1 Komparatiivinen statiikka ja implisiittifunktiolause

Samankaltaiset tiedostot
1 Rajoittamaton optimointi

Matematiikan tukikurssi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

Taloustieteen mat.menetelmät 2017 materiaali 1

1 Useamman muuttujan di erentiaalilaskenta

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

Taloustieteen matemaattiset menetelmät - pikakertausta ja toimintaohjeita Kurssin 1. osa

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Harjoitus 7: vastausvihjeet

Matematiikan tukikurssi

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Lineaarinen yhtälöryhmä

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Malliratkaisut Demot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

ill 'l' L r- i-ir il_i_ lr-+ 1r l

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan.

Kustannusten minimointi, kustannusfunktiot

1 Rajoitettu optimointi II - kustannusfunktio, Lagrangen kertoimet varjohintoina

LIITE 1 VIRHEEN ARVIOINNISTA

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).

1 Di erentiaaliyhtälöt

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Matemaattinen Analyysi

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

Kanta ja Kannan-vaihto

4 Korkeamman kertaluvun differentiaaliyhtälöt

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

f(x) f(y) x y f f(x) f(y) (x) = lim

BM20A0900, Matematiikka KoTiB3

Lineaarinen toisen kertaluvun yhtälö

1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

Harjoitus Tarkastellaan luentojen Esimerkin mukaista työttömyysmallinnusta. Merkitään. p(t) = hintaindeksi, π(t) = odotettu inflaatio,

Gaussin ja Jordanin eliminointimenetelmä

5 Lineaariset yhtälöryhmät

lnx x 1 = = lim x = = lim lim 10 = x x0

KANSANTALOUSTIETEEN PÄÄSYKOE MALLIVASTAUKSET

MATEMATIIKAN ALKEET II (YE19B), SYKSY 2011

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

7 Vapaus. 7.1 Vapauden määritelmä

Dierentiaaliyhtälöistä

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

LIITE 1 VIRHEEN ARVIOINNISTA

Matematiikka B1 - avoin yliopisto

Matematiikka B3 - Avoin yliopisto

JAKSO 2 KANTA JA KOORDINAATIT

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

Matematiikka B2 - Avoin yliopisto

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Matemaattinen Analyysi

1 Rajoitettu optimointi I

( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

LIITE 1 VIRHEEN ARVIOINNISTA

Matematiikan tukikurssi

Matemaattinen Analyysi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

3.4 Käänteiskuvauslause ja implisiittifunktiolause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Derivaatan sovellukset (ääriarvotehtävät ym.)

Transkriptio:

Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla epälineaarinen Lisäksi saattaa hyvin käydä niin että emme kykene ratkaisemaan mallia kiinnostavan muuttujan suhteen, tai se on hankalaa Ratkaisuna ovat implisiittifunktion eli ratkaisemattoman funktion käsittely ja paikallinen linearisointi..2 Implisiittifunktiolause Lineaarinen maailma eksplisiittifunktiolause Lineaarisissa malleissa näimme, että mikäli yhtälöryhmällä on täysi rangi, sillä on vaakarivioperaatioita käyttäen laskettavissa oleva ratkaisu. Tarkastellaan yhtälöryhmiä, joissa n yhtälöä, n endogeenista muuttujaa (y ; ; y n ) ja m eksogeenista muuttujaa (x ; ; x m ) Yksinkertaisin tapaus n m f (y; x) ay + bx Miten x n muutos vaikuttaa y n arvoon? Ratkaistaan y b a x; kun a 6 Toisin sanoen muutos x aiheuttaa muutoksen y b a x Voidaan laskea y x b a Kun x on pieni, merkitään sitä usein dx llä. Saadaan siis Siis dy dx b a dy dx @f(y;x) @f(y;x)

