Käänteiskuvauslause, implisiittikuvauslause ja Lagrangen menetelmä

Samankaltaiset tiedostot
3.4 Käänteiskuvauslause ja implisiittifunktiolause

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

Johdatus matemaattiseen päättelyyn

Kuvaus. Määritelmä. LM2, Kesä /160

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

Derivaatta: funktion approksimaatio lineaarikuvauksella.

1 Sisätulo- ja normiavaruudet

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

802320A LINEAARIALGEBRA OSA II

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

12. Hessen matriisi. Ääriarvoteoriaa

Ominaisvektoreiden lineaarinen riippumattomuus

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Matematiikan tukikurssi

2 Osittaisderivaattojen sovelluksia

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Vektorianalyysi II (MAT21020), syksy 2018

Johdatus reaalifunktioihin P, 5op

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Matematiikan tukikurssi

Täydellisyysaksiooman kertaus

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

Cantorin joukon suoristuvuus tasossa

LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

r > y x z x = z y + y x z y + y x = r y x + y x = r

Ratkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Luento 8: Epälineaarinen optimointi

JAKSO 2 KANTA JA KOORDINAATIT

Matematiikan peruskurssi 2

Lineaarikuvauksen R n R m matriisi

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Luento 9: Yhtälörajoitukset optimoinnissa

Ratkaisuehdotus 2. kurssikokeeseen

Matematiikka B1 - avoin yliopisto

Luku 4. Derivoituvien funktioiden ominaisuuksia.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

Ratkaisuehdotus 2. kurssikoe

Tekijä Pitkä matematiikka

Ortogonaalisen kannan etsiminen

Tenttiin valmentavia harjoituksia

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa

Matematiikka B1 - TUDI

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

802320A LINEAARIALGEBRA OSA III

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

Mapu 1. Laskuharjoitus 3, Tehtävä 1

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

1 Lineaariavaruus eli Vektoriavaruus

5.6 Yhdistetty kuvaus

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi

7 Vapaus. 7.1 Vapauden määritelmä

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Matematiikan peruskurssi 2

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Matematiikan tukikurssi

Matematiikan tukikurssi

Matematiikan tukikurssi

Rollen lause polynomeille

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Vektorilaskenta, tentti

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

802320A LINEAARIALGEBRA OSA I

8. Avoimen kuvauksen lause

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaalimuodot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Determinantti 1 / 30

= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.

Ratkaisut vuosien tehtäviin

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

Avaruuden R n aliavaruus

Transkriptio:

Käänteiskuvauslause, implisiittikuvauslause ja Lagrangen menetelmä Pro gradu -tutkielma Dimitri Tuomela 1930221 Matemaattisten tieteiden laitos Oulun yliopisto Kesä 2014

Sisältö Johdanto 2 1 Esitietoja 2 2 Käänteiskuvauslause 6 3 Implisiittikuvauslause 17 4 Lagrangen menetelmä 26 Lähdeluettelo 35 1

Johdanto Tämä Pro gradu -tutkielma on luontevaa jatkoa vektorianalyysin alkeisiin perehtyneelle. Tutkielma esittelee ja todistaa kolme merkittävää tulosta: käänteiskuvauslauseen, implisiittikuvauslauseen ja Lagrangen menetelmän. Nämä tulokset luovat merkittävän pohjan vektorianalyysille. Käänteiskuvauslause muotoilee kuvaukselle f : D R n R n asetettavat vaatimukset, jotka takaavat hyvin käyttäytyvän lokaalin käänteiskuvauksen olemassaolon. Implisiittikuvauslauseen tärkeys perustuu siihen, että se antaa oikeutuksen implisiittiselle derivoinnille. Yhtälöitä voidaan derivoida implisiittisesti saaden lisää tietoa, mutta implisiittikuvauslause muotoilee millä ehdoilla ja miksi näin voi tehdä. Tämän ansiosta monimutkaisempia graafeja, joita on vaikea käsitellä kokonaisuutena voidaan tarkastella lokaalisti yksinkertaisemmilla kuvauksilla, joista voidaan osoittaa kokonaisuuden koostuvan. Näiden pienten helpommin käsiteltävien osasten avulla on mahdollista jatkossa osoittaa merkittäviä tuloksia myös kokonaisuudelle. Esimerkiksi dierentiaaliyhtälöiden ja dierentiaaligeometrian tutkimuksessa nämä lauseet ovat keskeisiä työkaluja. Ne ovat eksistenssilauseita, jotka osoittavat tietynlaisten kuvausten olemassaolon. Eksistenssilauseiden merkitys on erityisesti se, että niiden avulla saadaan jatkossa osoitettua muita tuloksia. Lagrangen menetelmä puolestaan antaa tehokkaan tavan tutkia ääriarvoja hankalaltakin kuvaukselta, jota rajoittaa yksi tai useampi rajoite-ehto. Sillä on useita sovelluskohteita mm. taloustieteissä ja fysiikassa. Tutkielma pohjautuu pääasiassa Peter Baxandallin ja Hans Liebeckin kirjaan Vector Calculus [1]. Kappaleen lopussa on erillinen maininta, mikäli lähteenä on muu teos. 1 Esitietoja Esitietoina lukijalla on hyvä olla analyysin ja lineaarialgebran perusteet, erityisesti dierentioituvuuden ja kääntyvyyden osalta. Palautetaan mieleen keskeisiä esitietoja ja määritellään käsitteitä, joita tarvitaan, kun käsitellään käänteiskuvauslausetta, implisiittikuvauslausetta ja Lagrangen menetelmää. Määritelmä 1.1 (Luonnollinen kanta). Avaruuden R n luonnollinen kanta muodostuu vektoreista {e 1,..., e n }, jotka ovat koordinaattiakseleiden suuntaisia yksikkövektoreita. Määritelmä 1.2 (Ympäristö). Pisteen p R n ympäristöllä tarkoitetaan avointa joukkoa, joka sisältää pisteen p. Usein tällaiseksi ympäristöksi valitaan δ-säteinen p-keskipisteinen avoin pallo, jota merkitään N(p, δ). 2

Määritelmä 1.3 (Lineaarikuvaus). Lineaarikuvaus L : R m R n on sääntö, joka liittää määrittelyjoukkonsa vektoriin x R m yksikäsitteisen vektorin L(x) R n sillä tavoin, että L(kx + ly) = kl(x) + ll(y) kaikilla x, y R m ja k, l R. Jokainen äärellisulotteinen lineaarikuvaus avaruudelta R m avaruudelle R n voidaan esittää n m kokoisena matriisina. Lineaarikuvaus on kääntyvä, jos sitä vastaava matriisi on kääntyvä. Jotta saadaan dierentioituvuus määriteltyä napakasti, määritellään ensin mitä tarkoittaa dierenssikuvaus ja tarkka approksimointi. Määritelmä 1.4 (Dierenssikuvaus). Olkoon kuvaus f : D R m R n, missä D R m on avoin joukko ja piste p D. Tällöin kuvauksen f dierenssikuvaus δ f,p : D p R m R n pisteessä p määritellään δ f,p (h) = f(p + h) f(p), h D p, missä D p D on pisteen p ympäristö. Määritelmä 1.5 (Tarkka approksimaatio). Olkoot g : N R m R n ja g : M R m R n kaksi kuvausta joiden avoimet määrittelyjoukot sisältävät nollavektorin 0. Sanotaan, että g ja g approksimoivat tarkasti toisiaan nollavektorin 0 lähellä, jos on olemassa kuvaus η : N M R m R n, jolle [A] g(h) g (h) = h η(h), h N M ja [B] lim η(h) = 0. h 0 Määritelmä 1.6 (Dierentioituvuus). Avoimessa joukossa D R m määritelty kuvaus f : D R m R n on dierentioituva pisteessä p D, jos dierenssikuvausta δ f,p : D p R m R n voidaan approksimoida tarkasti lineaarikuvauksella L : R m R n lähellä nollavektoria 0. Kuvaus on dierentioituva, jos se on dierentioituva jokaisessa määrittelyjoukkonsa pisteessä. Tarkasti approksimoiva lineaarikuvaus voidaan osoittaa yksikäsitteiseksi. Merkitään tätä lineaarikuvausta jatkossa L f,p. Tätä lineaarikuvausta kutsutaan usein kuvauksen f dierentiaaliksi tai derivaataksi pisteessä p. Jos käytetään nimeä derivaatta, niin on olennaista ymmärtää, että moniulotteisen derivaatan merkitys on hieman erilainen kuin perinteisen derivaatan. 3

