Hannele Ikäheimo Anni Lampinen Kirsi Puumalainen 10.2.2013 VaNe-värisauvoilla iloa ja ymmärrystä matematiikkaan Ohjekirja Early Learning Oy VaNe-värisauva-OHJE 1
Sisällysluettelo 1 Taustaa Sisältö Sivu 1 Taustaa 2 Rakentelua 3 Mittaamista 4 Lukujen 3 10 hajotelmat 5 Lukujen vertailua ja lukujonoja 6 Uraviivaimella lukujen vertailua ja lukujonoja 7 Lukuja ja laskuja 10-järjestelmäalustalla 8 Kerto- ja jakolaskun käsitteet 9 Uraviivaimella kertotaulut 10 Moninkertaisia ja osia 11 Murtolukuja 12 Desimaalilukuja 13 Prosenttilaskua 14 Suhteita 15 Kirjallisuutta pituus massa Oranssi 10 cm 10 g Keltainen 5 cm 5 g 1 cm 1 g jne. Liitteenä: Peili, jota tarvitaan luvussa 2. VaNe-värisauva-OHJE 2
2 Rakentelua 15. Rakenna talot pohjapiirroksien mukaan vain vaaleanpunaisista sauvoista ja merkitse pohjapiirrokseen, kuinka monta niitä tarvitsit. Rakenna kuvan mukaan. 7. Ra-ken-na ku-van mu-kaan. Pane rakennelman Pa-ne viereen ra-ken-nel-man peili ja katsele vie-reen peilikuvaa, pei-li. kun liikutat peiliä. Rakenna taloja 4 vaaleanpunaisesta sauvasta. Tee tällaiset. Keksi itse lisää. Rakenna jokainen talo uudestaan yhtä suureksi valkoisista kuutioista. Laske, kuinka monta sauvaa ja kuutiota tarvitsit. VaNe-värisauva-OHJE 3
2. Rakenna. Katso peilistä ja rakenna myös peilikuva. Täydennä luvut pohjapiirrokseen. 3 2 1 3 1 1 1 1 4 3 2 2 3. Vasemmalla oleva talo on rakennettu uudestaan. Kumpi on samanlainen talo ja kumpi peilikuva? Kokeile ja täydennä. malli 4 2 3 1 2 2 3 2 1 1 2 3 Rakentaminen kahdella kädellä Rakennetaan esimerkiksi peilikaupunki siten, että molemmat kädet työskentelevät samalla tavalla samaan aikaan. kuva tästä 4. Rakenna kuutioista pohjapiirroksen mukainen talo. Tee talolle peilikuvatalo. 2 1 2 1 3 1 2 1 2 Onko tämä alkuperäinen vai sen peilikuva? Rakenna samanlainen talo erivärisistä sauvoista. Tee sillekin peilikuvatalo. VaNe-värisauva-OHJE 4
3 Mittaamista VaNe-värisauvoilla voi mitata pituutta, painoa ja tilavuutta. Pituus: mittaa, arvaa, piirrä ja kirjoita * Mikä sauva on yhtä pitkä kuin etusormesi? * Mikä sauva on yhtä korkea kuin juomalasi? * Kuinka leveä on pöytä? Mittaa monella sauvalla. Paino / Massa: mittaa, arvaa, piirrä ja kirjoita Esineen paino saadaan selville, kun esine laitetaan tasapainovaa an yhteen vaakakuppiin ja toiseen vaakakuppiin niin monta sauvaa, että vaaka on tasapainossa. Alla olevassa kuvassa pullan paino on 34 g. Nesteen paino saadaan vastaavasti selville, kun esim. lasillinen vettä kaadetaan toiseen vaakakuppiin. On myös mielenkiintoista punnita hiekkaa, lunta, pumpulia jne. Tilavuus * Valkoisen kuution tilavuus on 1 cm 3. * Tee rakennelmia, joiden