Kitka ja Newtonin lakien sovellukset



Samankaltaiset tiedostot
Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

g-kentät ja voimat Haarto & Karhunen

Luvun 10 laskuesimerkit

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Luvun 5 laskuesimerkit

Fysiikka 1. Dynamiikka. Voima tunnus = Liike ja sen muutosten selittäminen Physics. [F] = 1N (newton)

Luvun 5 laskuesimerkit

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

Fysiikan valintakoe , vastaukset tehtäviin 1-2

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

VUOROVAIKUTUS JA VOIMA

HARJOITUS 4 1. (E 5.29):

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luento 7: Voima ja Liikemäärä

:37:37 1/50 luentokalvot_05_combined.pdf (#38)

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

Huomaa, että 0 kitkakerroin 1. Aika harvoin kitka on tasan 0. Koska kitkakerroin 1, niin

Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää

FYSIIKKA. 5 op. Antti Haarto

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

Luento 5: Voima ja Liikemäärä

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

Harjoitellaan voimakuvion piirtämistä

Luku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia

Mekaniikan jatkokurssi Fys102

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KERTAUSTEHTÄVIÄ KURSSIIN A-01 Mekaniikka, osa 1

2.3 Voiman jakaminen komponentteihin

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe , malliratkaisut

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Fysiikan perusteet ja pedagogiikka (kertaus)

Luvun 8 laskuesimerkit

Kpl 2: Vuorovaikutus ja voima

v = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe , malliratkaisut

YO-harjoituskoe A / fysiikka Mallivastaukset 1. a)

Työ ja kineettinen energia

4 Kaksi- ja kolmiulotteinen liike

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

RAK Statiikka 4 op

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe , malliratkaisut

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Harjoitustyö Hidastuva liike Biljardisimulaatio

2 Kappaleeseen vaikuttavat voimat

1. Tasainen liike. Kappale liikkuu vakionopeudella niin, että suunta ei muutu

STATIIKKA. TF00BN89 5op

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

KJR-C1001: Statiikka L3 Luento : Jäykän kappaleen tasapaino

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

Massakeskipiste Kosketusvoimat

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4

2.11 Väliaineen vastus

Voimat mekanismeissa. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista)

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

Mekaniikan jatkokurssi Fys102

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

Mekaniikan jatkokurssi Fys102

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

2.5 Liikeyhtälö F 3 F 1 F 2

766323A-02 Mekaniikan kertausharjoitukset, kl 2012

Luvun 10 laskuesimerkit

Kuvan 4 katkoviivalla merkityn alueen sisällä

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

TEHTÄVIEN RATKAISUT N = 1,40 N -- 0,84 N = 0,56 N. F 1 = p 1 A = ρgh 1 A. F 2 = p 2 A = ρgh 2 A

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

Näytesivut. Merkonomin ja datanomin fysiikka, kemia ja ympäristötieto, opettajan aineisto. Jarkko Haapaniemi, Sirkka Parviainen, Pirjo Wiksten

Kertausta. Haarto & Karhunen.

W el = W = 1 2 kx2 1

1.4 Suhteellinen liike

NESTEIDEN ja ja KAASUJEN MEKANIIKKA

Mekaniikka 1 Lukion fysiikan kertausta

Lineaarialgebra MATH.1040 / voima

Pietarsaaren lukio Vesa Maanselkä

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe , malliratkaisut.

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

KJR-C1001: Statiikka L5 Luento : Palkin normaali- ja leikkausvoima sekä taivutusmomentti

Sähköstatiikka ja magnetismi Mekaniikan kertausta

Magneettikentät. Haarto & Karhunen.

Voiman momentti M. Liikemäärä, momentti, painopiste. Momentin määritelmä. Laajennettu tasapainon käsite. Osa 4

TEHTÄVIEN RATKAISUT. s = 6,0 m + 6,0 m = 12 m.

Transkriptio:

Kitka ja Newtonin lakien sovellukset Haarto & Karhunen

Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N

Vapaakappalekuva Kuva, joka sisältää kaikki kappaleeseen vaikuttavat ulkoiset voimat Kuvaan ei piirretä niitä voimia, joilla kappale itse vaikuttaa ympäristöönsä Jokaisesta erillisestä kappaleesta piirretään oma vapaakappalekuva Kappaleen kiihtyvyyden suunta myös kuvaan

Kappale kaltevalla tasolla a

Kitka Kappaleen liikettä vastustava vuorovaikutus ympäristön kanssa (pinta, neste, kaasu), kitkavoima Mahdollistaa liikkumisen Usein kitkavoima on verrannollinen pintoja toisiaan vastaan puristavasta voimasta, normaalivoimasta, N Tällöin kitkavoima ei riipu pintojen suuruudesta

Lepokitkavoima Eli staattinen kitkavoima f s Siirtämään pyrkivälle voimalle vastakkaissuuntainen f f N s s s, max sn (lähtökitka) μ s = lepokitkakerroin (yksikötön) N = normaalivoima