Määritelmä 1.7 (Jacobin matriisi). Voidaan osoittaa, että jos kuvaus f : D R m R n on dierentioituva pisteessä p D, niin kaikki osittaisderivaatat ( f i / x j )(p) ovat olemassa ja dierentiaalia L f,p luonnollisen kannan suhteen kuvaava n m matriisi on f [ ] 1 f x 1 (p)... 1 x m (p) fi J f,p = (p) =... x j f n f x 1 (p)... n x m (p) Kutsutaan tätä matriisia kuvauksen f Jacobin matriisiksi pisteessä p. Lineaarikuvaus L f,p on kääntyvä, jos ja vain jos det J f,p 0. Määritelmä 1.8 (Gradientti). Määritellään gradientti ja merkitään sitä nablalla. Olkoon f : D R m R dierentioituva pisteessä p D. Kuvauksen f gradientti pisteessä p on tällöin vektori ) f(p) = ( f x 1 (p),..., f x m (p) R m. Kuvauksen f ollessa derivoituva koko joukossa D voidaan tarkastella vektoriarvoista kuvausta f : D R m R n Jacobin matriisi voidaan kirjoittaa pystyvektorina, jonka vaakariveinä ovat koordinaattifunktioiden gradientit f 1 (p) J f,p = [ f i (p)] =. f n (p). Määritelmä 1.9 (C 1 -kuvaus). Kuvaus f on C 1 -kuvaus, jos sen osittaisderivaatat ovat olemassa ja jatkuvia. Tällöin sanotaan, että kuvaus on jatkuvasti dierentioituva. Tällainen kuvaus on aina dierentioituva. Määritelmä 1.10 (Lokaali kääntyvyys). Kuvaus f : D R n R n on lokaalisti injektiivinen pisteessä p D, jos on olemassa pisteen p sisältävä avoin joukko N D, missä f on injektio. Tällöin voidaan sanoa kuvauksen f olevan lokaalisti kääntyvä pisteessä p ja merkitään lokaalia käänteiskuvausta f 1 : f(n) R n R n. On huomattava, että kuvauksen arvon alkukuvasta käytetään joskus samaa merkintää, joten täytyy lukea merkintää tarkasti asiayhteydessä. 4

Sileydelle on useita määritelmiä. Tämä johtuu siitä, että eri määritelmät kuvaavat suuremman asteen sileyttä kuin toiset tai toisen tyyppistä sileyttä. Tässä tutkielmassa tarvitaan vain seuraavanlaista sileyttä. Määritelmä 1.11 (Sileä kuvaus). Kuvaus f : R n R n on sileä pisteessä p, jos det J f,p 0. Lause 1.12 (Ketjusääntö). Olkoon kuvaus g : E R l R m määritelty avoimessa joukossa E R l ja kuvaus f : D R m R n määritelty avoimessa joukossa D R m sillä tavoin, että g(e) D. Määritellään kuvaus F : E R l R n kuvausten f ja g yhdistetyksi kuvaukseksi F (t) = (f g)(t) = f(g(t)), t E. Oletetaan kuvauksen g olevan dierentioituva pisteessä a E ja kuvauksen f olevan dierentioituva pisteessä g(a) D. Tällöin vastaava yhdistetty kuvaus F on dierentioituva pisteessä a ja sen derivaattakuvaus on L F,a = L f,g(a) L g,a. Lisäksi yhdistetyn kuvauksen F Jacobin matriisi pisteessä a on matriisitulo J F,a = J f,g(a) J g,a. Todistuksen voi katsoa useimmista analyysin perusteita käsittelevistä kirjoista, kuten tämän tutkielman päälähteestä [1, s.197-199]. Lause 1.13 (Väliarvolause). Olkoon f : D R m R n dierentioituva kuvaus, jonka avoin määritysjoukko D sisältää pisteet q ja q + h sekä näiden pisteiden määräämän janan. Tällöin jokaista vektoria u R n kohti on olemassa sellainen 0 < θ < 1, että (f(q + h) f(q)) u = L f,q+θh (h) u. Todistus. Todistuksen ideana on määritellä sopivat kuvaukset f ja F, joiden avulla saadaan tilanne sellaiseen muotoon, että voidaan soveltaa dierentiaalilaskennan väliarvolausetta. Kuvaus f : D R m R, joka määritellään f (x) = (f(x) f(q)) u, x D, on dierentioituva, koska f on dierentioituva ja siitä vain vähennetään vakio f(q), jonka jälkeen muodostetaan pistetulo vektorin kanssa. Olkoon 5

e 1,..., e m reaaliavaruuden R m luonnollinen kanta. Osittaisderivaatoille jokaisella k = 1,..., m pätee f x k (x) = f x k (x) u = L f,x (e k ) u, x D. (1) Tätä tulosta tarvitaan hieman myöhemmin. Tarkastellaan nyt kuvausta F : E R R, missä [0, 1] E ja F (t) = (f(q + th) f(q)) u, t E. Nyt kaikille t E, F (t) = f (q + th), joten ketjusäännön nojalla F on dierentioituva. Lisäksi kaikille t E derivaatta F (t) on F f f (t) = h 1 (q + th) +... + h m (q + th) x 1 x m = (h 1 L f,q+th (e 1 ) +... + h m L f,q+th (e m )) u (kohdan (1) nojalla) = L f,q+th (h) u. Dierentiaalilaskennan väliarvolauseen nojalla löytyy sellainen θ, 0 < θ < 1, että (f(q + h) f(q)) u = F (1) F (0) = F (θ) = L f,q+θh (h) u, mikä todistaa lauseen. 2 Käänteiskuvauslause Käänteiskuvauslauseen ideana on tunnistaa ne kuvauksen f : D R n R n ominaisuudet, joista seuraa hyvin käyttäytyvän lokaalin käänteiskuvauksen olemassaolo pisteessä p D. Kuvauksen f vaikutusta pisteen p lähellä approksimoi tarkasti lineaarikuvaus L f,p, joten voisi olettaa kuvauksen f paikallisella kääntyvyydellä pisteen p läheisyydessä ja lineaarikuvauksen L f,p kääntyvyydellä olevan läheinen yhteys. Lineaarikuvaus L f,p on kääntyvä, jos ja vain jos det J f,p 0. Käänteiskuvauslauseen lähtöoletuksiksi valitaankin, että det J f,p 0 eli sileys ja että f on C 1 -kuvaus. Näihin lähtöoletuksiin perustuen saamme todistettua käänteiskuvauslauseen, joka on yksi vektorianalyysin keskeisimpiä lauseita. Käänteiskuvauslauseen todistusta varten meidän tulee ensin osoittaa, että näiden lähtöoletusten seurauksena on olemassa pisteen p ympäristö, jossa kuvaus f on injektio ja sileä. Tämä seuraa kun det J f,q 0 kaikilla kyseisen ympäristön pisteillä q. Tämän osoittamiseksi tarvitaan kaksi lemmaa. 6

Lemma 2.1. Olkoon T : R n R n bijektiivinen lineaarikuvaus, jolloin sille on olemassa käänteiskuvaus. Tällöin on olemassa sellainen µ > 0, että jokaista x R n kohti T (x) µ x ja T 1 (x) 1 µ x. Todistus. Olkoon e 1,..., e n avaruuden R n luonnollinen kanta. Tällöin jokaiselle x R n pätee T (x) = T (x 1 e 1 +... + x n e n ) = x 1 T (e 1 ) +... + x n T (e n ). Kolmioepäyhtälön nojalla T (x) x 1 T (e 1 ) +... + x n T (e n ) = ( x 1,..., x n ) ( T (e 1 ),..., T (e n ) ), jolloin Cauchyn-Schwarzin epäyhtälön nojalla T (x) 2 n n x i 2 T (e i ) 2 1 1 Merkitsemällä µ 2 = n 1 T (e i) 2 saadaan lemman ensimmäinen osa. Sijoittamalla ensimmäiseen osaan muuttujan x paikalle T 1 (x) saadaan lemman toinen osa. Lemma 2.2. Olkoon f : D R n R n C 1 -kuvaus ja p avoimen joukon D piste. Tällöin jokaista ɛ > 0 kohti on olemassa sellainen avoin pallo N(p, δ) D, että kaikille sen pisteille q N(p, δ) on voimassa 1. (L f,q L f,p )(h) ɛ h kaikille h R n, 2. f(q+h) f(q) L f,p (h) ɛ h kaikille h R n, joille q + h N(p, δ). Todistus. Merkitään dierentiaalin L f,p sarakkeita ( f f1 (p) = (p),..., f ) n (p) = L f,p (e j ). x j x j x j Kaikille q D ja h R n pätee ( f L f,q (h) L f,p (h) = h 1 (q) f ) (p) x 1 x 1 ( f +... + h n (q) f ) (p), x n x n 7

joten pätee myös L f,q (h) L f,p (h) h 1 f (q) f (p) x 1 x 1 +... + h n f (q) f (p) x n x n. (2) Kuvauksen f osittaisderivaatat ovat jatkuvia joukossa D, joten jokaista ɛ > 0 vastaa sellainen ympäristö N(p, δ) D, jolle pätee f (q) f (p) x i x i ɛ kaikilla i = 1,..., n, kun q N(p, δ). n Sopivalla luvun δ valinnalla ja epäyhtälön (2) nojalla L f,q (h) L f,p (h) ɛ n ( h 1 +... + h n ) ɛ h, kun q N(p, δ), mikä todistaa lemman ensimmäisen kohdan. Olkoon mielivaltaisille q, q + h N(p, δ) u = f(q + h) f(q) L f,p (h). Väliarvolauseen (1.13) nojalla on olemassa sellainen 0 < θ < 1, että jolloin (f(q + h) f(q)) u = L f,q+θh (h) u (f(q + h) f(q) L f,p (h)) u = (L f,q+θh (h) L f,p (h)) u. Tällöin sijoittamalla u ja käyttämällä Cauchy-Schwarzin epäyhtälöä saadaan f(q + h) f(q) L f,p (h) (L f,q+θh L f,p )(h), mistä lemman toinen kohta seuraa käyttämällä ensimmäistä kohtaa. Näiden lemmojen avulla voimme todistaa päätuloksemme käänteiskuvauslauseen todistamista varten eli jos C 1 -kuvaus on sileä jossakin pisteessä eli sen Jacobin matriisin determinantti on nollasta eroava, niin sitten se on sileä ja injektio myös jossakin tämän pisteen ympäristössä. Lause 2.3. Olkoon f : D R n R n C 1 -kuvaus ja p sellainen avoimen joukon D piste, että det J f,p 0. Tällöin on olemassa sellainen pisteen p ympäristö N(p, δ) D, että 8