tilavuudet ovat 12 cm 3. * Tee rakennelmia, joiden korkeus on 4 cm ja etuseinän pintaala on 6 cm 2. * Tee rakennelmia, joiden korkeus on 10 cm. * Kirjoita muistiin näiden rakennelmien mitat: tilavuus, korkeus, pituus ja leveys, etuseinän pinta-ala, katon pintaala jne. Rakenna VaNe-sauvoista eri kokoisia kuutioita. Ensimmäinen kuutio on valkoinen ja sen tilavuus on 1 cm 3. Toinen kuutio rakennetaan vaaleanpunaisista sauvoista. Sen tilavuus on 8 cm 3. Mikä on sen kuution tilavuus, joka on rakennettu vaaleansinisitä sauvoista? (27 cm 3 ) Kuutioiden mitat kirjoitetaan taulukkoon: 1. kuutio 2. kuutio 3. kuutio tilavuus 1 cm 3 8 cm 3 27 cm 3 korkeus 1 cm 2 cm 3 cm levys 1 cm 2 cm 3 cm pituus 1 cm 2 cm 3 cm tahkon pinta-ala 1 cm 2 4 cm 2 9 cm 2 4. kuutio Kuutioiden tilavuuksia verrataan toisiinsa: mitä tapahtuu tilavuudelle, kun kuution särmä 2-kertaistuu? (Se 8-kertaistuu.) Entä kun särmä 3-kertaistuu? (Tilavuus 27-kertaistuu.) Kuutioiden tahkoja verrataan toisiinsa: mitä tapahtuu pinta-alalle, kun kuution särmä 2-kertaistuu? (Se 4-kertaistuu.) Entä kun särmä 3-kertaistuu? (Pinta-ala 9-kertaistuu.) VaNe-värisauva-OHJE 5
4 Lukujen 3 10 hajotelmat 5 Lukujen vertailua ja lukujonoja Tehdään lukujen hajotelmia kutomalla lukumattoja. 1. Asetetaan kaikki sauvat pituusjärjestykseen, pienin vasemmalle ja pisin oikealle. Ks. kansikuva. 2. Otetaan kaksi eripituista sauvaa ja asetetaan ne vierekkäin. Kumpi on lyhyempi? Kumpi on pitempi? Kuinka paljon lyhyempi/ pitempi? (Esim. kahden valkoisen tai yhden vaaleanpunaisen verran lyhyempi/pitempi.) 3. Valitse kaksi sauvaa. Etsi sauva, jonka pituus on yhtä pitkä kuin näiden kahden sauvan pituudet yhteensä. 4. Etsi kaksi sauvaa, joiden pituuksien ero on valeansinisen sauvan pituus. Etsi myös muut vastaavat sauvat. Ylinnä on 7 cm:n pituinen sauva ja sen alapuolelle kehoitetaan oppilaita löytämään kaksi sauvaa, joiden yhteinen pituus on ylimmän sauvan pituus. Sauvoista puhutaan ensin niiden värien mukaan, mutta sitten myös niiden pituuksien mukaan. Tällöin toinen rivi ylhäältä sanottaisiin väreillä: ruskea sauva on yhtä pitkä kuin valkoinen sauva ja lila sauva yhteensä. Sama rivi sanotaan pituuksien mukaan seuraavasti: 7 cm:n pituinen sauva on yhtä pitkä kuin 1 cm:n ja 6 cm:n pituset sauvat yhteensä. Tämä rivi merkitään 7 = 1 + 6 ja sen alapuolella oleva rivi Merkitään 7 = 2 + 5 jne. Oppilaita kannattaa pyytää tekemään omista matoistaan yllä olevan muotoisen kuvion: muuten emme tiedä, ovatko kaikki hajotelmat mukana. Lukujonoja lukualueella 1 16 a) Aseta nämä sauvat peräkkäin vasemmalta oikealle: valkoinen, vaaleansininen, keltainen. Mikä on seuraava sauva? Mitkä