A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

Samankaltaiset tiedostot
Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

yleisessä muodossa x y ax by c 0. 6p

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

3 Yhtälöryhmä ja pistetulo

Päähakemisto Tehtävien ratkaisut -hakemisto. Vastaus: a) 90 b) 60 c) 216 d) 1260 e) 974,03 f) ,48

y=-3x+2 y=2x-3 y=3x+2 x = = 6

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

VEKTORIT paikkavektori OA

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5

Yleistä vektoreista GeoGebralla

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Juuri Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

c) Vektorit ovat samat, jos ne ovat samansuuntaiset ja yhtä pitkät. Vektorin a kanssa sama vektori on vektori d.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Vanhoja koetehtäviä. Analyyttinen geometria 2016

2 Vektorit koordinaatistossa

Tekijä Pitkä matematiikka

b 4i j k ovat yhdensuuntaiset.

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.

2 Vektorit koordinaatistossa

Suorista ja tasoista LaMa 1 syksyllä 2009

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Tehtävien ratkaisut

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Ratkaisut vuosien tehtäviin

Lineaarialgebran laskumoniste Osa1 : vektorit

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Pistetulo eli skalaaritulo

Ratkaisuja, Tehtävät

2 Pistejoukko koordinaatistossa

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Lineaarialgebra MATH.1040 / voima

Vektorin paikalla avaruudessa ei ole merkitystä. Esimerkiksi yllä olevassa kuvassa kaikki kolme vektoria ovat samoja, ts.

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Ominaisvektoreiden lineaarinen riippumattomuus

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

Preliminäärikoe Pitkä Matematiikka

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Geometriset avaruudet Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

c) 22a 21b x + a 2 3a x 1 = a,

Vektorit, suorat ja tasot

= 9 = 3 2 = 2( ) = = 2

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

MAB3 - Harjoitustehtävien ratkaisut:

3 Vektorin kertominen reaaliluvulla

a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja

3 TOISEN ASTEEN POLYNOMIFUNKTIO

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille!

Lukion matematiikkakilpailun alkukilpailu 2015

Lineaarialgebra ja matriisilaskenta I

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

PRELIMINÄÄRIKOE. Pitkä Matematiikka

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

Transkriptio:

MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. Olkoon vektorit a 4 j 3k ja b 2i 2 j k a) Laske a ja b b) Määritä vektori c, kun tiedetään että c 5a 2b c) Määritä vektori a suuntainen yksikkövektori 0 a A2. Olkoon vektorit d 2i 4 j 7k ja e 5i 6 j 2k a) Määritä pistetulo d e (4p) b) Määritä vektoreiden d ja e välinen kulma. (2p) A3. a) Määritä komponenttimuodossa sellainen vektori b, joka on vastakkaissuuntainen vektorin a i 2j 2k kanssa ja jonka pituus on 27. b) Jatkoa a) -kohtaan: Jos edellisen tehtävän vektorin b alkupiste on (-104, 49, 14), määritä vektorin päätepisteen koordinaatit.

B-osio. Saa käyttää laskinta ja taulukkokirjaa. Valitse tehtävistä B1-B5 neljä ja vastaa niihin. B1. Suora kulkee pisteen A (1, 2, 3) kautta ja sillä on suuntavektori v = 4i 3j k. Mikä suoran piste on lähinnä pistettä P (8, 6, 9)? Laske pisteen P etäisyys suorasta. B2. Suunnikkaassa ABCD piste E jakaa sivun DC suhteessa 5: 3 ja piste F sivun BC suhteessa 1: 4. Missä suhteessa janojen AE ja FD leikkauspiste G jakaa nämä janat? B3. Määritä tasoa vasten kohtisuorassa oleva yksikkövektori, jos tiedetään, että pisteet (0,0,12), (0,- 4,0) ja (6,0,0) ovat tasossa. B4. Taso T sisältää pisteen A=(3, -1,1) ja tasolla on suuntavektorit u i j k ja v 2i j 2k. Onko piste B=(8,-11,12) tasossa T? B5. Lentokone lentää suoraviivaista nousulentoa vektorin 6i 5 j 3k suunnassa. Laske nousukulma, kun valitussa koordinaatistossa lentokenttää edustaa xy-taso. Mistä lentokentän pisteestä nousu alkoi, kun eräällä hetkellä nousun aikana koneen havaittiin sijaitsevan pisteessä (94, 75, 51)? xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Bonuspähkinä +2p, Vektoreiden a ja b summa on vektori 4i j ja niiden pistetulo ab 4. Lisäksi tiedetään, että vektori b on yhdensuuntainen vektorin i kanssa. Määritä vektorit a ja b vihjeiden avulla. Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta http://jussityni.wordpress.com/!