1. det J f,q 0 kaikille q N(p, δ), 2. f : N(p, δ) R n R n on injektio. Todistus. Lineaarikuvaus L f,p on kääntyvä, koska det J f,p 0. Lemman 2.1 nojalla on olemassa sellainen µ > 0, että kääntyvälle lineaarikuvaukselle L f,p pätee myös L 1 f,p (x) µ x ja L f,p(x) 1 µ x kaikilla x Rn. (3) Valitsemalla ɛ = 1/(2µ) voidaan osoittaa Lemman 2.2 avulla, että ympäristö N(p, δ) täyttää nyt todistettavan lauseen ehdot. Tehdään tämä vastaväitteen avulla. Oletetaan, että jollakin q N(p, δ) pätee det J f,q = 0. Tällöin on olemassa sellainen nollasta eroava h R n, että L f,q (h) = 0. Kuitenkin Lemman 2.2 ensimmäisen kohdan nojalla, kun ɛ = 1/(2µ), pätee L f,p (h) = (L f,q L f,p )(h) 1 2µ h. mikä on ristiriidassa epäyhtälön (3) jälkimmäisen kohdan kanssa, sillä muuttujan x paikalle voidaan sijoittaa muuttuja h. Siis täytyy olla det J f,q 0 kaikilla q N(p, δ), mikä on lauseen ensimmäinen kohta. Vastaavasti oletetaan, että on olemassa kaksi määrättyä pistettä q ja q +h ympäristössä N(p, δ), joille pätee f(q+h) = f(q). Tällöin Lemman 2.2 toisen kohdan nojalla L f,p (h) = f(q + h) f(q) L f,p (h) 1 2µ h, mistä seuraa sama ristiriita kuin aiemmin. Siis kuvaus f : N(p, δ) R n R n on injektio, mikä oli osoitettava. Lauseen 2.3 mukaan C 1 -kuvauksen f Jacobin matriisin ollessa kääntyvä pisteessä p myös f on lokaalisti kääntyvä pisteessä p. Se ei kuitenkaan kerro meille mitään kuvauksen f käänteiskuvauksesta g. Seuraavaksi todistettava merkittävä tulos on se, että joukko f(n(p, δ)) sisältää pisteen f(p) ympäristön V, missä itse käänteiskuvaus g on C 1 -kuvaus. Lause 2.4 (Käänteiskuvauslause). Olkoon f : D R n R n C 1 -kuvaus avoimessa joukossa D R n ja det J f,p 0 pisteessä p D. Tällöin 1. on olemassa sellaiset avoimet joukot U R n ja V R n, jotka sisältävät pisteet p U ja f(p) V, että U D, f(u) = V ja f on injektio joukossa U, 9

2. kuvauksen f lokaali käänteiskuvaus g : V U on myös C 1 -kuvaus, 3. J g,f(p) J f,p = I. Todistus. Todistetaan ensin kohta 1. Hahmotellaan aluksi todistuksen ideaa ja työkaluja, joita todistuksessa käytetään. Merkitään lineaarikuvausta L f,p jatkossa lyhyesti L. Koska det J f,q 0, niin kuvauksella L on käänteiskuvaus L 1 : R n R n. Olkoon µ > 0 Lemman 2.1 mukaisesti sellainen, että L 1 (z) µ z kaikilla z R n. (4) Olkoon ɛ = 1/(2µ). Lemman 2.2 nojalla on olemassa sellainen pisteen p ympäristö N(p, δ) D, että kun q, q + h N(p, δ), niin f(q + h) f(q) L(h) 1 h. (5) 2µ Lauseen 2.3 nojalla f on injektio joukossa N(p, δ) ja L f,q on isomorsmi joukossa R n kaikille q N(p, δ), sillä det J f,q 0. Tullaan osoittamaan, että on olemassa sellainen pisteen f(p) ympäristö V = N(f(p), σ) avaruudessa R n, että jokaista y V vastaa täsmälleen yksi x N(p, δ), jolle pätee y = f(x). Tämä on yhtäpitävää sen kanssa, että V f(n(p, δ)), (6) koska tiedetään jo, että kuvaus f on injektio joukossa N(p, δ). Tästä päättelystä seuraa todistuksen ensimmäinen kohta, sillä joukko U = f 1 (V ) N(p, δ) on avoin joukossa D. Tämä on perusteltua, koska joukot N(p, δ) ja D ovat avoimia ja joukko f 1 (V ) on avoin, koska V on avoin ja f on bijektiivisesti jatkuva joukolta U joukolle V. Täten kohdan (6) nojalla f(u) = V. Tässä tullaan käyttämään Banachin kiintopistemenetelmän kaltaista päättelyä. Peräkkäisellä approksimoinnilla löytyy jokaista pistettä y N(f(p), σ) vastaava piste x N(p, δ), jolle pätee y = f(x). Aloittamalla pisteestä x 1 = p löydetään jono (x k ), jonka jokainen termi sisältyy ympäristöön N(p, δ) ja joille pätee, että y f(x k ) 0 ympäristössä N(f(p), σ). Jos (x k ) suppenee arvoon x N(p, δ), niin kuvauksen f jatkuvuudesta seuraa, että y = f(x). Luvun σ > 0 täytyy olla riittävän pieni, jotta varmasti jokaista y N(f(p), σ) vastaava jono (x k ) suppenee ympäristössä N(p, δ). Pohditaan, miten jono (x k ) kannattaa valita. Jos on valittu luku x k N(p, δ), niin miten kannattaa valita x k+1 = x k + h N(p, δ), jotta f(x k+1 ) olisi lähempänä lukua y kuin f(x k ). Koska f on dierentioituva, niin f(x k + h) f(x k ) + L f,xk (h). 10

Lemman 2.2 nojalla L f,xk (h) on lähes sama kuin L(h), joten vaikuttaa järkevältä valita luku h siten, että y = f(x k ) + L(h). Valitsemalla tällä tavoin h = L 1 (y f(x k )) määritellään jono x k+1 = x k + L 1 (y f(x k )). (7) Toki täytyy vielä tarkistaa, että x k+1 N(p, δ). Jos kaikki jonon (x k ) termit toteuttavat ehdon (7) kaikilla k N ja jono (x k ) suppenee arvoon x N(p, δ), niin kuvauksien f ja L 1 jatkuvuudesta seuraa x = x + L 1 (y f(x)). Edellisen yhtälön nojalla L 1 (y f(x)) = 0, joten käyttämällä kuvausta L saadaan y = f(x). Jonon (x k ) suppenemisen tarkastelussa tutkitaan vektoreita x k+1 x k kaikilla k N. Jokaista lukua k kohti on olemassa sellainen z k R n, että f(x k+1 ) f(x k ) = L(x k+1 x k ) + x k+1 x k z k. (8) Tämä voidaan saattaa muotoon f(x k+1 ) f(x k ) L(x k+1 x k ) = x k+1 x k z k, mistä huomataan yhtälön vasemman puolen olevan muotoa f(q +h) f(q) L(h), joten yhtälön (5) nojalla, josta sieventämällä saadaan x k+1 x k z k 1 2µ x k+1 x k, z k 1 2µ. (9) Sieventäminen on luvallista, sillä jos x k+1 x k = 0, niin x k+1 = x k = x, joka on etsimämme kiintopiste. Tällöin tätä jonoa ei tarvitsisi, sillä sen tehtävä on etsiä tuo kiintopiste. Käyttämällä lineaarikuvausta L 1 yhtälöön (8) saadaan kaikilla k N voimaan x k+1 x k = L 1 (f(x k+1 ) f(x k )) x k+1 x k L 1 (z k ). (10) Todistetaan nyt käänteiskuvauslauseen ensimmäinen kohta käyttämällä hyväksi edellä esiteltyjä aputuloksia. Olkoon σ = δ/(4µ) ja kiinnitetään 11