Tavoite on yleistää tämä kaava epälineaarisiin funktioihin ja sitten useamman yhtälöhn lineaarisiin ja epälineaarisiin yhtälöryhmiin. Yhden muuttujan lineaarisessa tapauksessa eksplisiittinen ratkaisu oli helppoa. Jokaiselle x n arvolle voitiin ratkaista yksikäsitteinen y; joka toteuttaa alkuperäisen yhtälön. Epälineaarisessa maailmasssa tämä ei onnistu. Implisiittifunktiolause kun n m f (y; x) xy + ln (xy + x) Huomataan, että (by; bx) (; ) toteuttaa yhtälön. Tarkastellaan eksogeenisen muuttujan x pienen muutoksen dx vaikutusta endogeenisen muuttujan y arvoon. Olemme siis kiinnostuneita kaikista pisteistä (y; x) ; jotka toteuttavat yllä olevan yhtälön. Oletetaan, että pisteen (; ) lähellä jokaista x vastaa yksikäsitteinen y (x) siten, että y () Oletetaan lisäksi, että y voidaan derivoida x n suhteen. Tällöin g (x) f (y (x) ; x) xy (x) + ln (xy (x) + x) kaikille x pisteen x lähellä. Huomataan, että alkuperäinen yhtälö on supistunut pelkästään xstä riippuvaksi. Koska funktion arvo on vakio () kaikille x; on funktion derivaatta pisteen x lähellä. Yhdistetyn funktion derivaattasäännö avulla saadaan g (x) x + @f (y; x) y @f (y; x) (x)+ x xy + x Asettamalla derivaatta nollaksi pisteessä (; ) saadaan y (x)+y+ y + xy + x y () @f(;) @f(;) 2 Huomatkaa, että tämä on mahdollista vain jos @f(;) 6 Alla oleva teoreema yleistää tämän esimerkin sanoman. Theorem (Teoreema Implisiittifunktiolause R ssä) Olkoon funktio f (y; x) jatkuvasti di erentioituva pisteen (by; bx) ympäristössä B " (by; bx) ; jollakin " > ja lisäksi f (by; bx) @f(by;bx) Mikäli 6 ; tällöin on olemassa > ja jatkuvasti di erentioituva funktio y (x) pisteen bx ympäristössä B (bx) ; jolle pätee 2

. f (y (x) ; x) kaikille x 2 B (bx) ; 2. y (bx) by; 3. Funktion y derivaatta toteuttaa y (bx) @f(by;bx) @f(by;bx) Vaihtoehtoisesti @f (; ) Df (; ) ; @f (; ) Pienelle muutokselle (dy; dx) pätee derivaatan määritelmän mukaan @f (; ) @f (; ) dy f ( + dy; + dx) f (; ) ; dx Jotta yhtälö pätisi myös pisteessä ( + dy; + dx),pitää muutoksen olla nolla @f (; ) @f (; ) dy + dx Ratkaisemalla dy saadaan dy @f(;) @f(;) dx Tämä viimeinen tapa tarkastella asiaa yleistyy helpoimmin monen muuttujan tapaukseen. Lineaarinen implisiittifunktiolause, kun n > Tarkastellaan yhtälöryhmää a y + + a n y n + b x + + b m x m ; a n y + + a nn y n + b n x + + b nm x m Kirjoitetaan matriisimuotoon Ay + Bx ; jossa A on n n matriisi ja B on n m matriisi, y (y ; ; y n ) ; x (x ; ; x m ). 3

Tulkitaan yhtälönä Oletetaan, että f (y; x) f (by; bx) eli Aby + Bbx ; ja tarkastellaan pienen muutoksen (dy; dx) (dy ; ; dy n ; dx ; ; dx m ) vaikutusta funktion arvoon f (by + dy; bx + dx) f (by; bx) Ady+Bdx D y f (by; bx) dy+d x f (by; bx) dx; missä D y f on funktion f osittaisderivaatoista endogeenisten muuttujien suhteen muodostettu matriisi ja D x f on eksogeenisten muuttujien suhteen otetuista osittaisderivaatoista muodostettu matriisi. Jotta yhtälö f (y; x) pätisi pisteessä (by + dy; bx + dx) ; on muutoksen oltava nolla Ady + Bdx Toisin sanoen dy A Bdx Jos vain yksi eksogeeninen muuttuja muuttuu kerrallaan, on Bdx rivivektori ja dy voidaan ratkaista Cramerin säännöllä. Tällä yhtälöllä on ratkaisu vain jos ja vain jos A on olemassa eli endogeenisten muuttujien kerroinmatriisilla on täysi rangi. Käyttämällä derivaattamerkitää, saadaan dy (D y f (by; bx)) D x f (by; bx) dx; mikäli (D y f (by; bx)) on olemassa. Tämä tulos yleistyy täysin epälineaarisille funktioille pisteen (by; bx) ympäristössä. Esimerkki 2y + y 2 + 3x ; y y 2 x Matriisimuodossa 2 y y 2 3 + x ; eli 2 y y 2 3 x 4