Liikekitkavoima alkaa vaikuttaa kappaleen lähdettyä liikkeelle f k k N μ k = liikekitkakerroin μ k < μ s

Likimääräisiä kitkakertoimen arvoja Ainepari μ s μ k Metalli-metalli (voideltu) 0,15 0,06 Kumi-asfaltti (kuiva) 0,8 0,6 Kumi-asfaltti (märkä) 0,6 0,5 Kumi-jää (kuiva) 0, 0,15 Kumi-jää (märkä) 0,1 0,08 Lasi-lasi 0,94 0,40 Jää-jää 0,1 0,03 Teflon-teflon 0,04 0,04

Väliaineen vastus Kappaleen liikkuessa nesteessä tai kaasussa, kappaleeseen törmäävät molekyylit ja paine-erot aiheuttavat siihen liikkeen suunnalle vastakkaisen vastusvoiman, jonka suuruus riippuu nopeudesta Kun vastusvoima kumoaa kappaleeseen vaikuttavat muut voimat, niin on saavutettu rajanopeus v r

Ilmanvastus suurilla nopeuksilla Kappale liikkuu nopeasti kaasussa tai nesteessä aiheuttaen pyörteitä. Vastusvoima on verrannollinen likimain nopeuden neliöön F D 1 c Av c D on kappaleen muodosta riippuva vastuskerroin esim. pallolle 0,44, laskuvarjolle 1,4 ja henkilöautolle n. 0,3 A on kappaleen poikkipinta-ala ρ on väliaineen tiheys (ilmalle n. 1,3 kg/m 3 ) D

Putoava kappale saavuttaa rajanopeuden, kun liikettä vastustava voima ja noste kumoavat painovoiman vaikutuksen F 1 c Av D D r FN G 0 mg F D +F N Jos nostetta ei huomioida, niin rajanopeudeksi saadaan v r mg c A D Joten rajanopeus riippuu myös kappaleen koosta G

Esimerkki: Kivipallon rajanopeus ilmassa Kiven tiheys k = 700 kg/m 3 Ilman tiheys = 1, kg/m 3 Vastuskerroin c D = 0,44 Rajanopeus v r mg c A D r on kivipallon säde 8k gr 3c D r [mm] v r [m /s] 100 115,66 10 36,57 1 11,57 0,1 3,66 0,01 1,16 0,001 0,37 0,0001 0,1

Newtonin lakien soveltamisesta Oletuksia ongelmien yksinkertaistamiseksi Kappaleet pistemäisiä, jolloin pyörimisliikettä ei tarvitse huomioida Kappaleiden väliset köydet ovat massattomia Pyörät, joiden yli köydet kulkevat, ovat massattomia ja kitkattomia Kappaleilla on yhtä suuri kiihtyvyys, joka voi olla nolla

Ongelmien ratkaiseminen Piirrä vapaakappalekuvat kaikista kappaleista Selvitä kappaleiden kiihtyvyyksien suunnat Muodosta vapaakappalekuvista Newtonin. lain mukaiset liikeyhtälöt (tai tasapainoyhtälöt) F ma m = tarkasteltava massa Ratkaise tuntemattomat suureet muodostetuista liikeyhtälöistä Tarkista tulosten mielekkyys

Muistettava, että kiihtyvyyden suuntaiset voimat ovat positiivisia (+) ja vastakkaissuuntaiset voimat negatiivisia (-) Newtonin. lain mukaisissa yhtälöissä. Muistettava, että kitkavoima on aina vastakkaissuuntainen liikkeen suunnalle, mutta ei välttämättä kiihtyvyyden suunnalle!

Esimerkki kitkakertoimien määrittämisestä Laatikko lähtee kaltevalla tasolla liukumaan, kun kaltevuuskulma on ja liukuu tällä kaltevuudella kiihtyvyydellä, m/s. Laske liikeja lepokitkakertoimien arvot.

N mg cos fk k N mg sin fk ma Yhdistetään edelliset yhtälöt ja saadaan mg sin mg cos ma k mg sin ma kmg cos mg sin ma k mg cos a k tan g cos, m/s k tan 9,81 m/s cos k 0,16 Lepokitkakertoimen tilanteessa kiihtyvyys = 0 m/s. mg sin mg s cos 0 tan s tan s s 0,40

Esimerkki Newtonin lakien soveltamisesta Laske kappaleiden kiihtyvyys ja niiden välinen jännitysvoima, kun ne lähtevät kitkattomasti levosta ja kun kappaleen m 1 massa on 7,0 kg ja m massa on 3,0 kg. m 1 m N a v T T m 1 g m g a

Newtonin. lain mukaiset yhtälöt: N m1g fk N jos kitka olisi mukana T m1a mg T ma Kaksi alimmaista yhdistämällä: m g m a 1 1 m a mg m1a ma mg ( m1 m) a mg 3 kg 9,81 m/s a,943 m/s,9 m/s m1 m 7 kg 3 kg T m a 7 kg,943 m/s 0,601 N 1 N