Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004
Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1
1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen yksinkertaisia asioita ymmärtää ja määritellä, mutta siitä huolimatta ne tuottavat opiskelijoille vaikeuksia vuosi vuoden jälkeen. Yksinkertaisuudestaan huolimatta asia on kuitenkin tärkeä jo sen keskeisyyden (ei pelkästään algebrassa vaan myös muualla matematiikassa) vuoksi, ja vasta funktioiden syvällisen ymmärtämisen jälkeen voi opiskelija pystyä omaksumaan mitään monimutkaisempaa tietoa. 2
2 Kuvauksista Kuvausten yleinen teoria on algebrassa, kuten muissakin matematiikan suuntauksissa, keskeisellä sijalla. Erityisesti ryhmäteorian oppiminen vaatii vankan otteen kuvauksista. Määritelmä 2.1. Olkoot X ja Y joukkoja. Kuvaus (tai funktio) f : X Y on sääntö, joka yhdistää jokaisen joukon X alkion x johonkin joukon Y yksikäsitteiseen alkioon f(x). Määritelmä 2.2. Kuvaus f : X Y on injektio, jos f kuvaa erilliset joukon X alkiot erillisiksi joukon Y alkioiksi, ts. jos x 1 x 2, niin f(x 1 ) f(x 2 ) ts. jos f(x 1 ) = f(x 2 ), niin x 1 = x 2. Esimerkki. Olkoot f, g : R R. Nyt f(x) = 2x + 1 on injektio, mutta g(x) = x 2 ei ole. Määritelmä 2.3. Kuvaus f : X Y on surjektio, jos jokainen joukon Y alkio y voidaan esittää joukon X alkion kuvana ts. Kaikille y Y on olemassa sellainen x X, että f(x) = y. Esimerkki. Jos f : N N, niin f(x) = 2x + 1 ei ole surjektio. Kuitenkin, jos f : R R, niin f(x) on surjektio. Määritelmä 2.4. Kuvaus f : X Y on bijektio, jos f on injektio ja surjektio. Esimerkki. f(x) = 2x + 1, kun f : R R, on bijektio. f(x) = e x, kun f : R R, ei ole bijektio (ei ole surjektio). Huomautus. Jotta kaksi kuvausta f : X Y ja g : X Y ovat samat, tulee olla f(x) = g(x) kaikilla x X. Lisäksi kuvaukset f : X Y ja g : Z Y voivat olla samat ainoastaan, jos X = Z. Useasti Algebrassa ollaan kiinnostuneita tapauksesta, jossa molemmilla joukoilla X ja Y on äärellinen määrä alkioita. Tällaisissa tapauksissa kuvausta ei yleensä määritellä jonkin kaavan avulla vaan antamalla sen kaikille arvoille vastaava kuvaus. Esimerkki. Olkoon X joukko {a, b} ja Y joukko {u, v}. Nyt jokaista kuvausta f : X Y varten täytyy tuntea f(a) ja f(b). On olemassa neljä tällaista kuvausta: 3