ovat sitä seuraavat sauvat? Mikä sääntö on tässä lukujonossa? (Seuraava on vaaleanpunaisen sauvan verran pitempi kuin edellinen.) b) Aseta nämä sauvat peräkkäin vasemmalta oikealle: oranssi, viininpunainen, lila. Mikä on seuraava sauva? Mitkä ovat sitä seuraavat sauvat? Mikä sääntö on tässä lukujonossa? (Seuraava on vaaleanpunaisen sauvan verran lyhyempi kuin edellinen.) VaNe-värisauva-OHJE 6
6 Uraviivaimella lukujen vertailua ja lukujonoja 1. Kumpi on suurempi luku: 13 vai 17. Vertailtavat luvut 13 ja 17 rakennetaan Ellin lukusuoralle vierekkäin. Lukujonoja lukualueella 0 100 1. Jatka lukujonoa 34, 44, 54,,, Ensimmäinen luku 34 tehdään lukusuoralle ja pohditaan, miten seuraava luku 44 saadaan. Se saadaan lisäämällä yksi 10-sauva. Samoin toimitaan luvun 54 kohdalla. Nyt tiedetään, että tämän lukujonon sääntö on 10 lisää. Täydennetty lukujono on 34, 44, 54, 64, 74., 84. 2. Kumpi on suurempi luku: 61 vai 16? Toiseen uraan rakennetaan luku 61 ja toiseen luku 16. 2. Jatka lukujonoa 67, 65, 63,,, Ensimmäinen luku 67 tehdään lukusuoralle ja pohditaan, miten seuraava luku 65 saadaan. Se saadaan ottamalla pois 2. Samoin toimitaan luvun 65 kohdalla. Nyt tiedetään, että tämän lukujonon sääntö on 2 pois. Täydennetty lukujono on 67, 65, 63, 61, 59, 57. VaNe-värisauva-OHJE 7
7 Lukuja 10-järjestelmäalustalla Yhteen- ja vähennyslaskuja lukualueella 0 100 Edellä on muutamia yhteen- ja vähennyslaskuja; tässä lisää. Lasku 34 + 9 tehdään näin: 34 + 10 1 = 44 1 = 43 Lasku 34 9 tehdään näin: 34 10 + 1 = 24 + 1 = 25 Lukuja 0 100 voidaan konkretisoida VaNe-sauvoilla paikkaalustalla KY, jossa K = kymmenet ja Y = ykköset. Luku 34 luetaan kolme kymmentä ja neljä ykköstä ja kolmekymmentäneljä. Luku 34 voidaan kirjoittaa muotoon: 34 = 30 + 4 a myös näin: 34 = 20 + 14 sekä näin: 34 = 10 + 24. Kuinka monta pitää lisätä, että saadaan luku 40? (6) Kuinka monta pitää lisätä, että saadaan luku 50? (16) Kuinka monta pitää lisätä, että saadaan luku 100? (66) Kuinka monta pitää ottaa pois, että saadaan luku 30? (4) Kuinka monta pitää ottaa pois, että saadaan luku 20? (14) Kuinka monta pitää ottaa pois, että saadaan luku 0? (34) Tehdään ketjulasku KY-alustalle lähtien luvusta 34. 34 4 + 10 + 4 20 20 4 = 0 Kerto- ja jakolaskuja lukualueella 0 100 Otetaan 2 kertaa 34. Tämä tehdään niin, että luku 34 rakennetaan KY-alustalle 2 kertaa allekkain. Ts. Kertolasku palautuu yhteenlaskuksi. Voidaan ottaa myös näin: 2 34 = 2 30 + 2 4 = 60 + 8 = 68. Sisältöjako 34 : 8 Kuinka monta kertaa voidaan luvusta 34 ottaa luku 8? Lasku palautuu vähennyslaskuksi 34 8 8 8 8 = 32 Luku 8 sisältyy lukuun 34 siis 4 kertaa ja yli jää 2. Ositusjako 34 : 2 Jaetaan luku 34 kahteen yhtä suureen osaan tai kahdelle henkilölle tasan. : I I I : : > I :::. I :: > I ::. Kumpikin saa 17. VaNe-värisauva-OHJE 8