y N(f(p), σ). Alkuarvolla x 1 = p N(p, δ) saamme määriteltyä jonon seuraavat termit rekursiivisesti yhtälön (7) avulla. Sijoittamalla k = 1 ja x 1 = p yhtälöön (7) saadaan ja yhtälön (4) avulla x 2 p = L 1 (y f(p)), L 1 (y f(p)) µ y f(p) < µσ = δ 4. Siispä x 2 x 1 = x 2 p < δ 4, (11) jolloin x 2 N(p, δ). Koska x 2 D, niin yhtälö (7) määrää rekursiivisesti luvun x 3, jolloin x 3 x 2 = (x 2 + L 1 (y f(x 2 ))) (x 1 + L 1 (y f(x 1 ))) = (x 2 x 1 ) L 1 (f(x 2 ) f(x 1 )) = x 2 x 1 L 1 (z 1 ) (yhtälön (10) nojalla). Tällöin yhtälöiden (4) ja (9) nojalla saadaan x 3 x 2 1 2 x 2 x 1 < δ 8. (12) Lisäksi kolmioepäyhtälön ja edellisten kohtien (11) ja (12) yhdistämisestä seuraa x 3 p x 3 x 2 + x 2 x 1 < ( 1 8 + 1 4 )δ < 1 2 δ. Osoitetaan kohdan (12) vihjailema tulos x k x k 1 < δ 2 k (13) kaikilla k 2 induktiotodistusta hyväksi käyttäen. Alkuaskel k = 2 on osoitettu jo aiemmin kohdassa (11). Induktioaskeleessa oletetaan väite todeksi, kun k = n ja osoitetaan tällöin väite todeksi myös, kun k = n + 1 eli on osoitettava, että x n+1 x n < δ kaikilla n 2. Nyt 2 n+1 yhtälöä (10) apuna käyttäen saadaan x n+1 x n = (x n + L 1 (y f(x n ))) (x n 1 + L 1 (y f(x n 1 ))) = (x n x n 1 ) L 1 (f(x n ) f(x n 1 )) = x n x n 1 L 1 (z n 1 ), 12

joten induktio-oletuksen ja kohtien (4) ja (9) nojalla x n+1 x n = x n x n 1 L 1 (z n 1 ) x n x n 1 µ z n 1 < 1 2 x n x n 1 < δ 2 2 = δ, n kun n 2. 2n+1 Koska alkuaskel ja induktioaskel ovat tosia, niin yhtälö (13) on tosi. Epäyhtälön (13) ja kolmioepäyhtälön seurauksena ( 1 x k p x k x k 1 +... + x 2 p < 2 +... + 1 ) δ < 1 δ. k 2 2 (14) 2 Lisäksi epäyhtälöistä (13) ja (14) voidaan johtaa kaikille k > l 1 x k x l x k x k+1 + + x l+1 x l ( 1 2 +... + 1 ) σ < δ k 2 l+1 2. l Täten (x l ) on Cauchy-jono ympäristössä N(p, δ), joten se suppenee kohti arvoa x R n. Kohdan (14) nojalla x p 1 δ, joten x N(p, δ). Siispä 2 yhtälöstä (7) nähdään jonon (x k ) suppenemisen seurauksena, että f(x) = y. Nyt käänteiskuvauslauseen ensimmäinen osa on todistettu kohdan (5) jälkeisen päättelyn mukaisesti ja V = N(f(p), σ) sekä U = f 1 (V ) N(p, δ), jolloin f(u) = V. Todistetaan kohdat 2 ja 3. Olkoot avoimet joukot U ja V, kuten kohdassa 1. Kuvaus f : U V on injektiivinen ja kuvaa joukon U joukoksi V. Olkoon kuvaus g : V U kuvauksen f lokaali käänteiskuvaus. Oletetaan, että y, y + k V. Tällöin on olemassa yksikäsitteiset x, x + h U siten, että f(x) = y, f(x + h) = y + k, x = g(y), x + h = g(y + k). Koska kuvaus f on dierentioituva pisteessä x, niin on olemassa sellainen kuvaus η : D x R n R n, että ja k = f(x + h) f(x) = L f,x (h) + h η(h) (15) lim η(h) = 0. h 0 Lauseen 2.3 ensimmäisen kohdan nojalla lineaarikuvaus L f,x on bijektiivinen. Merkitään tämän lineaarikuvauksen käänteiskuvausta S = L 1 f,x : Rn R n. Nyt yhtälön (15) avulla saadaan S(k) = h + S( h η(h)). 13

Tällöin g(y + k) g(y) = h = S(k) + k S Toisaalta tuloksen (5) mukaan L(h) f(x + h) f(x) 1 2µ h. ( h ) k η(h). (16) Epäyhtälön (4) mukaan L 1 (h) µ h, joten L(h) 1 h. Tästä ja µ yhtälöstä (15) seuraa 1 1 h k µ 2µ h, joten k 1 2µ h. Nyt koska S on jatkuva pisteessä 0, niin lim S k 0 ( h k η(h) ) = 0. (17) Kohdista (16) ja (17) nähdään, että g on dierentioituva pisteessä y ja sen dierentiaali on L g,y = S = L 1 f,x. Siten Jacobin matriisi J g,y on kääntyvä ja J g,y = (J f,x ) 1, missä x U, y = f(x) V. (18) Kohta 3 seuraa, kun valitaan x = p ja y = f(p). Kohdan 2 todistamiseksi saatiin dierentioituvuus, joten kuvauksen f kaikki osittaisderivaatat ovat olemassa. Vielä täytyy osoittaa, että ne ovat jatkuvia. Tarkastellaan matriisin J 1 f,x alkiota (i, j). Nämä alkiot ovat lineaarialgebran alkeista tutun Cramerin säännön nojalla kuvauksen f koordinaattifunktioiden osittaisderivaattojen ( f k / x l )(x), x, l = 1,..., n rationaalikombinaatioita. Yhtälöstä (18) tiedetään, että ( g i / y j )(y) = ( g i / y j )(f(x)) on jatkuva muuttujasta x riippuva kuvaus. Toisaalta kuvaus g on dierentioituva, joten myös jatkuva. Siis x = g(y) on jatkuva muuttujasta y riippuva kuvaus, joten g i y j (f(g(y))) = g i y j (y) on jatkuva muuttujasta y riippuva kuvaus. Siis kuvauksen g kaikkien koordinaattifunktioiden kaikki osittaisderivaatat ovat jatkuvia, joten kuvaus g on C 1 -kuvaus. 14

Seuraava esimerkki kuvaa dierentioituvan kuvauksen heikkoutta suhteessa C 1 -kuvaukseen. Sen avulla voi pohtia miksi lauseiden lähtöoletukseksi täytyy valita nimenomaan jatkuva dierentioituvuus pelkän dierentioituvuuden sijasta. Esimerkki 2.5. Määritellään kuvaus f : R R, missä f(x) = x 2 sin(1/x) + x, x 0 ja f(0) = 0. Osoitetaan, että 1. f on dierentioituva joukossa R ja erityisesti f (0) = 1, 2. f ei ole lokaalisti kääntyvä pisteessä 0, 3. f on epäjatkuva pisteessä 0. 1. kohta. Alkeiskuvauksena f on dierentioituva, kun x 0. Kun x = 0, niin f(x) f(0) x 0 = x2 sin( 1 x ) + x 0 x = x sin 1 + 1 1, kun x 0. x 2. kohta. Tarkastellaan kuvauksen f derivaattakuvausta f (x) = 2x x cos 1 2 x + 1 = 1 2 cos 1 x. x Koska cos 1 1 x ja cos 1 vaihtaa merkkiään sitä tiheämpään mitä lähemmäksi nollaa mennään, niin derivaatta f vaihtaa merkkiään nollan lähellä x mielivaltaisen tiheästi ja samalla derivaattakuvaus f on nollan lähellä jatkuva. Siis mikä tahansa nollan sisältävä avoin väli sisältää kuvauksen f ääriarvokohdan, joten ei ole olemassa nollan ympäristöä, johon rajoitettuna kuvaus f olisi injektiivinen. Siis f ei ole lokaalisti kääntyvä. 3. kohta. Voidaan osoittaa, että derivaattakuvaus f (x) = 1 2 cos 1 x saa x mielivaltaisen lähellä nollaa arvokseen minkä tahansa reaaliluvun, vaikkapa luvun 0, mutta kuitenkin f (0) = 1. Tarkastellaan yhtälöä f (x) = 0, x 0. Tällöin yhtälö saa muodon 2 cos 1 x = x. Merkitään u = 1 1, jolloin cos u =. Tälle yhtälölle löytyy mielivaltaisen suuria ratkaisuja u eli mielivaltaisen pieniä ratkaisuja x, joten derivaattakuvauk- x 2u selle f voidaan löytää mielivaltaisen läheltä nollaa kohtia, joissa derivaatta on 0, mutta kuitenkin f (0) = 1, joten derivaattakuvaus f on epäjatkuva pisteessä 0. 15

