15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki 1 Paraabelin uraominaisuuden toteuttavia pisteitä löydetään piirtämällä polttopiste keskipisteenä samankeskisiä ympyröitä ja johtosuoran suuntaisia suoria. johtosuora polttopiste ANALYYTTINEN GEOMETRIA MAA4 Esimerkki Paraabelin polttopiste on 0, 1 ja johtosuora y = 1. Määritä paraabelin yhtälö. Pisteen x, y etäisyys polttopisteestä on x 0 + y + 1 ja etäisyys johtosuorasta y = 1 on y 1. Näin ollen paraabelin yhtälöksi saadaan josta y = 1 4 x. Tämä on kysytty yhtälö. x 0 + y + 1 = y 1 x + y + y + 1 = y y + 1, 0, 1 Molemmat puolet pos. korotetaan y = 1 x, y 1
15.5.017 Paraabelin yhtälö: Olkoon polttopisteen etäisyys johtosuorasta p (p > 0). Sijoitetaan paraabeli koordinaatistoon siten, että johtosuora l on x-akselin suuntainen ja polttopiste F on johtosuoran yläpuolella. F:n kautta kulkeva johtosuoran normaali n leikkaa johtosuoran l pisteessä A. Tällöin piste H (janan FA keskipiste) on paraabelin piste (määritelmä). Tätä pistettä sanotaan paraabelin huipuksi, merkitään H = x 0, y 0. Koska H on janan FA kp, niin F = x 0, y 0 + p Johtosuoran yhtälö on y = y 0 p. ja A = x 0, y 0 p. Pisteen P = x, y etäisyys johtosuorasta on PB = y y 0 + p ja polttopisteestä PF = x x 0 + y y 0 p. Nyt paraabelin yhtälö on PF = PB. Siis x x 0 + y y 0 p = y y 0 + p. Kuten edellä, korotetaan toiseen potenssiin, saadaan: x x 0 + y y 0 p eli a x x 0 = y y 0 + p = y y 0 + p b y y 0 p Mutta tässähän on neliöiden erotus: a b = a + b a b. Siis x x 0 = y y 0 + p + y y 0 p y y 0 + p y + y 0 + p. Edelleen x x 0 = y y 0 p = p y y 0 ja lopulta. y y 0 = a x x 0, missä a = 1 p.
15.5.017 Lause, paraabelin yhtälö: Sellaisen paraabelin, jonka 1. huippu on x 0, y 0,. akseli on y-akselin suuntainen ja. polttopisteen etäisyys johtosuorasta on p, yhtälö on y y 0 = a x x 0, missä a = 1 1, kun paraabeli aukeaa ylöspäin ja a =, kun paraabeli aukeaa p p alaspäin. Huom. Jos paraabelin huippu on origo ja akseli on y-akseli, niin paraabelin yhtälö sievenee muotoon y = ax. Esimerkki Paraabeli on yhtenevä paraabelin y = x kanssa ja sen akseli on y-akselin suuntainen. Määritä paraabelin yhtälö, kun huippu on, 1. Yhtälö on muotoa y y 0 = a x x 0, jossa a = (yhtenevyys). Sijoitetaan tieto x 0, y 0 =, 1, saadaan y 1 = x y = x 8x + 7. Esimerkki Määritä paraabelin y = x 8x + 16 huippu. Yhtälö pitää muuttaa muotoon y y 0 = a x x 0, josta huipun koordinaatit x 0, y 0 saadaan. Menetelmä on neliöön täydentäminen. Näin ollen y = x 8x + 16 = x 8x + 8 + 8 = x 4x + 4 + 8 = x + 8 y 8 = x x 0, y 0 =,8.