8 Kerto- ja jakolaskun käsitteet Kertolaskun käsite Otetaan kaksi vaaleansinistä sauvaa ja laitetaan ne peräkkäin. Etsitään sauva, jonka pituus on yhtä pitkä kuin nämä kaksi sauvaa. Se on lilan värinen. Kun tarkastellaan sauvojen pituuksia, saadaan lasku 3 cm + 3 cm = 6 cm. Tämä merkitään kertolaskuna 2 3 = 6 ja puhutaan: 2 kertaa 3 on yhtä suuri kuin 6. Monesta VaNe-värisauvasta voidaan tehdä kertomatto. Alla luvun 6 kertomatto: 6 = 1 6 6 = 2 3 6 = 3 2 6 = 6 1 Ositus- ja sisältöjako Tarinoiden liittäminen jakolaskuihin helpottaa näiden kahden jakolaskun ymmärtämistä. lila vihreä lila * Lasku 12 : 2 = 6 ositusjakona tarinan avulla. 12 cm pitkä nauha jaetaan tasan kahdelle lapselle. Kuinka pitkän nauhan kumpikin saa? 6 cm. * Lasku 12 : 6 = 2 sisältöjakona tarinan avulla. 12 cm pitkästä nauhasta leikataan 6 cm:n pituisia paloja. Kuinka monta nauhaa saadaan? 2 kpl. vihreä Kolmannella rivillä ylhäältä on 3 kpl vaalenapunaista eli 2 cm:n pituista sauvaa. Siitä saatu kertolasku 6 = 3 2 puhutaan näin: 6 on yhtäsuuri kuin 3 kertaa 2. Huomataan, että kertolasku on vaihdannainen: 2 3 = 3 2, mutta sauvoilla konkretisoituina ne näyttävät erilaisilta. Näin on myös kun katsotaan ylintä ja alinta riviä: 1 6 = 6 1. Ylimmällä rivillä on yksi 6 cm:n sauva ja alimmalla on 6 kpl 1 cm:n sauvaa. * Lasku 12 : 6 = 2 ositusjakona tarinan avulla. 12 cm pitkä nauha jaetaan tasan kuudelle lapselle. Kuinka pitkän nauhan kukin saa? 2 cm * Lasku 12 : 2 = 6 sisältöjakona tarinan avulla. 12 cm pitkä nauha jaetaan 2 cm:n pituisia paloja. Kuinka monta nauhaa saadaan? 6 kpl. VaNe-värisauva-OHJE 9
9 Uraviivaimella kertotaulut 5:n ja 10:n kertotaulut uraviivaimella 2:n, 4:n ja 8:n kertotaulut uraviivaimella Laitetaan 5 cm:n pituinen keltainen sauva ylemmän uran alkuun ja sanotaan: yksi kertaa 5 on 5. Laitetaan toinen 5 cm:n pituinen keltainen sauva edellisen perään ja sanotaan: 2 kertaa 5 on 10. Sitten laitetaan alemman uran alkuun 10 cm:n pituinen oranssi sauva ja sanotaan: yksi kertaa 10 on 10. Todetaan, että urilla olevat sauvajonot ovat yhtä pitkät. Vastaavasti jatketaan. Sanotaan: 3 kertaa 5 on 15 ja 4 kertaa 5 on 20. Alempaan uraan laitetaan toinen 10 cm:n oranssi sauva sanotaan: 2 kertaa 10 on 20. Todetaan taas, että sauvajonot ovat yhtä pitkät: 20 cm. Näin jatketaan, kunnes on saatu 50 cm pitkät sauvajonot. Huomataan, että nyt ollaan urien puolessa välissä. Jäljellä on vielä 50 cm. Jatketaan: 11 kertaa 5 on 55 ja 12 kertaa 5 on 60 sekä 6 kertaa 10 on myös 60. Jatketaan uraviivainten loppuun eli sataan asti. Kuinka monta kymppiä mahtuu sataseen? 