Sähkö ja magnetismi 2



Samankaltaiset tiedostot
Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi

NIMI: LK: 8b. Sähkön käyttö Tarmo Partanen Ota alakoulun FyssaMoppi. Arvaa, mitä tapahtuu eri töissä etukäteen.

Magneettikenttä ja sähkökenttä

kipinäpurkauksena, josta salama on esimerkki.

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

1. Mitä tarkoittaa resistanssi? Miten resistanssi lasketaan ja mikä on sen yksikkö?

Sähkö ja magnetismi 1

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0

Sähkömagneettinen induktio

Magnetismi Mitä tiedämme magnetismista?

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

1.1 Magneettinen vuorovaikutus

Magnetismi Mitä tiedämme magnetismista?

Kestomagneetit. Sähköä ja magneetteja. Lasten fysiikan viikko Erilaiset navat vetävät toisiaan puoleensa, samanlaiset navat hylkivät toisiaan.

8a. Kestomagneetti, magneettikenttä

SMG-2100: SÄHKÖTEKNIIKKA

DEE Tuulivoiman perusteet

SMG-1100: PIIRIANALYYSI I

RATKAISUT: 19. Magneettikenttä

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Sähköstatiikka ja magnetismi

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Fysiikan perusteet ja pedagogiikka (kertaus)

Sähäkästi sähköstä, makeasti magnetismista. Fysiikan ja kemian pedagogiset perusteet, kevät 2012 Kari Sormunen

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

Fysiikka 9. luokan kurssi

SMG-1100: PIIRIANALYYSI I

TN T 3 / / SÄH Ä KÖAS A IOI O TA T Vi taniemen koulu

Sähkömagnetismi II: sähkövirta, jännite, varaus, magneettimomentti. Sähkövirran kvantifiointi

Sähäkästi sähköstä, makeasti magnetismista. Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen, kevät 2014

DEE Sähkötekniikan perusteet

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

Sähkömagnetismi I: kolme ilmiömaailmaa

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

DEE Sähkötekniikan perusteet

Elektroniikka. Mitä sähkö on. Käsitteistöä

Energian talteenotto liikkuvassa raskaassa työkoneessa Heinikainen Olli

Luento 2. DEE Piirianalyysi Risto Mikkonen

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

SMG-2100: SÄHKÖTEKNIIKKA

Coulombin laki. Sähkökentän E voimakkuus E = F q

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV

&()'#*#+)##'% +'##$,),#%'

Fysiikka 7. Sähkömagnetismi

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Sähkövirran määrittelylausekkeesta

Kondensaattori ja vastus piirissä (RC-piiri)

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite

Luento 2. 1 DEE Piirianalyysi Risto Mikkonen

Sähkölä. -näyttelyn oppimateriaalit alakoululaisille

Hahmottava kokonaisuus TASAVIRTAPIIRIT. Sirkka-Liisa Koskinen Tapio Penttilä Ryhmä: E5

Elektroniikan perusteet, Radioamatööritutkintokoulutus

5. 9. luokkalaisille

Johdanto Tavoitteet Työturvallisuus Polttokennoauton rakentaminen AURINKOPANEELITUTKIMUS - energiaa aurinkopaneelilla...

FY1 Fysiikka luonnontieteenä

Sähkölä. -näyttelyn oppimateriaalit yläkoululaisille

ELEC-A4130 Sähkö ja magnetismi (5 op)

Fy06 Koe Kuopion Lyseon lukio (KK) 1/7

FyKe 7 9 Fysiikka ja OPS 2016

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

ELEC-A4130 Sähkö ja magnetismi (5 op)

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV

TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla.

SÄHKÖOPIN SARJA ALAKOULUUN

DEE Sähkötekniikan perusteet

Lämpöä tuulivoimasta ja auringosta. Kodin vihreä energia Oy

KURSSIN TÄRKEIMPIÄ AIHEITA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

Fysiikan valintakoe , vastaukset tehtäviin 1-2

Dynatel 2210E kaapelinhakulaite

Magneettikentät. Haarto & Karhunen.

Sähkömagnetismin ymmärryksen kehityshistoriaa Katja Palomäki. Tervetuloa!