Tämä osoittaa, että dierentioituvuudesta ja ehdosta f (p) 0 ei aina seuraa kuvauksen f lokaali kääntyvyys pisteessä p. Siksi käänteiskuvauslauseen lähtöoletuksena on oltava, että tarkasteltava kuvaus on jatkuvasti dierentioituva. Esimerkki 2.6. Olkoon kompleksilukujen neliöön korottamiseen läheisesti liittyvä kuvaus f : R 2 R 2 määritelty f(x, y) = (x 2 y 2, 2xy), (x, y) R 2. Kuvaus f on C 1 -kuvaus, sillä sen osittaisderivaatat ovat olemassa ja jatkuvia. Jacobin matriisi J f,(x,y) on ( ) 2x 2y J f,(x,y) = 2y 2x ja det J f,(x,y) = 4x 2 + 4y 2 = 4(x 2 + y 2 ) 0, kun (x, y) (0, 0), joten käänteiskuvauslauseen ensimmäisen kohdan nojalla voidaan todeta kuvaus f lokaalisti kääntyväksi origoa lukuunottamatta. Voidaan osoittaa, että origossa kuvaus f ei ole lokaalisti kääntyvä, sillä f(a, a) = f( a, a) = (2a 2, 2a 2 ), kaikilla a R. Ei siis löydy pisteen (0, 0) ympäristöä, jossa kuvaus f olisi injektio. Olkoon käänteiskuvauslauseen mukaisesti ympäristöt U R 2 ja V R 2 sekä piste p = (x, y) U R 2 \{0} sellaiset, että f : U R 2 on injektiivinen kuvaus joukossa U ja f(u) = V. Tällöin käänteiskuvauslauseen toisen kohdan nojalla myös kuvauksen f lokaali käänteiskuvaus g : V R 2 R 2 on C 1 -kuvaus. Vaikka lokaali käänteiskuvaus on varmasti olemassa, niin sille ei kuitenkaan ole olemassa yksinkertaista esitystä. Kolmannen kohdan avulla saadaan kuitenkin selvitettyä pisteessä p = (x, y) lokaalin käänteiskuvauksen g Jacobin matriisi ( ) 1 2x 2y J g,f(p) = (J f,p ) 1 = = 2y 2x 1 2(x 2 + y 2 ) ( ) x y, y x jonka avulla saadaan tietoa lokaalin käänteiskuvauksen käyttäytymisestä tietyn pisteen ympäristössä. Esimerkki 2.7. Kolme kuvausta f, g, h : R 2 R 2 määritellään f(x, y) = (x cos y, x sin y), g(x, y) = (x 2 + 2xy + y 2, 3x + 3y), h(x, y) = (x + y, x y). 16

Tutkitaan näiden kuvausten paikallista kääntyvyyttä. Kaikki kolme kuvausta ovat kaikkialla hyvin käyttäytyviä C 1 -kuvauksia, sillä ne ovat derivoituvia ja niiden osittaisderivaatat ovat jatkuvia. Kuvausten Jacobin matriisit pisteessä p = (x, y) R 2 ovat ( cos y x sin y J f,p = sin y x cos y joiden determinanteista ), J g,p = ( ) 2x + 2y 2x + 2y 3 3 det J f,p = x, det J g,p = 0 ja det J h,p = 2 ja J h,p = 1 ( ) 1 1, 2 1 1 voidaan niiden nollasta eroavuutta tutkimalla käänteiskuvauslauseen nojalla todeta seuraavaa: Kuvaus f on lokaalisti kääntyvä ainakin, jos x 0. Kuvauksen g lokaalista kääntyvyydestä ei voida sanoa mitään ja kuvaus h on lokaalisti kääntyvä kaikkialla. Ilman käänteiskuvauslausetta voidaan tutkia sen jättämät aukot helposti. Kuvaus f ei ole kääntyvä, kun x = 0, sillä f(0, y) = (0, 0) kaikilla y R. Kuvaus g ei ole kääntyvä missään, sillä jokaisesta pisteen (x, y) ympäristöstä löytyy piste (x ɛ, y + ɛ), jolle pätee g(x, y) = (x 2 + 2xy + y 2, 3x + 3y) = ( (x + y) 2, 3(x + y) ) = g(x ɛ, y + ɛ), missä ɛ > 0. 3 Implisiittikuvauslause Kappale sisältää johdattelua implisiittikuvauslauseeseen, itse lauseen todistuksineen sekä esimerkkejä. Pistejoukko tai sen osa voidaan antaa eksplisiittisessä muodossa, jolloin yksi koordinaateista on ratkaistu toisten koordinaattien suhteen. Esimerkiksi yksikköympyrän y-koordinaatiltaan positiivinen osa voidaan määritellä eksplisiittisesti kuvauksen y = f(x) = 1 x 2, x [ 1, 1] avulla. Usein on kuitenkin mielekästä tarkastella pistejoukkoja, joita ei voida määritellä eksplisiittisesti yhdellä kuvauksella. Esimerkki 3.1. Yksikköympyrä voidaan määritellä yhtälön x 2 + y 2 1 = 0 ratkaisujoukkona C = {(x, y) R 2 x 2 + y 2 1 = 0}. 17

Aiemmin tarkastelemamme kuvauksen f määrittelee implisiittisesti yhtälö x 2 +y 2 1 = 0, sillä y = f(x) toteuttaa tämän yhtälön. Samoin tämän yhtälön implisiittisesti määräämiä ovat kaikki ne kuvaukset, jotka toteuttavat tämän yhtälön. Jatkossa vastaavia yhtälöitä tullaan merkitsemään ehtona F = 0, missä tämän esimerkin tapauksessa F (x, y) = x 2 + y 2 1 ja (x, y) R 2. Yleistämällä tämän esimerkin määrittelemme implisiittisesti määritellyn kuvauksen jatkon kannalta merkityksellisellä tavalla. Määritelmässä tullaan toteamaan täsmällisesti, että jos usean muuttujan yhtälön F = 0 ratkaisee jokin eksplisiittinen kuvaus f, joka määrittelee yhden näistä muuttujista muiden suhteen, niin yhtälö F = 0 määrittelee kuvauksen f implisiittisesti. Määritelmä 3.2 (Implisiittisesti määritelty kuvaus). Olkoon reaaliarvoinen kuvaus F : D R m R, missä m 2. Jos on olemassa reaaliarvoinen kuvaus f : D R m 1 R, joka toteuttaa yhtälön F (u, f(u)) = 0, (u, f(u)) D kaikilla u D, niin sanotaan yhtälön F (u) = 0 määrittelevän implisiittisesti kuvauksen f joukossa D. Esitellään seuraavaksi implisiittikuvauslauseen kaksiulotteinen versio, ensin ideana ja sitten lauseena. Olkoon meillä jatkuvuuden ja derivoituvuuden suhteen hyvin käyttäytyvä käyrä. Valitaan käyrältä yksi piste (a, b), missä osittaisderivaatta jonkin muuttujan, esimerkiksi muuttujan y, suhteen on nollasta eroava. Tällöin tämän pisteen läheisyydessä käyrämme voi korvata muista muuttujista, tässä tapauksessa vain muuttujasta x, riippuvalla kuvauksella ja tämä kuvaus on väistämättä C 1 -kuvaus ja yksikäsitteinen. Geometrisesti yhtälön F (x, y) = 0 määräämä joukko on lokaalisti sama kuin kuvauksen y = f(x) graa, missä f(x) on eksplisiittinen kuvaus. Lause 3.3 (Kaksiulotteinen implisiittikuvauslause). Olkoon F : D R 2 R reaaliarvoinen C 1 -kuvaus, joka on määritelty pisteen (a, b) R 2 ympäristössä D. Oletetaan, että [A] F (a, b) = 0 ja [B] F (a, b) 0. y Tällöin on olemassa pisteen a R ympäristö N, pisteen b R ympäristö M ja C 1 -kuvaus f : N R R siten, että 1. f(a) = b ja f(n) M 2. jokaista pistettä x N vastaavan yhtälön F (x, y) = 0 yksikäsitteinen ratkaisu on y = f(x) M, kunhan mahdolliset arvot y on rajoitettu ympäristöön M. 18

Lisäksi kuvauksen y = f(x) derivaatta voidaan laskea F dy dx = (x, y) x F (x, y) = F x(x, y) F y y (x, y), missä F x ja F y ovat kuvauksen F osittaisderivaatat muuttujien x ja y suhteen. Todistus. Lause tulee todistetuksi implisiittikuvauslauseen yleisen muodon (3.8) todistamisen myötä. Esimerkki 3.4. Määrää ympyrän x 2 +y 2 = 5 2 pisteeseen p = (3, 4) piirretyn tangentin kulmakerroin sekä implisiittikuvauslauseen avulla, että käyttämällä eksplisiittistä ratkaisua. Implisiittikuvauslauseen käyttöä varten todetaan, että kuvaus F (x, y) = x 2 + y 2 25 häviää pisteessä p = (3, 4) eli F (p) = 0. Lisäksi sen osittaisderivaatat F x (x, y) = 2x ja F y (x, y) = 2y ovat jatkuvia ja F y (3, 4) = 8 0. Implisiittikuvauslauseen ehdot toteutuvat, joten f (3) = F x(3, 4) F y (3, 4) = 2 3 2 4 = 3 4 Eksplisiittistä derivointia varten ratkaistaan y = ± 25 x 2. Pisteessä p yhtälö y = f(x) = 25 x 2 toteutuu. Derivoimalla tämä saadaan f 1 (x) = ( 2x) 2 25 x = x, 2 25 x 2 mistä saadaan f (3) = 3/ 25 9 = 3/4 kuten implisiittisesti derivoimalla. Tässä esimerkissä implisiittisellä derivoinnilla vältyttiin ikävästä neliöjuuren käsittelystä ja tehtävä helpottui huomattavasti. Toisaalta implisiittistä derivointia varten tuli tietää tutkittavan pisteen molemmat koordinaatit, mutta eksplisiittisessä derivoinnissa pelkkä x-koordinaatti riitti. Aiempien esimerkkien ympyrät on helppo kuvata kahden eksplisiittisen kuvauksen avulla, mutta on kuvauksia, joille ei ole mahdollista muodostaa yksinkertaista eksplisiittistä esitystä useammankaan kuvauksen avulla, kuten seuraavassa esimerkissä huomataan. Esimerkki 3.5. Dierentiaali- ja integraalilaskennan kehittymisen varhaisissa vaiheissa 1600-luvulla Fermat väitti kehittäneensä menetelmän, jonka 19