Cramerin säännöllä saadaan 3 x y 2 2 3 x y 2 2 2 3 x; 5 3 x Toisin sanoen jos dx on eksogeenisen muuttujan muutos, niin Jos dy 2 3 dx; dy 2 5 3 dx f R n+m R n ; ja f (by; bx) ; kirjoitetaan lineaarinen approksimaatio pienelle muutokselle (dy; dx) f (by + dy; bx + dx) ja vaaditaan f (by; bx) Df (by; bx) D y f (by; bx) dy + D x f (by; bx) dx; D y f (by; bx) dy + D x f (by; bx) dx Koska D y f (by; bx) ja D x f (by; bx) ovat tavallisia matriiseja, on jatko tästä eteenpäin täysin identtinen lineaarisen tapauksen kanssa. Esimerkki f (y; x) f (y ; y 2 ; x ; x 2 ) f 2 (y ; y 2 ; x ; x 2 ) f (y ; y 2 ; x ; x 2 ) y y 2 2 x x 2 + x 2 + 2 ; f 2 (y ; y 2 ; x ; x 2 ) y x y 2 + x 2 Tarkastellaan yhtälöryhmää pisteen (by ; by 2 ; bx ; bx 2 ) (; ; 2; 2) ympäristössä. Muodostetaan matriisit D y f (by; bx) @f ((by;bx)) @f ((by;bx)) 2 2 by 2 2 2by by 2 bx by 2 2 2 2 ; 5

D x f (by; bx) @f ((by;bx)) @f ((by;bx)) 2 2 Huomataan, että (D y f (by; bx)) 6 bx2 bx 2 by 2 Tarkastellaan x n muutoksen vaikutusta endogeenisiin muuttujiin @f ((by;bx)) @f ((by;bx)) 2 dy + dx dy 2 2 @f ((by;bx)) 2 eli pisteen (by ; by 2 ; bx ; bx 2 ) (; ; 2; 2) ympäristössä 2 dy 2 + dx 2 dy 2 Ratkaistaan Cramerin säännöllä 2 2 dx 2 dy 3 2 2 dx ; dy 2 2 2 2 2 4 dx Theorem 2 (Teoreema Implisiittifunktiolause R n ssä) Olkoon funktio f R n+m R n jatkuvasti di erentioituva pisteen (by; bx) ympäristössä B " (by; bx) ; jollakin " > ja lisäksi f (by; bx) Mikäli (D y f (by; bx)) 6 ; tällöin on olemassa > ja jatkuvasti di erentioituva funktio y (x) pisteen bx ympäristössä B (bx) ; jolle pätee. f (y (x) ; x) kaikille x 2 B (bx) ; 2. y (bx) by; 3. Funktion y derivaatta toteuttaa Dy (bx) (D y f (by; bx)) D x f (by; bx).3 Implisiittifunktiolause ja IS-LM analyysi Perinteisessä keynesiläisessä makrotaloustieteessä, talouden tasapainoa kuvataan seuraavalla yhtälöryhmällä Y C + I + G; C C(Y T ); I I (r) ; M s M (Y; r) 6

Y on kansantuote tai BKT. C on yksityinen kulutus,i on investoinnit, G on julkisen vallan menot, T on verokertymä,m s on rahan tarjonta. (Epälineaarinen) funktio C (Y T ) on kulutusfunktio, joka kertoo kullekin käytettävissä olevan tulon määrälle yksityisen kysynnän määrän. I (r) kuvaa investointien määrää koron r funktiona, ja rahan kysyntä M (Y; r) riippuu tuloista (rahan kvantiteettiteoria) ja korosta (vaihtoehtoiskustannus). Jaottelu endogeenisiin ja eksogeenisiin muuttujiin Eksogeeniset M s ; T; G Endogeeniset Y; C; I; M; Y; r Oletetaan < C (Y T ) < ; I (r) < ; > ; < Sijoittamalla saadaan yhtälöryhmä muotoon Y C (Y T ) I (r) G ; M (Y; r) M s Endogeeniset muuttujat Y ja r pyritään siis määräämään eksogeenisten muuttujien (G; M s ; T ) funktioina implisiittisesti pisteen (Y ; r ; G ; T ; M s ) ympäristössä, missä yhtälöt siis toteutuvat. Analysoidaan eksogeenista muutosta (dg; dt; dm s ) ja vastaavaa endogeenisten muuttujien sopeutumista (dy; dr) Saadaan C (Y T ) I (r ) dy C + (Y T dg ) @ dt A dr dm s Lasketaan endogeenisten muuttujien kerroinmatriisin erminantti C (Y T ) I (r ) ( C (Y T )) ( I (r )) < Toisin sanoen erminantti poikkeaa nollasta ja implisiittifunktiolausetta voidaan soveltaa. Oletetaan, että rahan määrä piään muuttumattomana ja sekä verotusta että valtion menoja nostetaan yhtä paljon (budjetti pysyy tasapainossa). Tällöin C (Y T ) I (r ) dy dr dg C (Y T ) dt dg ( C (Y T )) 7