f 1 (a) = u, f 1 (b) = v; f 2 (a) = v, f 2 (b) = u; f 3 (a) = u, f 3 (b) = u sekä f 4 (a) = v, f 4 (b) = v. Näistä kuvauksista f 3 ja f 4 eivät ole selvästikään injektioita tai surjektioita kun taas f 1 ja f 2 ovat molemmat bijektioita. Määritelmä 2.5. Olkoot f : X Y ja g : Y Z funktioita. Yhdistetty funktio g f : X Z on määritelty g f(x) = g(f(x)) kaikille x X. Esimerkki. Olkoot f, g : R R sellaisia funktioita, että f(x) = 2x + 1 ja g(x) = e x. Siispä f g(x) = f(g(x)) = 2e x + 1 kun taas g f(x) = g(f(x)) = e 2x+1. Lause 2.1. Olkoot f : X Y, g : Y Z ja h : Z W kuvauksia. Yhdistetyt kuvaukset (h g) f : X W ja h (g f) : X W ovat samat. Todistus. Määritelmän nojalla kaikille x X pätee ((h g) f)(x) = (h g)(f(x)) = h(g(f(x))) = h(g f(x)) = (h (g f))(x). Siis kuvaukset (h g) f ja h (g f) ovat samat. Määritelmä 2.6. Jokaiselle joukolle X identiteettikuvaus on kuvaus I X : X X, joka määritellään I X (x) = x kaikille x X. Nyt on selvää, että jos f : X Y on mikä tahansa kuvaus, niin f I X = f ja I Y f = f. Määritelmä 2.7. Olkoon f : X Y kuvaus. Kuvauksella f on käänteiskuvaus jos on olemassa sellainen kuvaus g : Y X, että g f = I X ja f g = I Y. Käänteiskuvausta merkitään f 1. Esimerkki. Funktion f : R R, f(x) = 2x + 1 käänteisfunktio on g(x) = x 1 2 sillä f(g(x)) = x ja g(f(x)) = x. Lause 2.2. Jos kuvauksella f : X Y on käänteiskuvaus, tämä käänteiskuvaus on yksikäsitteinen. Todistus. Oletetaan, että g ja h ovat molemmat funktion f käänteiskuvauksia. Siis g f = h f = I X ja f g = f h = I Y, 4
joten h = h I Y = h (f g) = (h f) g = I X g = g, kuten vaadittiin. Lause 2.3. Kuvauksella f : X Y on käänteiskuvaus jos ja vain jos f on bijektio. Todistus. Oletetaan aluksi, että f on bijektio. Olkoon g : Y X sellainen kuvaus, että g(y) = x jos ja vain jos f(x) = y. Nyt g on kuvaus, sillä joukossa X on korkeintaan yksi alkio, jonka g(y) määrää (f on injektio), mutta jokainen joukon Y alkio on yhdistetty johonkin joukon X alkioon x (koska f on surjektio). Määritelmästä seuraa, että f g ja g f ovat molemmat identiteettikuvauksia. Oletetaan nyt, että funktiolla f on käänteiskuvaus f 1 ja että f(x 1 ) = f(x 2 ). Nyt sijoittamalla molemmat puolet funktioon f 1 saadaan x 1 = I X (x 1 ) = f 1 (f(x 1 )) = f 1 (f(x 2 )) = I X (x 2 ) = x 2. Siis f on injektio. Olkoon nyt y Y. Siispä y = I Y (y) = f f 1 (y) = f(f 1 (y)) = f(x), missä x X. Siis f on surjektio ja väite pätee. Seurauslause 2.4. Jos kuvaukset f : X Y ja g : Y Z ovat bijektioita, myös kuvaus g f on bijektio. Todistus. Lauseen 2.3 nojalla riittää osoittaa, että kuvauksella g f on käänteiskuvaus. Koska kuvaukset f ja g ovat bijektioita, niillä on käänteiskuvaukset (Lause 2.3), joten voidaan tarkastella seuraavia kuvauksia: (i) Ensiksi kuvaus (g f) (f 1 g 1 ). Määritelmän 2.7 nojalla g(f(f 1 (g 1 (x)))) = g(g 1 (x)) = x aina, kun x Z, joten (g f)(f 1 g 1 ) = I Z. (ii) Toiseksi kuvaus (f 1 g 1 ) (g f). Määritelmän 2.7 nojalla f 1 (g 1 (g(f(x)))) = f 1 (f(x)) = x aina, kun x X, joten (f 1 g 1 )(g f) = I X. 5