avulla voidaan selvittää tangenttisuoria. Descartes haastoi Fermatin ratkaisemaan nykyään nimeä Folium of Descartes kantavan käyrän tangenttisuoran mielivaltaisessa käyrän pisteessä. Folium of Descartes määräytyy yhtälön F (x, y) = 0 ratkaisujoukkona, missä F (x, y) = x 3 + y 3 3xy, (x, y) R 2. Kuva 1: Folium of Descartes Modernin matematiikan suoman implisiittisen derivoinnin vuoksi tämä haaste on muuttunut helpoksi. Kuvaus F on C 1 -kuvaus, sillä se on derivoituva ja sen osittaisderivaatat ovat jatkuvia. Kaksiulotteisen implisiittikuvauslauseen kohta [A] toteutuu käyrän määritelmän vuoksi ja kohta [B] toteutuu, kun F y (x, y) = 3y 2 3x 0 eli x y 2. Sijoittamalla x = y 2 yhtälöön F (x, y) = 0 huomataan, että ainoastaan pisteissä (0, 0) ja ( 3 4, 3 2) ehto [B] ei toteudu. Nyt implisiittikuvauslauseen avulla on helppo laskea 20

implisiittisesti käyrän F (x, y) = 0 derivaatta mielivaltaisessa käyrän pisteessä (a, b) R 2 \{(0, 0), ( 3 4, 3 2)}, jolloin dy dx = F x F y (a, b) = 3a2 3b 3b 2 3a = b a2 a b 2. Siten käyrän F pisteen (a, b) kautta kulkeva tangenttisuora on y b = b a2 (x a), a b2 lukuunottamatta edellä mainittuja kahta pistettä. Näissä pisteissä pystysuorien tangenttien yhtälöt ovat x = 0 ja x = 3 4. Pisteeseen (0, 0) voidaan piirtää myös vaakasuora tangentti y = 0. Täten olemme löytäneet kaikki tangentit ja samalla selättäneet Descartesin asettaman haasteen. Huomautus 3.6. Käyrän Folium of Descartes nimitys tulee latinankielen sanasta Folium, joka tarkoittaa lehteä. Descartes tiesi käyrän muodostavan silmukan koordinaatiston ensimmäisessä neljänneksessä ja arveli yhdessä Ranskalaisen matematiikon Robervalin kanssa käyrän toistavan silmukan myös muissa neljänneksissä. Osoittakaamme heidän hypoteesinsä vääräksi. Tutkitaan käyrän mahdollisia arvoja, kun x = 2/3. Tällöin F (2/3, y) = y 3 2y + 8 27 = 0, minkä ratkaisuna saadaan kolme juurta y 1 = 4/3, y 2,3 = 1 3 ( 2 ± 6), joten käyrä ei voi muodostaa toista samanlaista silmukkaa x-akselin suhteen peilattuna. Edellisen esimerkin ja huomautuksen historiallinen tieto pohjautuu George F. Simmonsin kirjaan Calculus Gems: Brief Lives and Memorable Mathematics [2, s.101]. Yleisen implisiittikuvauslauseen todistusta varten tarvitsemme yhden lemman. Lemma 3.7. Olkoon joukko U R m avoin ja piste p U. Tällöin on olemassa sellaiset avoimet joukot N 1 R m 1 ja M R, että p N 1 M U. Todistus. Olkoon joukko U R m avoin ja piste p U. Tällöin on olemassa avoin ympäristö N(p, δ) U, missä δ > 0. Määritellään avoimet ympäristöt N 1 = { s R m 1 s (p 1,..., p m 1 ) } < δ 2 ja 21

{ M = x R x p m < δ }. 2 Tällöin (p 1,..., p m 1 ) N 1 ja p m M, joten p N 1 M. Tämän avoimen lieriön mielivaltaiselle pisteelle l = (s, x) N 1 M pätee kolmioepäyhtälön nojalla l p s (p 1,..., p m 1 ) + x p 1 < δ 2 + δ 2 = δ, joten l N(p, δ). Siis avoin lieriö N 1 M N(p, δ) U, joten N 1 M U. Seuraava implisiittikuvauslauseen eräs yleistys ottaa huomioon kaikenkokoiset lähtöavaruudet. Lause 3.8 (Implisiittikuvauslause). Olkoon reaaliarvoinen C 1 -kuvaus F : D R m R määritelty pisteen (p 1,..., p m ) R m ympäristössä D ja m 2. Oletetaan, että [A] F (p 1,..., p m ) = 0 ja [B] F x m (p 1,..., p m ) 0. Tällöin on olemassa pisteen (p 1,..., p m 1 ) R m 1 ympäristö N R m 1, pisteen p m R ympäristö M R ja C 1 -kuvaus f : N R m 1 R siten, että 1. f(p 1,..., p m 1 ) = p m ja f(n) M 2. jokaista pistettä (x 1,..., x m 1 ) N vastaavan yhtälön F (x 1,..., x m 1, x m ) = 0 yksikäsitteinen ratkaisu on x m = f(x 1,..., x m 1 ) M, kunhan mahdolliset arvot x m on rajoitettu ympäristöön M. Todistus. Todistuksen ideana on konstruoida kuvauksesta F : D R m R vastaavanlainen kuvaus, johon voidaan kuitenkin soveltaa käänteiskuvauslausetta (2.4). Tämän vuoksi määritellään kuvaus F : D R m R m F (x 1,..., x m ) = (x 1,..., x m 1, F (x 1,..., x m )), (x 1,..., x m ) D. (19) Piste F (x 1,..., x m ) sijaitsee (m 1)-ulotteisessa avaruudessa, jonka pisteet ovat muotoa (y 1,..., y m 1 ), jos ja vain jos F (x 1,..., x m ) = 0. Erityisesti oletuksen [A] nojalla F (p 1,..., p m ) = (p 1,..., p m 1, 0). 22

Kuvaus F on C 1 -kuvaus avaruudessa D ja sen Jacobin matriisi pisteessä p D on 1 0... 0. 0... J F,p =.. 0... 1 0 F F F x 1 (p) x 2 (p)... x m (p) Oletuksen [B] nojalla det J F,p = F x m (p) 0, joten voidaan soveltaa käänteiskuvauslausetta kuvaukselle F pisteen p D ympäristössä. Tällöin piste p sijaitsee avoimessa ympäristössä U D R m siten, että kuvauksella F on C 1 -käänteiskuvaus joukossa U ja F (U) = V R m on avoin joukko, joka sisältää pisteen F (p 1,..., p m 1, 0). Todistuksen jatkon helpottamiseksi voidaan Lemman 3.7 nojalla olettaa ympäristön U koostuvan kahdesta osasta U = N 1 M, missä N 1 R m 1 on pisteen (p 1,..., p m 1 ) ympäristö ja M R on pisteen p m ympäristö. Merkitään kuvauksen F : U V C 1 -käänteiskuvausta G : V U. Kuvauksen F määritelmästä (19) nähdään, että se pitää m 1 ensimmäistä koordinaattia samoina, ja muuttaa viimeisen koordinaatin kuvaukseksi F (x 1,..., x m ). Siispä käänteiskuvauksen G täytyy olla muotoa G (x 1,..., x m ) = (x 1,..., x m 1, G(x 1,..., x m )) N 1 M, (x 1,..., x m ) V, missä G : V R m R on C 1 -kuvaus, jolle pätee G(x 1,..., x m 1, F (x 1,..., x m )) = x m. Tällöin G(V ) M. Avoin joukkomme V R m sisältää pisteen (p 1,..., p m 1, 0), joten on olemassa pisteen (p 1,..., p m 1 ) ympäristö N R m 1 siten, että N {0} V. Täten voidaan määritellä kuvaus f : N R m 1 R f(x 1,..., x m 1 ) = G(x 1,..., x m 1, 0), missä (x 1,..., x m 1 ) N. (20) Tämä kuvaus on hyvin määritelty, koska (x 1,..., x m 1, 0) N {0} V, kun (x 1,..., x m 1 ) N. Lisäksi G ja f ovat C 1 -kuvauksia. Nyt voidaan osoittaa kuvauksen f toteuttavan implisiittikuvauslauseen kohdat 1 ja 2. 23