Cramerin säännöllä ( C (Y T )) I (r ) dy dg C (Y T ) I (r ) > ; C (Y T ) ( C (Y T )) dr dg C (Y T ) I (r ) > Huomatkaa siis, että tasapainotetullakin budjetilla valtion menojen kasvattaminen lisää BKTta..4 Indi erenssikäyrän ja Isokvantin piirtäminen Tarkastellaan kuluttajan valintatilannetta kahden muuttujan suhteen siten, että max U (x; y) x;y p x x + p y y w Graa nen tarkastelu alkaa piirtämällä indi erenssikäyriä kuluttajalle eli etsitään (x ; y ) siten, että U (x ; y ) U jollekin hyötytasolle U Kuinka y n pitää muuttua jos x muuttuu dx n verran? Kirjoitetaan lineaarinen approksimaatio U (x + dx; y + dy) U (x ; y ) @U (x ; y ) dx + @U (x ; y ) dy Jotta saadaan jolloin U (x + dx; y + dy) U ; @U (x ; y ) dx + @U (x ; y ) dy ; dy dx @U (x ; y ) @U (x ; y ) Indi erenssikäyrä on siis laskeva ja sen kulmakertoimen itseisarvo on rajahyötyjen suhde eli MRS x;y

Vastaava ongelma yrityksen teoriassa koskee panostasojen (k; l) määrittämistä site, että tuotannon taso pysyy vakiona f (k; l) y Toistamalla edellisen kohdan askelet, saamme pisteen (k ; l ) ympäristössä dk dl @f @l (k ; l ) @f @k (k ; l ) Siis isokvantti on myös laskeva ja sen kulmakertoimen itseisarvo on teknisen rajasubstituution aste MRT S l;k @f @l @f @k MP l MP k Miltä näyttävät isokvantit ja indi erenssikäyrät tarkemmin? Mihin suuntiin kaareutuvat? Miten kaareutumista voidaan mitata?.5 Komparatiivinen statiikka Cournot-mallissa Tarkastellaan mallia, jossa kaksi tuottajaa i 2 f; 2g myyvät homogeenista hyödykettä suurelle joukolle kuluttajia. Markkinakysyntä p (Q; ) p (q + q 2 ; ) (q + q 2 ) 2 ; missä q i on tuottajan i markkinoille tuoma määrä. Tuottajan i kustannusfunktio on Tuottajan i voitto on tällöin c i (q i ; i ) i q 2 i i (q ; q 2 ; ; ; 2 ) q i p (q + q 2 ; ) c i (q i ; i ) q i q i (q i + q j ) 2 i q 2 i Cournot tasapainossa, kumpikin tuottaja i maksimoi voittoaan valitsemalla optimaalisen q i ottaen q j n annettuna. Toisin sanoen täytyy päteä kummallekin i 2 f; 2g @ i (q ; q 2 ; ; ; 2 ) @q i 9

Eli (q i + q j ) 2 (q i + q j ) 2 Kirjoitetaan tämä yhtälöryhmä muodossa 2 q i (q i + q j ) 2 2 i q i ; 2 q j (q i + q j ) 2 2 j q j f (q ; q 2 ; ; ; 2 ) ; f (q ; q 2 ; ; ; 2 ) Tämä yhtälöryhmä toteutuu pisteessä q q 2 2 ; 9 4 ; 2 Tarkastellaan endogeenisten muuttujien suhteen muodostettua derivaattaa D q f (q ; q 2 ; ; ; 2 ) tämän pisteen ympäristössä D q f (q ; q 2 ; ; ; 2 ) @f @q (q ; q 2 ; ; ; 2 ) @f 2 @q (q ; q 2 ; ; ; 2 ) @f @q 2 (q ; q 2 ; ; ; 2 ) @f 2 @q 2 (q ; q 2 ; ; ; 2 ) (q + q 2 ) 2 + 4 q (q + q 2 ) 3 2 2 2 (q + q 2 ) 2 + 4 q (q + q 2 ) 3 2 2 (q + q 2 ) 2 + 4 q 2 (q + q 2 ) 3 2 (q + q 2 ) 2 + 4 q 2 (q + q 2 ) 3 2 2 2 Lasketaan derivaatan arvo pisteessä q q 2 2 ; 9 4 ; 2 D q f 2 ; 2 ; 9 + 4 ; ; 2 2 + 2 + + 2 Derivaattamatriisin erminantti D q f 2 ; 2 ; 9 4 ; ; 23 2 2 3 > Voimme siis käyttää implisiittifunktioteoreemaa arvioimaan, miten pienet muutokset eksogeenisissa muuttujissa vaikuttavat endogeenisiin muuttujiin. Komparatiivinen statiikka (eli tasapainotuotosten muutokset) voidaan ratkaista vaikkapa Cramerin säännöllä, kun laskemme D f 2 ; 2 ; 9 4 ; ; D f 2 ; 2 ; 9 2 4 ; ; ; D 2 f 2 ; 2 ; 9 4 ; ; 2