10. Kuinka monta viitosta mahtuu sataseen? 20. Laitetaan 8 cm:n pituinen viininpunainen sauva alimman uran alkuun ja sanotaan: yksi kertaa 8 on 8. Laitetaan yksi 4 cm:n pituinen punainen sauva kylemmän uran alkuun ja sanotaan: 1 kertaa 4 on 4, sitten laitetaan toinen 4 cm:n sauva ensimmäisen perään. Sanotaan 2 kertaa 4 on 8. Todetaan, että nämä kaksi tehtyä sauvajonoa ovat yhtä pitkät eli 1 8 = 2 4. Sitten laitetaan ylimmän uraviivaimen alkuun 2 cm:n pituinen sauva ja sanotaan: yksi kertaa 2 on 2. Jatketaan laittamalla lisää näitä sauvoja ja sanotaan: 2 kertaa 2 on 4, 3 kertaa 2 on 6, 4 kertaa 2 on 8. Todetaan, että kolmella uralla olevat sauvajonot ovat yhtä pitkät, eli 1 8 = 2 4 = 4 2. Näin jatketaan, kunnes on saatu 40 cm pitkät sauvajonot. Jatketaan sitten urien loppuun asti. Huomataan, että 2 cm:n ja 4 cm:n pituisista sauvoista saadaan 100-uraviivain täyteen: 50 2 = 100 ja 25 4 = 100. Koska 12 kertaa 8 on vasta 96, pitää lisätä yksi nelosen sauva, että saadaan 100 täyteen. Tämä voidaan merkitä 12 8 + 4 = 100. Vastaavalla tavalla tehdään 3:n, 6:n ja 9:n kertotaulut. Koska 7:n kertotaulusta on tehty edellisissä kaikki muut, jäljellä on enää 7 7 = 49. VaNe-värisauva-OHJE 10
10 Moninkertaisia ja osia Kaksinkertainen ja puolet Miten saadaan luvusta 6 puolet? Etsitään kaksi sauvaa, jotka ovat yhtä pitkät ja joiden yhteinen pituus on 6 cm. Löytyy kaksi vaaleansinistä sauvaa (3 cm) ja molemmat ovat puolet lilan sauvan pituudesta. Luvusta 6 puolet on siis 3. K Y vs lila Miten saadaan luvusta 6 kaksinkertainen? Etsitään toinen lilan värinen sauva, laitetaan ne peräkkäin ja Etsitään sauva, jonka pituus on yhtä pitkä kuin näiden kahden sauvan pituus. (12 cm) vs Miten saadaan luvusta 24 kaksinkertainen? Miten saadaan luvusta 24 puolet? Uraviivaimeen laitetaan luvut 24 + 24 = 2 24 = 48. Luku 24 jaetaan kahteen yhtä suureen osaa laittamalla Luvusta 24 yhtä paljon kahteen uraan. Saadaan 12 kumpaankin uraan, joten puolet 24:stä on 12. Paikka-alustalla vastaavalla tavalla kuin uraviivaimella: K Y Konkreettisen työskenteyn jälkeen löydetään säännöt: * Puolet saadaan jakamalla 2:lla eli kahteen yhtä suureen osaan. * Kaksinkertainen saadaan kertomalla 2:lla. Vastaavalla tavalla työskennellään, kun halutaan tutkia käsitepareja kolmasosa ja 3-kertainen, neljäsosa ja 4-kertainen, jne. 10-kertainen ja 10:s osa on erityisen tärkeä käsitepari, jota tarvitaan mm. mittayksiköiden muunnoksissa: esimerkisi 10 1 mm = 1 cm ja 1 mm = 1 cm : 10. Kun valkoinen kuutio otetaan 10 kertaa, saadaan oranssin pituinen sauva. Tämä oranssi on 10-kertainen valkoiseen kuutioon verrattuna. Kun oranssi sauva jaetaan 10:een yhtä suureen osaan ja otetaan niistä yksi, saadaan valkoinen kuutio. Tämän kuution pituus on 10:s osa oranssin sauvan pituudesta. VaNe-värisauva-OHJE 11