Nyt määritelmän 2.7 nojalla g f:llä on käänteiskuvaus f 1 g 1, joten se on bijektio. Määritelmä 2.8. Bijektio π joukolta X itselleen on X:n permutaatio. Esimerkki. Olkoon kuvaus π : {1, 2, 3} {1, 2, 3}. Jos π(1) ( = 2, ) π(2) = 3 ja 1 2 3 π(3) = 1, kyseessä on permutaatio. Merkitään tätä π = = (1 2 3). 2 3 1 Seurauslause 2.5. Olkoon X mielivaltainen joukko. Tällöin kaikkien permutaatioiden f : X X joukko S(X) on ryhmä varustettuna kuvausten yhdistämisellä. Todistus. Tutkitaan ryhmäaksioomien olemassaolo: Olkoot f, g, h S(X). (RA1) Lauseen 2.1 nojalla ((f g) h)(x) = (f (g h))(x) eli assosiatiivisuus on voimassa. (RA2) Olkoon I X : X X sellainen kuvaus, että I X (x) = x. Nyt selvästi I X S(X). Määritelmän nojalla f I X = f ja I X f = f eli neutraalialkio on olemassa. (RA3) Käänteisfunktion määritelmän nojalla, jos f 1 on funktion f käänteisfunktio, niin f on funktion f 1 käänteisfunktio ja siis f 1 on bijektio ja täten permutaatio ts. f 1 S(X). Siis kaikille f S(X) on olemassa sellainen käänteisfunktio f 1 S(X), että f f 1 = f 1 f = I X eli käänteisalkio on olemassa. Kohdista (RA1) (RA3) seuraa, että kyseessä on ryhmä. Jatkossa merkitään π ρ = πρ permutaatioiden kohdalla. Esimerkki. Olkoon X = {1, 2, 3}. On olemassa 27 erilaista kuvausta joukolta itselleen, mutta ainoastaan kuusi näistä kuvauksista on permutaatioita. Kaikkien permutaatioiden joukkoa merkitään S(3). Permutaatiot ovat seuraavat: π 1 = (1), π 2 = (1 2 3), π 3 = (1 3 2), π 4 = (1)(2 3), π 5 = (1 3)(2), π 6 = (1 2)(3). Yhdistetty kuvaus lasketaan selvittämällä, miksi 1, 2 ja 3 kuvautuvat. Siis esimerkiksi π 3 π 4 : (π 3 π 4 )(1) = π 3 (π 4 (1)) = π 3 (1) = 3; (π 3 π 4 )(2) = π 3 (π 4 (2)) = π 3 (3) = 2; (π 3 π 4 )(3) = π 3 (π 4 (3)) = π 3 (2) = 1. 6
Siispä π 3 π 4 = π 5. Samaan tapaan saadaan muutkin yhdistetyt kuvaukset. Tämä voidaan esittää taulukkona, jossa alkio (i, j) on yhdistetty funktio π i π j : i j π 1 π 2 π 3 π 4 π 5 π 6 π 1 π 1 π 2 π 3 π 4 π 5 π 6 π 2 π 2 π 3 π 1 π 6 π 4 π 5 π 3 π 3 π 1 π 2 π 5 π 6 π 4 π 4 π 4 π 5 π 6 π 1 π 2 π 3 π 5 π 5 π 6 π 4 π 3 π 1 π 2 π 6 π 6 π 4 π 5 π 2 π 3 π 1 Selvästikin siis S(3) on ryhmä jolla on kuusi alkiota. 7
3 Relaatioista Toinen keskeinen teoria Algebran alkeissa koskee relaatioita. Määritelmä 3.1. Binäärinen relaatio joukossa X on karteesisen tulon X X = {(x 1, x 2 ) x 1, x 2 X} osajoukko R. Merkitään xry, kun (x, y) toteuttaa relaation R. Esimerkki. Eräitä perusesimerkkejä ovat <, >, ja joukossa R. Siis esimerkiksi jos R on relaatio <, niin (3, 5) on relaatiossa R sillä 3 < 5, mutta (4, 3) ei ole relaatiossa R, sillä 4 3. Esimerkki. Olkoon n > 1 kokonaisluku. Relaatio kongruenssi modulo n