Osa IX. Z muunnos. Johdanto Diskreetit funktiot

Samankaltaiset tiedostot
Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 1. joulukuuta Z-muunnos

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z

Matematiikan tukikurssi

Kompleksianalyysi, viikko 7

Insinöörimatematiikka D

Matemaattinen Analyysi

Matematiikan tukikurssi

Insinöörimatematiikka D

Insinöörimatematiikka D

Insinöörimatematiikka D

Y (z) = z-muunnos on lineaarinen kuten Laplace-muunnoskin

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

2.2.1 Ratkaiseminen arvausta sovittamalla

Matematiikan tukikurssi

Laplace-muunnos: määritelmä

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

Insinöörimatematiikka D

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Matematiikan tukikurssi, kurssikerta 5

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Potenssisarja, suppenemissäde. Potenssisarja ja derivointi. Potenssisarja ja analyyttiset funktiot. Potenssisarja ja integrointi.

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Matemaattinen Analyysi

järjestelmät Luento 8

5 Differentiaaliyhtälöryhmät

Dierentiaaliyhtälöistä

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7

f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

3.3 Funktion raja-arvo

Matematiikan tukikurssi

Matematiikan tukikurssi

Kompleksiluvut., 15. kesäkuuta /57

Tenttiin valmentavia harjoituksia

1 Di erentiaaliyhtälöt

MS-A0102 Differentiaali- ja integraalilaskenta 1

Matematiikan tukikurssi, kurssikerta 3

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen

Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018

Matematiikan tukikurssi

Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40

Matemaattinen Analyysi

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

Numeeriset menetelmät

Matematiikan tukikurssi

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

Epälineaaristen yhtälöiden ratkaisumenetelmät

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon:

Kompleksianalyysi, viikko 6

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).

Matematiikan tukikurssi

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

SARJAT JA DIFFERENTIAALIYHTÄLÖT

Johdatus matematiikkaan

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Matemaattinen Analyysi

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Matematiikan tukikurssi

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Luento 2: Liikkeen kuvausta

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

Matematiikan tukikurssi: kurssikerta 12

Matemaattisen analyysin tukikurssi

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Differentiaaliyhtälöryhmän numeerinen ratkaiseminen

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Johdatus reaalifunktioihin P, 5op

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

Lineaarinen yhtälöryhmä

sin(x2 + y 2 ) x 2 + y 2

Täydellisyysaksiooman kertaus

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

MATEMATIIKAN PERUSKURSSI II kevät 2018 Ratkaisut 1. välikokeen preppaustehtäviin. 1. a) Muodostetaan osasummien jono. S n =

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

SÄÄTÖJÄRJESTELMIEN SUUNNITTELU

Matemaattisessa analyysissa on usein käyttökelpoista soveltaa integraalimuunnoksia. Yksi tärkeimmistä on Laplace-muunnos. e st f(t)dt, s > s 0

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Transkriptio:

Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto Diskreetit funktiot Z muunnos on Laplace-muunnoksen diskreetti versio. Z muunnosta voidaan käyttää differenssiyhtälöiden ratkaisemiseen. Differenssiyhtälöitä voidaan käyttäää differentiaaliyhtälöiden numeerisessa approksimoinnissa ja niitä esiintyy myös mm. digitaalisessa signaalinkäsittelyssä ja algoritmianalyysissä. Muunnos syntyi differenssiyhtälöitä soveltaneen tekniikan alan tutkimuksen yhteydessä 940-luvulla. Nimitys tulee muunnoksessa esiintyvästä muuttujasta z, ja sen on antanut Columbian yliopistossa vaikuttanut tilastotieteilijä John Raggazini tutkimusryhmineen 952. A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 300 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 30 / 322