11 Murtolukuja Kun murtolukuja konkretisoidaan VaNe-sauvoilla, tarkastellaan niiden pituutta. Mikä tahansa sauva voi olla luku 1 ja myös melkein mikä tahansa murtoluku. * Tämä keltainen sauva on puolet jostakin toisesta sauvasta. Mistä? Oranssista. Perustele: laitetaan kaksi keltaista sauvaa peräkkäin ja huomataan, että oranssi sauva on yhtä pitkä kuin kaksi keltaista. kelt kelt oranssi * Etsi sauva, jonka pituus on puolet vihreästä sauvasta. (Lila) Perustele: laitetaan vihreän sauvan ala, joiden puolelle kaksi yhtä pitkää sauvaa ja ne ovat lilan värisiä. Kumpikin on puolet vihreän sauvan pituudesta. lila vihreä * Mistä sauvasta kirkkaan punainen on yksi kolmasosa? Vihreästä. Perustele: kolme punaista sauvaa peräkkäin asetettuna on yhtä pitkä kuin vihreä sauva. lila pun pun pun vihreä * Mikä sauva on ¾ mustan sauvan pituudesta? Vihreä. Perustele: Mustan asauvan alapuolelle laitetaan 4 yhtä pitkää sauvaa eli punaisia. Etsitään sauva, jonka pituus on 3 punaista Sauvaa; tämä on vihreä. Laskuja murtoluvuilla Näytä nämä laskut niillä sauvoilla kun voit: a) ½+ ½ = 1 1/3 + 1/3 + 1/3 = 1 jne. b) 1 ¼ = ¾ 1 1/5 = 4/5 jne. c) 2 ½ = 1 3 1/3 = 1 jne. d) 2 ¼ = ½ 2 1/8 = ¼ jne. Ositusjako ½ : 2 luetaan näin: Puoli jaetaan kahteen yhtä suureen osaan ja otetaan niistä yksi osa. Saadaan ¼. Millä sauvoilla voit näyttää tämän laskun? Sisältöjako ½ : ¼ luetaan näin: Kuinka monta kertaa ¼ mahtuu/sisältyy lukuun puoli? 2 kertaa. Millä sauvoilla voit näyttää tämän laskun? Sisältöjako 1 : 1/10 tehdään näin: Oranssi sauva on 1. Silloin valkoinen kuutio on 1/10. Kuinka monta valkoista kuutiota sisältyy oranssiin sauvaan? 10. Saadaan lasku 1 : 1/10 = 10. musta pun pun pun pun vihreä VaNe-värisauva-OHJE 12
12 Desimaalilukuja Kun murtolukuja konkretisoidaan VaNe-värisauvoilla, sovitaan, että mikä tahanasa sauva voi edustaa lukua 1. Desimaalilukuja konkretisoitaessa VaNe-värisauvoilla, sovitaan, että oranssi sauva edustaa lukua 1. * Etsitään sauva, jonka pituus on yksi kymmenesosa oranssin sauvan pituudesta. (Valkoinen kuutio, pituus 1 cm.) Tämä merkitään murtolukuna 1/10 ja desimaalilukuna 0,1. Molemmat merkinnät puhuttuina: Yksi kymmenesosa. * Otetaan kaksi kuutiota ja mietitään, mikä murtoluku ja desimaaliosa on kyseessä. (2/10 ja 0,2) * Etsitään sauva, joka on yhtä pitkä kuin 2 kymmenesosaa oranssin sauvan pituudesta. (Vaaleanpunainen sauva.) Tämä merkitään 0,2. * Vastaavalla tavalla etsitään sauvoja, joiden pituudet ovat desimaalilukuina 0,3 ja 0,4.. 