Käyttöohjeet. Radio-ohjattava vene RC FT008

Aurinko-C20 asennus ja käyttöohje

KESTOMAGNEETTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jani Vitikka p87434 Hannu Tiitinen p Dynaaminen kenttäteoria SATE2010

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen

Jännite, virran voimakkuus ja teho

Elektroniikka ja sähkötekniikka

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

Kondensaattori ja vastus piirissä (RC-piiri)

Käyttöohjeet. Huippunopea radio-ohjattava pikavene RC FT009

Fysiikka 7 muistiinpanot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Taitaja2010, Iisalmi Suunnittelutehtävä, teoria osa

TEHTÄVÄT KYTKENTÄKAAVIO

Sulautettujen järjestelmien kilpailutehtävä

Muuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4].

Nimi: Fysiikka. 9. luokan kurssi

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

5. Sähkövirta, jännite

Transkriptio:

Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Sähkö ja magnetismi 2 Sähkövirran magneettinen vaikutus, sähkövirran suunta Tanskalainen H.C. Ørsted teki v. 1820 fysiikan luennolla seuraavanlaisen kokeen: Asetetaan kompassineulan metallijohtimen lähelle niin, että johdin on aluksi osapuilleen kompassineulan suuntainen (kuva 1). Kytketään johtimen päät paristoon (kuva 2). Havaitaan, että kompassineula kääntyy johtimeen nähden lähes poikittain. Käännetään paristo kytkennässä toisin päin (kuva 3). Havaitaan, että kompassineula kääntyy nyt vastakkaiseen suuntaan. kuva 1. kuva 2. kuva 3. Kuva 4 esittää ns. virtakeinua [3]. Magneetin leukojen väliin keinuksi ripustettu virtajohdin heilahtaa, kun johtimeen kytketään virta. Heilahduksen suunta vaihtuu, kun virtalähteen napaisuus vaihdetaan, tai kun magneettikentän suunta vaihdetaan kääntämällä magneetti. Kuva on peräisin ilmiötä havainnollistavasta animaatiosta. Kokeista voidaan päätellä, että sähkövirralla on magneettinen vaikutus. Pariston (tai yleisemmin virtalähteen) kääntäminen vaikuttaa sähkövirtaan niin, että magneettisen vuorovaikutuksen suunta muuttuu. Ilmeinen johtopäätös on, että pariston kääntäminen vaihtaa sähkövirran suunnan. On sovittu, että sähkövirta kulkee virtalähteen (+) -navasta (-) -napaan. kuva 4.

Sähkömagneetti, sähkömoottori Suoran sähköjohtimen magneettinen vuorovaikutus on sangen heikko. Vuorovaikutuksesta saadaan voimakkaampi kiertämällä johdin käämiksi rautasydämen ympärille. Tällainen laite on nimeltään sähkömagneetti. Kokeiluihin sopiva sähkömagneetti saadaan kiertämällä 1-2 m ohutta johdinta noin 10 cm mittaisen rautanaulan ympärille. Kokeilemalla havaitaan, että sähkömagneetti käyttäytyy kuten sauvamagneetti. Käämin päihin syntyy pohjois- ja etelänavat. Kestomagneetteihin verrattuna sähkömagneetilla on kaksi kuva 5. tärkeää eroa: 1) Sähkömagneetti on magneettinen vain silloin kun käämissä kulkee sähkövirta. Magneettisuus voidaan siis kytkeä päälle ja pois. 2) Sähkömagneetin napaisuus vaihtuu, kun sähkövirran suunta vaihtuu. Jälkimmäinen ominaisuus on tärkeä, koska siihen perustuu sähkömoottorin toiminta. Kuva 6 esittää yksinkertaista sähkömoottoria. Siinä on kestomagneetti, jonka napojen välissä on akseliin kiinnitetty sähkömagneetti eli ankkuri. Jos moottorin akselin halutaan pyörivän kuvasta katsoen myötäpäivään, ankkurin käämissä kulkevan sähkövirran suuntaa muutetaan niin, että ylempänä oleva ankkurin napa on pohjoisnapa, jolloin sen ja oikealla olevan kestomagneetin navan välillä on vetävä vuorovaikutus, ja vasemmalla olevan kestomagneetin navan kanssa on vetävä vuorovaikutus. Vastaavasti ankkurin alempana oleva napa on aina etelänapa. Ankkurin virran suunnan kääntö tapahtuu automaattisesti akselille sijoitetun pyörivän virrankääntäjän ja kosketinliuskojen avulla. Sähkömoottorin toimintaa esittävä animaatio havainnollistaa virrankääntäjän toiminnan selkeästi (kuva 7) [3]. Animaatiossa ankkuria esittää vain yksi johdinsilmukka. Mustat nuolet kuvaavat johtimiin magneettikentässä vaikuttavia voimia. kuva 7 kuva 6 Paristo- ja akkukäyttöisten lelujen pienet sähkömoottorit ovat rakenteeltaan kuvan 6 moottorin kaltaisia. Tällaisten moottorien pyörimissuunta riippuu siitä, kuinka päin ne kytketään paristoon tai

