavia

Lisätiedot

SIIVOJA HALLITSEE EKG-REKISTERÖINNIN, VAIKKA SE ON VAIKEAA JOPA KLIINISEN FYSIOLOGIAN ERIKOISHOITAJILLE!

SIIVOJA HALLITSEE EKG-REKISTERÖINNIN, VAIKKA SE ON VAIKEAA JOPA KLIINISEN FYSIOLOGIAN ERIKOISHOITAJILLE! Hanna-Maarit Riski Yliopettaja Turun ammattikorkeakoulu SIIVOJA HALLITSEE EKG-REKISTERÖINNIN, VAIKKA SE ON VAIKEAA JOPA KLIINISEN FYSIOLOGIAN ERIKOISHOITAJILLE! JOHDANTO Iltasanomissa 17.3.2011 oli artikkeli,

Lisätiedot

Toiminnallinen oppiminen -Sari Koskenkari

Toiminnallinen oppiminen -Sari Koskenkari Toiminnallinen oppiminen -Sari Koskenkari Toiminnallinen oppiminen Perusopetuksen opetussuunnitelmassa painotetaan työtapojen toiminnallisuutta. Toiminnallisuudella tarkoitetaan oppilaan toiminnan ja ajatuksen

Lisätiedot

Lahden englanninkielisten luokkien (0 9) toimintaperiaatteet Tiirismaan koulussa lukuvuonna 2014 2015

Lahden englanninkielisten luokkien (0 9) toimintaperiaatteet Tiirismaan koulussa lukuvuonna 2014 2015 Lahden englanninkielisten luokkien (0 9) toimintaperiaatteet Tiirismaan koulussa lukuvuonna 2014 2015 Tiedote vanhemmille Lahden englanninkieliset luokat 0-9 Lahden englanninkieliset luokat toimivat Tiirismaan

Lisätiedot

TEKNIIKAN JA LIIKENTEEN ALAN VALINTAPERUSTEET KEVÄT 2014

TEKNIIKAN JA LIIKENTEEN ALAN VALINTAPERUSTEET KEVÄT 2014 TEKNIIKAN JA LIIKENTEEN ALAN VALINTAPERUSTEET KEVÄT 2014 INSINÖÖRIKOULUTUS (*) JA LABORATORIOANALYYTIKKOKOULUTUS (*) merenkulkualan koulutusta lukuun ottamatta OPISKELIJAVALINTA Kaikki hakukelpoiset hakijat

Lisätiedot

Vantaan Osaava Vanhempi hanke/ Osallisena Suomessa hankekokeilu 2011-13

Vantaan Osaava Vanhempi hanke/ Osallisena Suomessa hankekokeilu 2011-13 Vantaan Osaava Vanhempi hanke/ Osallisena Suomessa hankekokeilu 2011-13 Luetaan yhdessä verkoston seminaari 17.11.2012, hankevastaava Kotoutumiskoulutuksen kolme polkua 1. Työmarkkinoille suuntaavat ja

Lisätiedot

Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla

Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla Kyselytutkimus opiskelijoiden ajankäytöstä tietojenkäsittelyteorian peruskurssilla Harri Haanpää Peda-forum 2004 AB TEKNILLINEN KORKEAKOULU Tietojenkäsittelyteorian laboratorio T 79.148 Tietojenkäsittelyteorian

Lisätiedot

Matematiikka- ja luonnontiedeluokkien. Olarin koulu 13.1.2014

Matematiikka- ja luonnontiedeluokkien. Olarin koulu 13.1.2014 Matematiikka- ja luonnontiedeluokkien oppilasvalinta Olarin koulu 13.1.2014 Painotuskoulut, vuosiluokat 7.-9. Espoonlahden koulu Järvenperän koulu Mankkaan koulu Nöykkiön koulu Olarin koulu Ilmoittaudu

Lisätiedot

MONIKULTTUURISEN OPETUKSEN JA OHJAUKSEN HAASTEET. Selkokielen käyttö opetuksessa. Suvi Lehto-Lavikainen, Koulutuskeskus Salpaus

MONIKULTTUURISEN OPETUKSEN JA OHJAUKSEN HAASTEET. Selkokielen käyttö opetuksessa. Suvi Lehto-Lavikainen, Koulutuskeskus Salpaus MONIKULTTUURISEN OPETUKSEN JA OHJAUKSEN HAASTEET Selkokielen käyttö opetuksessa Suvi Lehto-Lavikainen, Koulutuskeskus Salpaus Ihmisten viestinnän epätarkkuus johtaa usein virheellisiin tulkintoihin keskusteluissa!

Lisätiedot

SKYOPE turvapaikanhakijan opintopolkua rakentamassa

SKYOPE turvapaikanhakijan opintopolkua rakentamassa SKYOPE turvapaikanhakijan opintopolkua rakentamassa Kaisa Rontu Moni tuntee kotoutumiskoulutuksen, mutta kuinka moni tietää, miten turvapaikanhakijat vastaanottokeskuksissa opiskelevat? Turvapaikanhakijoiden

Lisätiedot