0,9. * Miten nyt merkitään oranssin sauvan pituus? (1,0) * Tehdään luvun 1,1 malli. (Oranssi ja valkoinen.) Tämä piirretään ja kirjoitetaan vihkoon. Luku 1,1 sanotaan yksi kokonainen ja yksi kymmensosa. * Vastaavalla tavalla tehdään, piirretään ja kirjoitetaan lukujen 1,2.. 9,9 mallit. ( 37 ko ja 3,7) * Otetaan 37 valkoista kuutiota ja todetaan, että siinä on 37 kymmenesosaa. Vaihdetaan 10 valkoista kuutiota yhdeksi oranssiksi sauvaks. Näin saadaan 3 oranssia sauvaa ja 7 ykköskuutiota. Mikä desimaaliluku saatiin? (3,7) Kuutiot voidaan vaihtaa ruskeaksi sauvaksi ja todeta, että nytkin kyseessä desimaaliluku 3,7 Laskuja desimaaliluvuilla Näytä sauvoilla alla olevat laskut. a) 3,0 + 0,3 = 3,3 b) 3,0 0,3 = 2,7 c) 2 1,3 = 2,6 d) 3 1,5 = 4,5 e) 1,5 : 3 = 0,5 f) 2,5 : 0,5 = 5 KUVIA Luku 9,9 on suurin desimaaliluku, joka voidaan ja kannattaa esittää VaNe-värisauvoilla. Lukua 10 eikä sitä suurempaa lukua ei löydy näistä sauvoista eikä lukuja sadasosa tai tuhannesosa, vaan näitä lukuja konkretisoidaan 10- järjestelmävälineillä ja desimaaliosilla. Silloin kuutiosenttimetrin kokoinen kuutio edustaa aina lukua 1, kuutiodesimetrin kokoinen kuutio lukua 1000 ja kuutiomillimetrin kokoinen kuutio lukua 0,001. VaNe-värisauva-OHJE 13
13 Prosenttilaskua Jokainen värisauva on vuorollaan 100 %. Etsitään sellainen sauva, joista voidaan sanoa, että se on niin ja niin monta % toisesta sauvasta. Sauvat laitetaan ensin päällekkäin, jolloin voidaan todeta: alapuolella oleva sauva on 100 % ja yläpuolella on kaksi sauvaa, joiden pituudet ovat 50 % alapuolella olevan sauvan pituudesta. Sitten löydetty sauva sijoitetaan ensimmäisen sauvan oikealle puolelle, ks. kuva. Murtolukuja havainnollistettaessa VaNe-värisauvoilla sovittiin, että mikä tahansa sauva voi edustaa lukua 1. Vastaavalla tavalla sovitaan prosenttilaskun yhteydessä: jokainen sauva vuorollaan voi olla 100 %. * Etsitään sauva, jonka pituus on puolet oranssin sauvan pituudesta. (Keltainen.) Kuinka monta % se on? (50 %) Perusteluksi riittää, että oranssin sauvan viereen laitetaan kaksi keltaista sauvaa. (50 % + 50 % = 100 %) * Tehdään taulukko niistä sauvoista, joista löytyy myös 50 %. * Miten sauvasta saadaan 25 %, kun 100 % tiedetään? (Sauva jaetaan neljään yhtä suureen osaan ja otetaan yksi osa.) Esimerkiksi jos vihreä sauva on 100 %, niin vaaleansininen sauva on 25 % siitä.