muuhun virtalähteeseen. Yleensä sähkömoottorin ei haluta vaihtavan jatkuvasti pyörimissuuntaa, joten tällaisia moottoreita käytetään virtalähteellä jonka napaisuus, ja siis myös moottorin läpi kulkevan virran suunta, pysyy vakiona. Siksi tällaisia moottoreita kutsutaan tasavirtamoottoreiksi. Verkkosähkön napaisuus vaihtuu koko ajan; 100 kertaa sekunnissa; sanotaan että verkkosähkön taajuus on 50 Hz. Tästä syystä verkkosähköllä toimivat vaihtovirtamoottorit, joita käytetään mm. pesukoneessa, jääkaapissa ja pölynimurissa, ovat rakenteeltaan hieman toisenlaisia kuin tasavirtamoottorit. Ääntä sähköllä: kaiutin Kuva 8 esittää kaiuttimen poikkileikkausta. Kaiuttimen käämi eli puhekela on lieriönmuotoisen kestomagneetin sisällä. Kun käämiin johdetaan suunnaltaan ja voimakkuudeltaan vaihteleva sähkövirta, puhekelan magneettisuus muuttaa suuntaansa ja voimakkuuttaan. Tällöin puhekelan ja kestomagneetin välinen vuorovaikutus liikuttaa puhekelaa ja siihen kiinnitettyä kaiutinkartiota edestakaisin, sähkövirran tahdissa. Kartio lähettää ääntä, jonka taajuus on sama kuin kaiuttimeen syötetyn sähkövirran taajuus. kuva 8 Sähkögeneraattori Kuvan 9 käsigeneraattorin sisällä on pieni tasavirtamoottori, joka on yhdistetty hammaspyörävälityksellä käsikampeen. Kytketään käsigeneraattorin johdot paristoon, jolloin kampi lähtee pyörimään. Laitteessa siis todella on sähkömoottori. Kytketään seuraavaksi käsigeneraattorin johdot hehkulamppuun. Kun kammesta käännetään, lamppu palaa. Laite siis tuottaa sähkövirtaa. Havaitaan myös, että kytkettäessä lamppu generaattoriin, kammen pyörittäminen muuttuu raskaammaksi. Lampun polttamiseen tarvittava energia on siis tuotettava mekaanisella työllä. Voidaan myös kytkeä kaksi käsigeneraattoria yhteen. Kun toisen kammesta käännetään, toisen kampi pyörii. kuva 9