Ratkaisut: A1: Ratkaisu a) a b 2 2 ( 4) 3 25 5 2 ( 2) ( 1) 9 3 b) c 5( 4 j 3 k) 2(2i 2 j k) 20 j 15k 4i 4 j 2k 4i 16 j 17k c) Koska vektori a:n pituus oli 5, niin a:ta pitää kertoa 1/5 :lla, jotta se lyhenee yhden mittaiseksi. 1 1 4 3 0 => a ( 4 j 3 k) j k a 5 5 5 5 A2: Ratkaisu a) d e25 ( 4) 6 ( 7) ( 2) 10 24 14 0 b) Pistetulo on nolla, joten vektoreiden välinen tulo on 90 astetta. A3: Ratkaisu a) a ( 1) 2 ( 2) 9 3 Koska vektori a:n pituus on 3, sitä pitää kertoa 9:llä, jotta saadaan vektori jonka pituus on 27 ja joka on a:n suuntainen (vektoria pidennetään). Lisäksi jotta saadaan vastakkaissuuntainen vektori, pitää kertoa -9:llä => b 9( i 2 j 2 k) 9i 18 j 18k b) Pisteestä (-104, 49, 14) kuljetaan vektorin b ajo-ohjeiden mukaisesti 9 yksikköä x-akselilla, joten x=-104+9=-95-18 yksikköä y-akselilla, joten y=49-18=31 18 yksikköä z-akselilla, joten z=14+18=32 Päätepiste on siis (-95, 31, 32) B1: Ratkaisu Merkitään kysytty piste X (x, y, z) PX = PA + t v ( x 8) i ( y 6) j ( z 9) k = 7i 4 j 12k + 4t i 3t j t k x 8 = 7 + 4 t x = 4 t + 1 y 6 = 4 + 3 t y = 3 t + 2

z + 9 = 12 t z = t + 3 PX v 4 (x 8) + 3 (y 6) (z + 9) = 0 4 x + 3 y z = 59 4 (4 t + 1) + 3 (3 t + 2) + t 3 = 59 26 t = 52 : 26 t = 2 Sijoitetaan t :n pisteen X koordinaattien lausekkeisiin x = 4 t + 1 = 9 y = 3 t + 2 = 8 z = t + 3 = 1 PX = (9 8) (8 6) (1 9) = 105 Vastaus: X = (9, 8, 1) PX = 105 B2: Ratkaisu Ratkaisu Kuvion merkinnöillä AE = u + 5 8 v ja FD = 4 5 u v FG = FB + BA + AG = 1 5 u v + s AE = 1 5 u v + s 5 u v 8 = 1 s 5 u + 5s 1 8 v toisaalta 4 FG = t FD = t 5 u v = 4 t u t v 5 Komponenttien kerroinlausekkeista saadaan yhtälöpari, josta ratkaistaan s ja t 1 s = 4 t 5 5 s 4 t = 1 5 5 5 s 1 = 8 t 8 5 s + 8 t = 8 Kun vähennetään edellinen yhtälö jälkimmäisestä, saadaan 12 t = 7 : 12 t = 7 12 Sijoitetaan t :n arvo ensimmäiseen yhtälöön: 5 s 7 3 = 1 5 s = 10 3 : 5 s = 2 3 Vastaus: Piste G jakaa janan AE suhteessa 2 :1 ja janan FD suhteessa 7 : 5 B3: Ratkaisu Merkitään pisteitä, esim. A (0, 0, 3), B (0, 4, 0) ja C (6, 0, 0) Merkitään a = CA = 6i 3k, b = CB = 6i 4 j ja kysytty kohtisuora yksikkövektori v = ai b j c k Pistetulo on 0, jos vektorit kohtisuoria, joten: a v = 6 a + 3 c = 0 c = 2 a