* * Tehdään taulukko niistä sauvoista, joista löytyy myös 25 %. * Vastaavalla tavalla etsitään sauvoja, joiden pituus on 20 % tai 10 % valitun sauvan pituudesta. Tehdään taulukko. * Etsitään sauvapareja, joista yksi on 100 % ja toinen on 50 % pitempi (esim. 2 cm ja 3 cm) ja 100 % pitempi (esim. 3 cm ja 6 cm) ja 25 % pitempi (esim. 4 cm ja 5 cm) ja 10 % pitempi (esim. 10 cm ja 11 cm). * Etsitään sauvapareja, joista yksi on 100 % ja toinen on 50 % lyhyempi (esim. 4 cm ja 2 cm) ja 25 % lyhyempi (esim. 12 cm ja 8 cm) ja 10 % lyhyempi (esim. 10 cm ja 9 cm) sekä 20 % lyhyempi (esim. 10 cm ja 8 cm). Ylinnä vasemmalla olevasta mustasta sauvasta viininpunainen sauva on 50 %. Vastaavalla tavalla etsitään sauva, joka on 25 % mustasta sauvasta (punainen) ja sijoitetaan se edellisen oikealle puolelle (ks. kuva). Asetetaan kaikki VaNe-värisauvat kuvan osoittamalla tavalla: ylinnä vasemmalla on pisin musta sauva ja alinna on valkoinen kuutio. Etsitään oikealle puolelle sauvoja, joiden pituudet ovat 50 % ja/tai 25 % ja tai 20 % ja/tai 10 % vasemmalla olevien sauvojen pituuksista. Alimmalla rivillä ei valkoisesta kuution pariksi löydy 50 % siitä, mutta 100 % ja 200 % löytyy. VaNe-värisauva-OHJE 14
14 Suhteita Mittakaava *** Vasemalla on kuutio ja oikealla 3 samankokoista kuutiota. Näiden kuutioiden pituuden suhde on yhden suhde kolmeen ja tämä merkitään 1 : 3. *** Etsi sauvapareja, joiden pituuksien suhde on 1 : 3. Kun piirretään esimerkiksi kodin tai luokan pohjapiirrosta, käytetään mittakaavaa 1 : 10. Mitä se tarkoittaa? Piirroksessa 1 cm vastaa luonnossa 10 cm. (1 cm kuutio ja 100 cm uraviivain) v vp vs lila Vastaaavasti mittakaavaa 1 : 100 voidaan havainnollistaa 1 cm:n pituisen valkoisen kuution ja 100 cm pitkän uraviivaimen avulla. Piirroksessa tai kartalla 1 cm vastaa luonnossa 100 cm:ä eli 1 metriä. *** Mehutiivisteen ja veden suhde on 1 : 9. Kuinka paljon mehua saadaan, jos tiivistettä on 1 dl? (10 dl) Kuinka paljon mehua saadaan, jos tiivistettä on 2 dl? (20 dl) Kartoissa oleva mittakaava 1 : 20000 tarkoittaa siis, että molemmat luvut ovat senttimetreinä. Koska 20000 cm = 200 m, niin 1 cm kartalla vastaa 200 metriä luonnossa. Tällöin 5 cm kartalla vastaa luonnossa 5 200 m eli 1000 m eli 1 km. *** Tarvitaan mehua 6 litraa. Tiivistepullon kyljessä lukee: Laimennetaan suhteessa 1 : 5. Kuinka paljon laitetaan tiivistettä ja kuinka paljon vettä? Ratkaisu sauvoilla: 1 l tiivistettä ja 5 l vettä. VaNe-värisauva-OHJE 15
15 Kirjallisuutta VaNe-oppikirjat lk 1 3 SOLMU-lehden artikkeleita Ikäheimo, H. (2012) KYMPPI-kirja. Helsinki: Opperi Oy Ab Ikäheimo, H. & Voutilainen, E. (2009) Murtolukuja välineillä luokille 3 9. WSOY. Kairavuo, K. & Voutilainen, E. (2005) Matematiikkaa värisauvoilla luoille 6 9. WSOY. Tapiainen, T. (2011) Pii - Toiminnallista matematiikkaa. Otava VaNe-värisauva-OHJE 16