joukossa X = Z on määritelty xry jos ja vain jos x y (mod n). Siis kaksi kokonaislukua x ja y ovat kongruentteja modulo n jos ja vain jos niillä on sama jakojäännös jaettaessa luvulla n. Kun n = 2, on olemassa kaksi kongruenssi- eli jäännösluokkaa kokonaislukuja: ne, joiden jakojäännös on nolla (parilliset kokonaisluvut), ja ne, joiden jakojäännös on yksi (parittomat kokonaisluvut). Määritelmä 3.2. Jouko X relaatio R on X:n ekvivalenssirelaatio jos R toteuttaa seuraavat ehdot: Kaikille x, y, z X: (1) xrx (refleksiivisyys) (2) jos xry niin yrx (symmetrisyys) (3) jos xry ja yrz niin xrz (transitiivisuus). Esimerkki. Mikään relaatioista <, >, ja ei ole ekvivalenssirelaatio, sillä yksikään näistä ei ole symmetrinen. Esimerkki. Relaatio kongruenssi modulo n on ekvivalenssirelaatio, sillä se täyttää kolme ehtoa: (1) x x (mod n), sillä n jakaa nollan (0 = 0 n). (2) Jos x y (mod n), niin n (x y) eli n (y x) ja täten y x (mod n). (3) Jos x y (mod n), ja y z (mod n), niin n (x y) ja n (y z):n ja täten myös n ((x y) + (y z)) eli n (x z) ja siis x z (mod n). 8
Määritelmä 3.3. Olkoon R joukon X relaatio. Joukon X alkion x ekvivalenssiluokka [x] R on joukko X:n alkioita, jotka ovat relaatiossa x:n kanssa, ts. [x] R = {y X (x, y) R}. Huomautus. Koska ekvivalenssirelaatio on symmetrinen, ei ole väliä kirjoitetaanko (x, y) R vai (y, x) R määritelmässä 3.3 Määritelmä 3.4. Perhe joukon X epätyhjiä osajoukkoja on X:n ositus (partitio), jos jokainen joukon alkio on täsmälleen yhdessä osajoukossa. Määritelmästä seuraa suoraan, että osajoukkojen unioni on itse X, mutta minkä tahansa kahden osajoukon leikkaus on tyhjä joukko. Lause 3.1. Joukon X minkä tahansa ekvivalenssirelaation ekvivalenssiluokat muodostavat joukon X osituksen. Todistus. Koska R on refleksiivinen, mikä tahansa alkio x X kuuluu ekvivalenssiluokkaan [x] R, joten kaikkien ekvivalenssiluokkien unioni on X. Jos z kuuluu sekä ekvivalenssiluokkaan [x] R, että [y] R, niin xrz ja yrz. Koska R on symmetrinen, niin zry, ja koska R on transitiivinen, niin xry. Nyt jos a [x] R, niin xra, joten edellisen nojalla yra ja siis a [y] R. Siispä [x] R [y] R. Samoin jos b [y] R, niin yrb ja jälleen edellä osoitetun nojalla saadaan, että xrb ja täten b [x] R. Siis [y] R [x] R. Saadaan siis haluttu tulos, sillä [x] R = [y] R ja siis osituksen määritelmä täyttyy. Kun tarkastellaan relaatiota kongruenssi modulo n, viitataan yleensä kongruenssi- eli jäännösluokkiin ekvivalenssiluokkien sijaan. Alkion x kongruenssiluokkaa merkitään [x] n. Kun n = 2, jäännösluokkia on kaksi: [0] 2, joka sisältää kaikki parilliset kokonaisluvut, sekä [1] 2, joka sisältää kaikki parittomat