Diskreetit funktiot Määritelmä Sanomme, että funktio f on diskreetti, jos se on määritelty vain (numeroituvassa) diskreetissä joukossa (D), esimerkiksi reaaliakselin tai kompleksitason erillisissä pisteissä. Rajoitumme tässä vain C-arvoisiin funktioihin. Lukujono on diskreetti funktio k x k ; jokaista k N vastaa luku x k. Toisaalta jokainen diskreetti funktio on lukujono: Numeroimalla joukon D pisteet D = {x n : n N} voidaan tarkastella diskreettiä funktiota g : n x n f (x n ) millä tahansa funktiolla f joka on määritelty joukossa D. g on itse asiassa kahden diskreetin funktion yhdiste. A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 302 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 303 / 322 Lukujonon Laplace-muunnos Lukujono x(k) on funktiona määritelty vain luonnollisilla luvuilla. Emme siis suoraan voi laskea Laplace muunnosta x(t)e st dt. Asettamalla x(t) = 0, kun t R \ N, integraali suppenee mutta saamme muunnoksen arvoksi aina nolla. Osoittautuu että toimiva tulkinta on muokata integraalia ja asettaa integraalissa diskreettien pisteiden painoksi yksi ja muiden pisteiden painoksi nolla: Jonon x(k) Laplace-muunnos diskreetillä painofunktiolla on L {x}(s) = x(t)e st δ(t k) dt = x(k)e sk 0 }{{} paino = x(k) e}{{} sk z=e = s x(k)z k, k =z k eli jonon Z muunnos. Huomaa, että s {s C : Re s > α} z {z C : z > e α }. Z muunnos Määritelmä Oletetaan, että x : N R on funktio (lukujono). Määritellään funktion (lukujonon) Z muunnos X (z) = Z {x}(z) = x(k)z k, kaikille riittävän suurelle R jotta sarja suppenee. z C, z > R Merkitsemme siis jonon x(k) Z muunnosta tyypillisesti isolla kirjaimella X. Voimme myös tulkita Z muunnoksen kuvaukseksi jonosta potenssisarjaksi Z : {x k } x k w k, jossa w = /z. A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 304 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 305 / 322

Z muunnoksen ominaisuuksia Lineaarisuus: jos Z {x} = X ja Z {y} = Y niin Z {ax + by} = ax + by Vakiofunktio eli vakiojono x(k) = Z {x} = z k = Geometrinen jono x(k) = w k : Z {x} = z k w k = a, b C z = z z (z/w) = z z w Geometrisella funktiolla, k w k, (geometrisella jonolla) kertominen: y(k) = w k x(k) Y (z) = Z {y}(z) = Z {x}( z w ). = X ( z w ). Z muunnoksen ominaisuuksia Z muunnokselle pätee kaikki Laplace-muunnosta vastaavat ominaisuudet (onhan Z muunnos oikeastaan Laplace-muunnos erityistapauksessa). Delta-funktiota vastaa nyt diskreetti deltafunktio (jono) ja konvolutiota summa: (x y) k = 0 δ = {, 0, 0, 0,... } x(t)y(k t) δ(t k)dt = jolloin suoraan kahden sarjan summakaavasta seuraa ( ) ( ) Z {x}z {y} = x k z k x k z k = z k x j y k j. j=0 k x k y k j = Z {x y}. j=0 } {{ } (x y) k A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 306 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 307 / 322 Siirros Lukujonolle on helppo määrittää siirros: Lukujonosta x(n) {x n } muodostetaan uusi vasemmalle siirretty lukujono y(n) kirjoittamalla jolloin Z {ỹ} = y(n) = x(n + ) {y 0, y, y 2,... } = {x, x 2, x 3,... } x k z k+ = z x k z k = z(z {x} x 0 ) k= Vastaavasti siirrolle oikealle k= ỹ = {ỹ k } = {0, x 0, x, x 2,... } Z {ỹ} = x k z k = z Z {x} Tämä on tärkeä tulos ns. differenssiyhtälöitä ajatellen. A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 308 / 322 Differenssiyhtälö Yleinen lineaarinen differenssiyhtälö Fibonaccin luvut A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 309 / 322

Sovellus: Differenssiyhtälö Ratkaistaan jono y k, kun y k+ = αy k + x k, y 0 = ; x k = 2 2k, k 0 Merkitsemme β = /4 ja Z muunnamme yhtälön joten jos α β, z(y (z) y 0 ) = αy (z) + X (z), X (z) = z z β Y (z) = = y(k) = z (z β)(z α) + z z α [ α z α β z β β z ] + z z α z α ( α α β βk + β ) α β + α k Jos α = β, ( z Y (z) = z z β ) 2 } {{ } Z {a} joten b k = β k ja, koska Z {b b} = (Z {b}) 2 Saamme a k = (b b) k = y k = + z z β }{{} Z {b} k β j β k j = (k + )β k j=0 {, k = 0 a k + b k = β k (k + β), k. A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 30 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 3 / 322 Differenssiyhtälö N. kertaluvun lineaarisen, vakiokertoimisen differenssiyhtälön perusmuoto on N a n y(k n) = n=0 M b m x(k m), a 0 0. m=0 a 0 y k + a y k +... a N y k N = b 0 x k + b x k +... b N x k M jossa y ratkaistaan, kun x tunnetaan. Z muunnosta voidaan käyttää differenssiyhtälöiden ratkaisemiseen samaan tapaan kuin Laplace-muunnosta käytetään differentiaaliyhtälöiden ratkaisemiseen. Itseasiassa differentiaaliyhtälöiden numeerinen ratkaiseminen differentiaaliyhtälöitä approksimoidaan differenssiyhtälöllä, esimerkiksi jatkuvan ajan t sijasta tarkastellaan diskreetteja ajanhetkiä t 0, t, t 2,... ja vastaavasti ratkaisua y(t) sijasta approksimaatiota y k y(t k ). A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 32 / 322 Esimerkki: Fibonaccin luvut Kuva: Leonardo Pisalainen (n. 70-250), joka tunnetaan paremmin nimellä Fibonacci (filius Bonacci, eli Bonaccion poika). Kuuluisa lukujono löytyy kanien lisääntymistä käsittelevästä tehtävästä kirjassa Liber Abaci (Laskujen Kirja). Kirja on myös Euroopassa ensimmäinen, jossa käytetään arabialaista (oikeimmin intialaista) lukujärjestelmää. A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 33 / 322