Ensimmäiseksi f(p 1,..., p m 1 ) = p m, koska ((p 1,..., p m 1, f(p 1,..., p m 1 ))) = (p 1,..., p m 1, G(p 1,..., p m 1, 0)) = G (p 1,..., p m 1, 0) = (F ) 1 (p 1,..., p m 1, 0) = (p 1,..., p m 1, p m ). Toiseksi f(n) = G(N {0}) ja N {0} V sekä G(V ) M, joten myös f(n) M, mikä viimeistelee kohdan 1 todistuksen. Kuvauksen F määritelmästä nähdään, että V N 1 R, jolloin tapauksessamme N {0} V voimme päätellä, että N N 1 ja N M N 1 M. Tällöin jokaista pistettä (p 1,..., p m 1 ) N vastaava piste (p 1,..., p m 1, f(p 1,..., p m 1 )) sisältyy kuvauksen F määritysjoukkoon juuri toteamamme f(n) M perusteella. Nyt jokaiselle (x 1,..., x m 1 ) N pätee (x 1,..., x m 1, F (x 1,..., x m 1, f(x 1,..., x m 1 ))) = (x 1,..., x m 1, F (x 1,..., x m 1, G(x 1,..., x m 1, 0))) = (F G )(x 1,..., x m 1, 0) = (x 1,..., x m 1, 0). Siis x m = f(x 1,..., x m 1 ) M ratkaisee yhtälön F (x 1,..., x m ) = 0 kaikilla (x 1,..., x m 1 ) N. Todistetaan vielä yksikäsitteisyys. Oletetaan, että jotakin pistettä (a 1,..., a m 1 ) N vastaa kaksi sellaista ratkaisua a m M ja b m M, että Tällöin myös F (a 1,..., a m 1, a m ) = F (a 1,..., a m 1, b m ) = 0. F (a 1,..., a m 1, a m ) = F (a 1,..., a m 1, b m ). Koska F on injektio joukossa N M N 1 M, niin täytyy olla a m = b m, mikä todistaa yksikäsitteisyyden ja täten koko implisiittikuvauslause on todistettu. Esimerkki 3.9. Tarkastellaan yhtälöä x + y + z sin(xyz) = 0, missä (x, y, z) R 3. (21) Yhtälön eräs ratkaisu on (x, y, z) = (0, 0, 0). Yhtälöstä nähdään, että siitä ei voida suoraviivaisesti ratkaista yhtä muuttujaa muiden kahden suhteen. 24

Implisiittikuvauslauseen nojalla on kuitenkin mahdollista ratkaista muuttuja z muuttujien x ja y suhteen origon lähellä. Määritellään F : R R siten, että F (x, y, z) = x+y+z sin(xyz), missä (x, y, z) R 3. Tällöin F on C 1 -kuvaus, koska se on derivoituva ja sen keskenään samankaltaiset osittaisderivaatat muotoa F (x, y, z) = 1 xy cos(xyz) z ovat jatkuvia. Lisäksi [A] F (0, 0, 0) = 0 ja [B] F (0, 0, 0) = 1 0. z Tällöin implisiittikuvauslauseen nojalla on olemassa pisteen (x, y) = (0, 0) ympäristö N R 2 ja pisteen z = 0 ympäristö M R sekä C 1 -kuvaus f : N R siten, että yhtälön (21) toteuttaa yksikäsitteisesti kuvaus z = f(x, y) avoimessa lieriössä N M. Implisiittikuvauslauseen avulla osoitettiin siis tällaisen kuvauksen olemassaolo. Kuvaus f on määritelty implisiittisesti eikä sille ole eksplisiittistä esitystä. Annetulle pisteelle (a, b) N on kuitenkin mahdollista laskea numeerisella menetelmällä arvo f(a, b) yhtälöstä (21). Huomautus 3.10. Tarkastellaan implisiittikuvauslauseen tilannetta, kun m = 3. Olkoon merkinnät kuten Lauseessa 3.8. Kuvauksen f osittaisderivaatoista voidaan päätellä hieman lisää, kun määritellään g : R 2 R 3 Tällöin g(u, v) = (u, v, f(u, v)), missä(u, v) N. (F g)(u, v) = F (u, v, f(u, v)) = 0, missä (u, v) N eli kuvaus H = F g : N R 2 R on nollakuvaus. Nyt ketjusäännön nojalla saadaan 0 = J H,(a,b) = J F,g(a,b) J g,(a,b) missä (a, b) N. Tämän auki laskemalla saadaan 0 = H F F (a, b) = (a, b, f(a, b)) 1 + (a, b, f(a, b)) 0 u x y + F z (a, b, f(a, b)) f (a, b) u 25

ja 0 = H F F (a, b) = (a, b, f(a, b)) 0 + (a, b, f(a, b)) 1 v x y + F z (a, b, f(a, b)) f (a, b), v joista voidaan ratkaista ( f/ u)(a, b) ja ( f/ v)(a, b) saaden ja F f u (a, b) = (a, b, f(a, b)) x (a, b, f(a, b)) F z F f v (a, b) = (a, b, f(a, b)) y (a, b, f(a, b)). F z Esimerkki 3.11. Huomautuksen (3.10) avulla saadaan esimerkin (3.9) tapauksessa lisää tietoa osittaisderivaatoista laskemalla ja f 1 bf(a, b) cos(abf(a, b)) (a, b) = u 1 ab cos(abf(a, b)) f v 1 af(a, b) cos(abf(a, b)) (a, b) =, 1 ab cos(abf(a, b)) joihin sijoittamalla (a, b) = (0, 0) saadaan f f (0, 0) = (0, 0) = 1. u v Tämä kuvaa muuttujan z riippuvuutta muuttujista x ja y. Likimääräisesti tämä tarkoittaa, että pisteen (0, 0, 0) välittömässä ympäristössä muuttujan z arvon kasvattaminen tai vähentäminen aiheuttaa samansuuruisen, mutta vastakkaissuuntaisen muutoksen molemmissa muissa muuttujissa, jotta alkuperäinen yhtälö (21) olisi tosi. 4 Lagrangen menetelmä Lagrangen menetelmän myötä erilaisten moniulotteisten pistejoukkojen ääriarvojen tarkastelu helpottuu huomattavasti. Lagrangen menetelmällä on useita sovelluskohteita esimerkiksi taloustieteessä ja fysiikassa. Tietyntyyppisissä optimointitehtävissä, joissa rajoittava ehto on hankalampi, on tarpeen käyttää Lagrangen menetelmää, jonka avulla voidaan ottaa implisiittisesti rajoitusehto näppärästi huomioon. Tällaisia hankalampia 26

rajoittavia ehtoja ovat esimerkiksi sellaiset, joista ei voida ratkaista yhtä muuttujaa muiden muuttujien suhteen, kuten Esimerkki 3.9 tai sellaiset, joista voidaan ratkaista yksi muiden suhteen, mutta sitä ei saada tehtyä yhden kuvauksen avulla esimerkiksi ehdon x 2 + 1 2 y2 + z 2 1 = 0 tapauksessa. Ennen Lagrangen menetelmään syventymistä tarvitsemme yhden lemman. Lemma 4.1. Olkoon joukko S = {(x 1,..., x m ) D F (x 1,..., x m ) = 0} ja piste p S sellaiset, että F (p) 0. Tällöin kaikilla vektoreilla u R m, joille F (p) u = 0 on olemassa sellainen joukon S käyrä α : I S, I on avoin, 0 I, että α(0) = p ja α (0) = u. Todistus. Konstruoidaan joukon S käyrä, jonka tangentti pisteessä p on yhdensuuntainen vektorin u kanssa. Koska F (p) 0, niin voidaan olettaa, että ( F/ x m )(p) 0. Jos näin ei olisi, niin ( F/ x i )(p) 0 jollakin i, missä 1 i m 1, jolloin voitaisiin vaihtaa koordinaattien x i ja x m paikkaa. Nyt kuvaus F toteuttaa implisiittikuvauslauseen (3.8) ehdot. Voidaan todeta olevan olemassa sellainen pisteen (p 1,..., p m 1 ) R m 1 ympäristö N ja sellainen C 1 -kuvaus f : N R m 1 R, että f(p 1,..., p m 1 ) = p m ja F (x 1,..., x m 1, f(x 1,..., x m 1 )) = 0, missä (x 1,..., x m 1 ) N. (22) Määritellään sellainen derivoituva kuvaus α : I R R m, jonka avoin määritysjoukko I sisältää nollan ja α(t) = (p 1 +tu 1,..., p m 1 +tu m 1, f(p 1 +tu 1,..., p m 1 +tu m 1 )), missä t I ja (p 1 + tu 1,..., p m 1 + tu m 1 ) N kaikilla t I. Yhtälöstä (22) nähdään, että kuvauksen α kuva sijaitsee joukossa S ja α(0) = p. Itseasiassa kuvauksemme α(i) on x m akselin suuntaisen suoran {p + tu R m t R} projektio joukolle S. Osoitetaan, että α (0) = u. Kuvauksen α määritelmästä nähdään, että jollekin w R pätee α (0) = (u 1,..., u m 1, w). Kaikille t I pätee F (α(t)) = 0, joten myös (F α) (0) = 0. Tällöin ketjusäännön ja ylläolevan nojalla F (p) (u 1,..., u m 1, w) = 0. Vähentämällä edellisestä F (p) u = 0 saadaan F (p) (0,..., 0, u m w) = 0. 27