b v = 6 a 4 b = 0 b = 3 2 a Lisäksi tiedetään, että vektori v on yhden mittainen: a 2 + b 2 + c 2 = 1 a 2 + 9 a 2 + 4 a 2 = 1 4 4 a 2 + 9 a 2 + 16 a 2 = 29 a 2 = 4 : 29 4 a 2 = 4 a = ± 2. Kohtisuora vektori voi lähteä kohtisuoraan tason alle tai päälle, 29 29 siksi kaksi ratkaisua. Valitaan vaikka tuo + ratkaisu ja muodostetaan siitä vektori v:n komponenttimuotoinen esitys: 2 3 4 Vastaus: v = ± i j k 29 29 29 B4: Ratkaisu Jos piste B=(8, -11, 12) on tasossa, niin silloin voidaan vektori AB kulkea myös toista kautta tason suuntavektorien avulla, suuntavektoreita v ja u pidentämällä tai lyhentämällä tuntemattomilla kertoimilla. AB tv su AB 5i 10 j 11k 5i 10 j 11 k t(2i j 2 k) s( i j k) 5i 10 j 11k 2ti t j 2tk si s j sk 5i 10 j 11 k (2 t s) i ( t s) j (2 t s) k Nyt vektoreiden yhtäsuuruuden takia komponenttien i, j jak määrien on täsmättävä molemmin puolin yhtälöä: 52ts 10 t s Ratkaistaan ekasta yhtälöstä mitä s on: s2t 5 11 2ts 10 t (2t 5) Sijoitetaan s tokaan yhtälöön ja ratkaistaan mitä t on: 10 t 2t 5 15 3t t 5 Nyt s2t5joten s 255 5 Nyt alin yhtälö tuottaa tuloksen: 11 255 11 15 Mikä ei voi pitää paikkaansa, piste ei siis ole tasossa, koska sopivia kertoimia t ja s ei voi löytää jotta olisi AB tv su! B5: Ratkaisu Lentokoneen nousun suuntavektori on v 6i 5 j 3k. Tämän kanssa linjassa maata, eli xy-tasoa vasten kohtisuorassa oleva projektio on u 6i 5j. Käytännössä sama vektori, ilman korkeutta, eli k-komponenttia. Lasketaan vektoreiden v ja u välinen kulma:

v u 6 ( 5) 3 70 2 2 6 ( 5) 61 uv 66 ( 5) ( 5) 30 61 uv 61 cos cos cos v u 70 61 21 1 Koneen nousu alkoi xy-tasosta, jolloin z-koordinaatti on nolla, eli kone oli pisteessä B=(x,y,0). Jos kone havaittiin pisteessä A=(94,-75,51) ja koneen liikkumisella on suuntavektori v, niin silloinhan suuntavektoria v pidentämällä tuntemattomalla kertoimella t täytyy olla AB=tv. AB ( x 94) i ( y ( 75)) j (0 51) k ( x 94) i ( y 75) j 51k ja nyt: AB tv ( x 94) i ( y 75) j 51 k t(6i 5 j 3 k) ( x 94) i ( y 75) j 51k 6ti 5t j 3tk Vektoreiden yhdensuuruuden takia komponenttien määrän on täsmättävä yhtälön molemmin puolin, joten: x94 6t y 75 5t 51 3t t 17 x 94 6 ( 17) x 102 94 x 8 y 75 5 ( 17) y 85 75 y 10 Koneen lähtöpiste on siis (-8,10,0) Bonuspähkinän ratkaisu: Määritellään tuntemattomat vektorit: a xi y j b zi koska b yhdensuuntainen vektori i : n kanssa Lisäksi tiedetään, että pistetulo näiden vektoreiden välillä on 4, joten: x z y0 4 x z 4 Ja vielä viimeisenä niittinä xi y j zi 4i j ( x z) i y j 4i j Joten y = 1 tiedetään jo. Komponenteista x ja z jää kaksi yhtälöä jäljelle, xz 4 y 1

xz 4 x z 4 x 4 z joista voidaan muodostaa yhtälöpari: 2 2 (4 z) z 4 4z z 4 z 4z 4 0 2. asteen yht. ratkaisukaavalla : z 2 x 4 z x 4 2 2 a xi y j 2i 1j Joten haetut vektorit ovat: b zi 2i