15.5.017 Lause, Paraabelin y y 0 = a x x 0 ominaisuuksia: 1. Huippu on x 0, y 0.. Akseli on y-akselin suuntainen suora x = x 0.. Paraabeli aukeaa ylöspäin, kun a > 0, ja alaspäin, kun a < 0. Määritä paraabelin y = 1 x x + huippu ja johto- Esimerkki suora. Huipun määrittämiseksi kirjoitetaan yhtälö y = 1 x x + muotoon y = 1 x 4x. Täydennetään neliöksi, saadaan y + = 1 x 4x + 4 y 1 = 1 x. Siis, huippu on, 1. Koska a = 1 p = 1, niin p = 1 ja p = 1. Paraabelin akseli on y-akselin suuntainen, joten polttopiste on, 1 + 1 =, 11, miksi + 1 eikä 1? ja johtosuoran yhtälö on y = 1 1 = 1. Paraabelin yhtälö y y 0 = a x x 0 on muotoa y = ax + bx + c. Kääntäen jokainen muotoa y = ax + bx + c (a 0) oleva yhtälö voidaan neliöksi täydentämällä kirjoittaa muotoon y y 0 = a x x 0. Esimerkki TAPA 1 Määritä paraabelin y = x 6x + 5 huippu. Neliöksi täydentäminen y = x 6x + 5 y 5 = x x = x x y 5 + 9 = x x + 9 4 y 1 = x, 1 TAPA Nollakohtien avulla. Yhtälöllä x 6x + 5 = 0 ei ole (reaalisia) ratkaisua, koska diskriminantti D = 6 40 = 4 < 0. Siksi tätä menetelmää ei voi käyttää. TAPA Symmetristen pisteiden avulla. Etsitään ne paraabelin y = x 6x + 5 pisteet, joiden y-koordinaatti on 5. Näissä pisteissä pätee x 6x + 5 = 5 eli x x = 0. 4
15.5.017 TAPA (jatkuu) Saadaan x = 0 tai x =. Pisteet 0, 5 ja, 5 ovat symmetriset paraabelin akselin suhteen, joten huipun x-koordinaatti on x = 0 + = y = TAPA 4 Differentiaalilaskenta kurssi 7 6 + 5 = 1. Paraabelin sekantti ja tangentti Kuten ympyrän tapauksessa: Sekantilla ja paraabelilla on kaksi yhteistä pistettä, tangentilla ja paraabelilla yksi yhteinen piste. Sekantti leikkaa ja tangentti sivuaa. Nämä yhteiset pisteet määritetään ratkaisemalla suoran ja paraabelin muodostama yhtälöpari. Esimerkki Missä pisteissä suora x y + = 0 leikkaa paraabelin. a) y = 1 x + x + b) y = 4x + x +. a) Ratkaistaan yhtälöpari sijoitusmenettelyllä, saadaan y = x + x y + = 0 x = 0 x = y = 1 x + x + y = y = 1. b) Kuten a)-kohdassa, koska y = x +, niin on x + = 4x + x + 4x = 0 x = 0 ja y =. Siis suoralla ja paraabelilla on yksiyhteinen piste. Suora on näin ollen tangentti paraabelille. y = 4x + x + x y + = 0 y = 1 x + x + 5
15.5.017 Paraabeli x = ay + by + c Vaihtamalla paraabelin yhtälössä y = ax + bx + c muuttujien x ja y paikat, saadaan yhtälö x = ay + by + c. Tämän yhtälön kuvaaja on paraabeli, jonka akselina on x-akselin suuntainen suora. Paraabeli aukeaa oikealla, kun a > 0, ja vas., kun a < 0. Paraabelit y = ax + bx + c ja x = ay + by + c ovat yhteneviä. Ne saadaan toisistaan peilaamalla suoran y = x suhteen. Esimerkki Määritä paraabelin x = y y + ja y-akselin leikkauspisteet sekä paraabelin huippu. Piirrä paraabeli. Leikkauspisteissä pätee x = 0, joten y y + = 0, josta y = 1 tai y =. Leikkauspisteet ovat 0, 1 ja 0,. Symmetrian nojalla huipun y-koordinaatti on y = 1+ = ja x-koordinaatiksi tulee x = + = 1. Joten huippu on 1,. 4 4 x = y y + 1 4, y = 6