kokonaisluvut. Jäännösluokille on mahdollista määritellä yhteen- ja kertolasku seuraavasti: [x] n + [y] n = [x + y] n ja [x] n [y] n = [xy] n. On kuitenkin syytä huomioida, että vaikka kyseessä ovat helpon näköiset kaavat, ei tilanne ole ihan niin yksinkertainen kuin miltä se näyttää. Merkintä [x] n vastaa äärettömän montaa eri kokonaislukua, joilla on sama jakojäännös jaettaessa luvulla n. Siispä täytyy kiinnittää erityistä huomiota siihen, että yhteen- ja kertolasku todellakin ovat hyvin määritellyt. Tätä tarkastellaan seuraavassa: 9
Lause 3.2. Jäännösluokkien modulo n yhteen- ja kertolasku ovat hyvin määriteltyjä. Todistus. Olkoon [x 1 ] n = [x 2 ] n ja [y 1 ] n = [y 2 ] n. Siispä n (x 1 x 2 ) ja n (y 1 y 2 ). Tämä voidaan kirjoittaa myös muodossa x 1 x 2 = nr ja y 1 y 2 = ns joillain r, s Z. Näin ollen (x 1 + x 2 ) + (y 1 + y 2 ) = nr + ns = n(r + s) eli n ((x 1 + x 2 ) + (y 1 + y 2 )) ja siten [x 1 + x 2 ] n = [y 1 + y 2 ] n kuten vaadittua. Tarkastellaan seuraavaksi kertolaskua. Koska x 1 x 2 = nr, niin x 1 = nr + x 2, ja samoin, koska y 1 y 2 = ns, niin y 1 = ns + y 2. Nyt siis toisin sanoen eli x 1 y 1 = (nr + x 2 )(ns + y 2 ) = n 2 rs + nry 2 + nsx 2 + x 2 y 2 = n(nrs + ry 2 + sx 2 ) + x 2 y 2, x 1 y 1 x 2 y 2 = n(nrs + ry 2 + sx 2 ) [x 1 y 1 ] n = [x 2 y 2 ] n. Seurauslause 3.3. Joukko Z n on Abelin ryhmä varustettuna jäännösluokkien yhteenlaskulla. Todistus. Tutkitaan ryhmäaksioomat: Olkoot [a] n, [b] n, [c] n Z n. (RA1) [a] n + ([b] n + [c] n ) = [a] n + ([b + c] n ) = [a] n + [b + c] n = [a + (b + c)] n = [(a + b) + c] n = [a + b] n + [c] n = ([a + b] n ) + [c] n = ([a] n + [b] n ) + [c] n ts. assosiatiivisuus on voimassa. 10
(RA2) [0] n Z n. Nyt [a] n + [0] n = [a + 0] n = [a] n = [0 + a] n = [0] n + [a] n ts. neutraalialkio on olemassa. (RA3) Kun [x] n Z n niin myös [ x] n Z n. [x] n + [ x] n = [x + ( x)] n = [x x] n = [0] n [ x] n + [x] n = [ x + x] n = [0] n ts. käänteisalkio on olemassa. (RA4) [a] n + [b] n = [a + b] n = [b + a] n = [b] n + [a] n ts. kommutatiivisuus on voimassa. Siispä (RA1) (RA4) nojalla Z n on Abelin ryhmä. Esimerkki. Joukossa Z 3 [0] 3 kuvaa niitä kokonaislukuja, jotka ovat kolmella jaollisia, [1] 3 kuvaa niitä kokonaislukuja, joiden jakojäännös kolmella jaettaessa on yksi (kuten 10 tai 5) ja [2] 3 kuvaa niitä kokonaislukuja, joiden jakojäännös kolmella jaettessa on kaksi. Siispä joukolla Z 3 on seuraava ryhmätaulu: + [0] 3 [1] 3 [2] 3 [0] 3 [0] 3 [1] 3 [2] 3 [1] 3 [1] 3 [2] 3 [0] 3 [2] 3 [2] 3 [0] 3 [1] 3 11
Lähdeluettelo Humpreys A Course in Group Theory, s. 8 17, Oxford University Press, 1996 M. Niemenmaa Algebra I & Algebra II luennot 12