Kuva 10 ja sitä vastaava animaatio [3] havainnollistavat, miten tasavirtamoottori toimii tasavirtageneraattorina. Tällaisen generaattorin napaisuus ja tuotetun sähkövirran suunta vaihtuu vain kun pyörityssuuntaa vaihdetaan; samaan suuntaan pyöritettäessa napaisuus pysyy vakiona. Jos generaattorista jätetään virrankääntäjä pois, tuotetun sähkövirran napaisuus vaihtuu kaksi kertaa jokaisella ankkurin kierroksella. Tällöin laite tuottaa vaihtosähköä, eli kyseessä on vaihtovirtageneraattori. Kuvaa 10 vastaavalla animaatiolla voi tutkia myös vaihtovirtageneraattorin toimintaa. Sähkön tuottaminen generaattorilla perustuu siihen, että kun käämin johdinsilmukoiden läpi menevä magneettikenttä muuttuu, käämiin syntyy jännite. Mikäli käämi on osa suljettua virtapiiriä, piiriin syntyy sähkövirta. Tämä ilmiö on nimeltään sähkömagneettinen induktio. Käämin läpäisevän magneettikentän määrä voi muuttua eri syistä: kestomagneettia viedään lähemmäs tai kauemmas käämistä kestomagneetti tai käämi pyörii (generaattori) kuva 10 käämin lähellä on toinen käämi, jonka läpi kulkeva virta muuttuu (muuntaja) kuva 11 kuva 12

Kaikki sähköenergian tuotanto voimalaitoksissa perustuu sähkömagneettiseen induktioon, riippumatta siitä saadaanko laitoksen generaattoreita pyörittävä energia hiilestä tai kaasusta, vedestä tai tuulesta, tai ydinenergiasta. Sähköenergia Energian perushahmot ovat säilyminen, siirtyminen ja muuntuminen. Muuntuminen. Sähköenergiaa voidaan tuottaa generaattorilla toisista energiamuodoista: tuulivoimalassa ilman liike-energiasta, vesivoimalassa veden painon potentiaalienergiasta, hiili- ja kaasuvoimalassa kemiallisesta energiasta lämpöenergian kautta, ydinvoimalassa ydinenergiasta (eli atomiytimen osasten vuorovaikutusten potentiaalienergiasta) myöskin lämpöenergian kautta. Sähköenergiaa voidaan tuottaa myös kemiallisesta energiasta. Näin tapahtuu paristoissa ja akuissa. Aurinkokenno muuttaa valon säteilyenergiaa suoraan sähköenergiaksi. Kun sähköllä tuotetaan lämpöä, valoa tai liikettä, sähköenergia muuttuu vastaavasti lämpöenergiaksi, säteilyenergiaksi tai mekaaniseksi energiaksi.. Sähköllä voidaan myös saada aikaan kemiallisia reaktioita, kuten elektrolyysi ja akun varautuminen. Tällöin sähköenergiaa muuttuu kemialliseksi energiaksi. Siirtyminen. Sähkövirran avulla voidaan siirtää energiaa paikasta toiseen pitkiäkin matkoja. Tämä on ollut teollistumisen kannalta merkittävä tekijä. Ensimmäiset koneita käyttävät tehtaat täytyi perustaa koskien varrelle, ja koneiden käyttöenergia otettiin vesimyllyn kaltaisilla laitteilla. Höyrykoneet mahdollistivat tehtaiden sijoittamisen muuallekin, mutta edelleen koneiden käyttöenergia piti tuottaa paikan päällä. Vasta sähkön avulla tapahtuva energia siirto erotti energian tuotannon ja kulutuksen toisistaan. Säilyminen. Voimalat tuottavat sähköenergiaa sitä mukaa kun sitä kulutetaan, joten sähkön jakeluverkko ei varastoi sähköenergiaa. Akku on laite, johon voidaan viedä sähköenergiaa ja josta saadaan ulos sähköenergiaa. Kuitenkaan energia ei varastoidu akkuun sähköenergiana, vaan kemiallisena energiana. On kuitenkin olemassa laite joka varastoi nimenomaan sähköenergiaa; laite on nimeltään kondensaattori. Kun se kytketään esimerkiksi paristoon, kondensaattorin läpi kulkee sähkövirta. Samalla kondensaattorin jännite alkaa nousta, kunnes se on kasvanut yhtä suureksi kuin pariston jännite. Tällöin sähkövirran kulku lakkaa. Kun ladattu kondensaattori kytketään virtapiirin, kondensaattori purkautuu ja sähkövirta kulkee hetken piirin läpi. Kuvan 11 esittämässä kytkennässä lamppu valaisee kondensaattorin purkautuessa. Koe vaatii onnistuakseen varauskyvyltään hyvin suuren (vähintään 1 F) kondensaattorin. kuva 11