Esimerkki: Fibonaccin luvut, jatkoa Esimerkki: Fibonaccin luvut, jatkoa Tehdään Z muunnos differenssiyhtälöllä f (n + 2) = f (n + ) + f (n): Fibonaccin lukujono määritellään kaavalla f (n + 2) = f (n + ) + f (n). Tämä kaava voidaan tulkita differenssiyhtälöksi, missä alkuarvot ovat f () = f (0) =. Kysymys: Halutaan löytää suljettu muoto (eli kaava) funktiolle f (k), joka parametrilla k antaa k:nnen Fibonaccin luvun. Ratkaistaan ongelma Z muunnoksen avulla. z 2 (F (z) f (0) z f ()) = z(f (z) f (0)) + F (z). Sijoitetaan alkuarvot f () = f (0) = ja ratkaistaan yhtälö algebrallisesti z 2 F (z) = z 2 z. Etsitään nimittäjän nollakohdat; w ± = ( ± 5)/2. Nyt nimittäjä voidaan jakaa tekijöihin: z 2 z = (z w + )(z w ). A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 34 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 35 / 322 Esimerkki: Fibonaccin luvut, jatkoa Etsitään osamurrot z (z w + )(z w ) = c + + c. z w + z w Saadaan c ± = ±w ± / 5, koska w w + = 5. Voidaan kirjoittaa (huomaa z osoittajassa) F (z) = 5 ( zw+ z w + Koska Z {w k ±} = z/(z w ± ), saadaan zw z w ). Esimerkki: Fibonaccin luvut, jatkoa Koska w + + w =, voidaan kirjoittaa w + = ϕ, w = ( ϕ), missä ϕ = + 5 2 on kultaisen leikkauksen suhde., 68033989 Olemme johtaneet Jacques Binetin (786-856) tunnetun kaavan: f (k ) = ϕk ( ϕ) k 5. f (k) = 5 (w k+ + w k+ ) A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 36 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 37 / 322

Vakiofunktio x(k) =, k 0 Tarkastellaan funktiota x(k) =. Lasketaan Z muunnos. Saadaan X (z) = Z {x(k)} = Kyseessä on geometrinen sarja. Saadaan z k. X (z) = z = z z. A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 38 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 39 / 322 Porrasfunktio x(k) = k, k 0 Tarkastellaan funktiota x(k) = k. Lasketaan Z muunnos. Saadaan Jaetaan z:lla, siis X (z) = z + 2z 2 + 3z 3 +... (4.) z X (z) = z 2 + 2z 3 + 3z 4 +... (4.2) Lasketaan yhteen (4.) ja (4.2). Saadaan Siis ( z )X (z) = z + z 2 + z 3 +... = z z. Z {x(k)} = z ( z ) 2. Funktio x(k) = k 2, k 0 Tutkitaan funktiota x(k) = k 2. Lasketaan Z muunnos: Kerrotaan z :llä: Z {k 2 } = z + 4z 2 + 9z 3 +... z Z {k 2 } = z 2 + 4z 3 + 9z 4 +... Vähennetään alempi yhtälö ylemmästä. Uudelleenjärjestämällä termejä saadaan: ( z )Z {k 2 } = z + 2[z + 2z 2 + 3z 3 +...] [z 2 + z 3 + z 4 +...] A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 320 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 32 / 322

Funktio x(k) = k 2, k 0, jatkoa Havaitaan, että keskimmäinen sulkeissa oleva jono on Z {k}. Loput muodostavat geometrisen sarjan, joten saadaan Z {k 2 } = = z (z + ) ( z ) 3. 2z ( z ) 3 z ( z ) 2 = z (2 + z ) ( z ) 3 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 322 / 322