Koska ( F/ x m )(p) 0, niin u m = w. Täten α (0) = u. Lagrangen menetelmän ideana on, että kaikkien ääriarvopisteiden täytyy kuulua siihen joukkoon, jossa optimoitavan kuvauksen gradientti ja rajoittavan kuvauksen gradientti ovat toisistaan lineaarisesti riippuvia. Lause 4.2. Olkoon kuvaus g : D R m R derivoituva ja C 1 -kuvaus F : D R m R määritelty avoimessa joukossa D R m, missä m 2. Muodostukoon joukko S kuvauksen F nollakohdista joukossa D eli S = {(x 1,..., x m ) D F (x 1,..., x m ) = 0}. Oletetaan pistettä p = (p 1,..., p m ) S vastaava gradientti nollasta eroavaksi eli F (p) 0. Jos piste p on joukkoon S rajoitetun kuvauksen g : S R m R ääriarvokohta, niin on olemassa sellainen sopivasti skaalaava vakio λ R, että g(p) = λ F (p). (23) Todistus. Olkoon p kuvauksen g : S R m R ääriarvokohta. Yllä olevan yhtälön (23) toteuttaa vakion arvo λ = 0 aina, kun g(p) = 0. Tällainen piste on kuvauksen g kriittinen piste joukossa D. Oletetaan nyt, että g(p) 0 ja todetaan yhtälö (23) todeksi vastaoletuksen avulla. Oletetaan, että g(p) ja F (p) ovat lineaarisesti riippumattomia. Olkoon u = (u 1,..., u m ) R m sellainen vektori, että F (p), u muodostaa ortogonaalisen kannan gradienttien F (p) ja g(p) virittämälle tasolle. Tällöin F (p) u = 0, g(p) u 0. Lemman 4.1 nojalla on olemassa joukon S käyrä α : E S, jonka tangentti pisteessä p on yhdensuuntainen vektorin u kanssa. Sille pätee α(0) = p ja α (0) = u. Johdetaan haluttuun ristiriitaan. Koska p on oletettu kuvauksen g ääriarvokohdaksi joukossa S, α(e) S ja α(0) = p, niin kuvauksella (g α) : E R R on ääriarvokohta pisteessä 0. Tällöin pitäisi olla (g α) (0) = 0. 28

Toisaalta ketjusäännön ja oletuksesta seuranneen tuloksen g(p) u 0 perusteella (g α) (0) = g(p) α (0) = g(p) u 0, mikä johtaa ristiriitaan, joten gradienttien g(p) ja F (p) on oltava lineaarisesti riippuvia. Huomautus 4.3. Lagrangen menetelmä. Edellisen lauseen perusteella kuvauksen g : S R m R ääriarvopisteelle p pätee jompikumpi seuraavista vaihtoehdoista. Joko F (p) = 0 ja F (p) = 0, tai { F (p) = 0, F (p) 0 ja g(p) = λ F (p), jollakin λ R. Vakiota λ kutsutaan Lagrangen kertoimeksi. Pisteitä p, jotka täyttävät jomman kumman näistä ehdoista kutsutaan kriittisiksi pisteiksi. Ääriarvokohdat löytyvät aina kriittisten pisteiden joukosta, mutta kaikki kriittiset pisteet eivät välttämättä ole ääriarvokohtia. Tällaisia pisteitä kutsutaan satulapisteiksi. Esimerkki 4.4. Etsitään Lagrangen menetelmällä pienin etäisyys origosta ellipsoidille 5x 2 6xy + 5y 2 = 8. Merkitään etäisyyden neliötä origosta pisteeseen p = (x, y) kuvauksella g(p) = x 2 + y 2 ja rajoittavaksi kuvaukseksi määritellään Näiden gradientit ovat F (p) = 5x 2 6xy + 5y 2 8. g(p) = (2x, 2y) ja F (p) = (10x 6y, 10y 6x). Lagrangen menetelmän ensimmäisen kohdan ehdoista F (p) = 0 ja F (p) = 0 saadulle yhtälöryhmälle 5x 2 6xy + 5y 2 = 8 10x 6y = 0 10y 6x = 0 29

ei ole ratkaisuja. Toisessa kohdassa F (p) 0 ja ehdoista F (p) = 0 ja g(p) = λ F (p) saadaan yhtälöryhmä 5x 2 6xy + 5y 2 = 8 2x = λ(10x 6y) 2y = λ(10y 6x), josta eliminoidaan ensin Lagrangen kerroin ja ratkaisuina löydetään kriittiset pisteet ( 1 1 2, 2 ), ( 1 2, 1 2 ), ( 2, 2), ( 2, 2). Laskemalla näiden pisteiden etäisyys origosta kaavalla x 2 + y 2 saadaan minimietäisyydeksi 1 ja maksimietäisyydeksi 2. Esimerkki 4.5. Etsitään Lagrangen menetelmällä paraabelin y 2 = 4x ja sen akselin pisteen (a, 0) lyhin etäisyys, missä a R. Paraabelin pisteen p = (x, y) etäisyyden neliötä pisteestä (a, 0) kuvaa g(p) = (x a) 2 + y 2 ja rajoite-ehtona on F (p) = y 2 4x. Vastaavat gradientit ovat g(p) = (2x 2a, 2y) ja F (p) = ( 4, 2y). Lagrangen menetelmän ensimmäisestä kohdasta ehtojen F (p) = 0, F (p) = 0 ratkaisuja ei ole. Toisen kohdan ehtojen F (p) = 0, F (p) 0, g(p) = λ F (p) seurauksena saadaan yhtälöryhmä y 2 4x = 0 2x 2a = 4λ 2y = 2yλ, jonka ratkaisuna saadaan kriittinen piste (0, 0), kun a 2 ja kriittiset pisteet (0, 0), (a 2, ±2 a 2), kun a > 2. Näitä vastaavat etäisyyden neliöt ovat g(0, 0) = a 2 ja g(a 2, ±2 a 2) = 4a 4 < a 2, kun a > 2, joten akselin pisteille, joille a 2 lyhin etäisyys paraabelille y 2 = 4x on a ja akselin pisteille, joille a > 2 vastaava lyhin etäisyys on 2 a 1. Ensimmäisessä tapauksessa lyhin etäisyys on siis huippuun ja jälkimmäisessä tapauksessa paraabelin molempiin haaroihin on yhtä lyhyt matka. Kuvassa 2 on samaan kuvaan piirretty paraabelimme y 2 = 4x ja pisteistä (1, 0) ja (3, 0) lyhin etäisyys paraabelille. Piirretyt ympyrät ovat hahmotusavuksi. 30

Kuva 2: Paraabeli y 2 = 4x ja lyhin etäisyys akselin pisteisiin (1, 0) ja (3, 0) Esimerkki 4.6. Etsi tilavuudeltaan suurin mahdollinen koordinaattiakselien suuntainen suorakulmainen särmiö, joka mahtuu ellipsoidin x2 + y2 + z2 = 1 a 2 b 2 c 2 sisälle. Olkoon ellipsoidin kahdeksannen mielivaltainen piste p = (x, y, z), missä x, y, z > 0. Tällöin suorakulmaisen särmiön kulmapisteet ovat muotoa p i = (±x, ±y, ±z), i = 1, 2,..., 8 ja sen sivujen pituudet ovat 2x, 2y, 2z. Siis tutkitun särmiön tilavuus on V (p) = 8xyz. Merkitään rajoittavaksi kuvaukseksi F (p) = x2 a 2 saadaan gradienteiksi + y2 b 2 + z2 c 2 V (p) = (8yz, 8xz, 8xy) ja F (p) = 2x a 2 + 2y b 2 + 2z c 2. Lagrangen menetelmän ensimmäisestä kohdasta saadaan ehto x 2 a + y2 2 b + z2 2 c 1 = 2x 2 a = 2y 2 b 2 4xzb 2 = λy 4xyc 2 = λz, = 2z c 2 = 0, 1, jolloin mille ei ole olemassa ratkaisuja. Toisesta kohdasta saadaan yhtälöryhmä x 2 + y2 + z2 1 = 0 a 2 b 2 c 2 4yza 2 = λx jonka ainoa ratkaisu on ( a 3, b 3, c 3 ). Tämän täytyy olla maksimikohta, sillä ratkaisujoukko on ylhäältä suljettu ja rajoitettu, alhaalta avoin ja Lagrangen lauseen nojalla ääriarvokohta löytyy kriittisten pisteiden joukosta. 31

Lagrangen menetelmä on yleistettävissä myös tilanteisiin, joissa optimoitavan yhtälön ratkaisuja rajoittaa useampi side-ehto. Tällöin optimoitavana on kuvaus g : D R m R, joka on määritelty avoimessa joukossa D R m ja jota rajoittaa r < m kappaletta side-ehtoja rajoittaen tutkittavaksi joukoksi joukon S = {x R m F 1 (x) = 0,..., F r (x) = 0}, missä kuvaukset F i, i = 1,..., r ovat C 1 -kuvauksia joukossa D. Oletetaan, että p on sellainen joukon S piste, että vektorit F 1 (p),..., F r (p) ovat lineaarisesti riippumattomia. Jos tällöin p on kuvauksen g ääriarvopiste joukossa S, niin on olemassa sellaiset Lagrangen kertoimet λ 1,..., λ r, että g(p) = λ 1 F 1 (p) +... + λ r F r (p). Esimerkki 4.7. Etsi lausekkeen x 2 + y 2 + z 2 suurin ja pienin arvo niillä ehdoilla, että x 2 /4 + y 2 /5 + z 2 /25 = 1 ja z = x + y. Pohdi lisäksi mikä on laskemasi geometrinen tulkinta. On siis etsittävä kuvauksen g(x, y, z) = x 2 + y 2 + z 2 suurin ja pienin arvo, kun määritysjoukko rajataan joukkoon missä Lasketaan gradientit S = {(x, y, z) R 3 F 1 (x, y, z) = 0, F 2 (x, y, z) = 0}, F 1 (x, y, z) = x2 4 + y2 5 + z2 25 1, F 2 (x, y, z) = x + y z. g(x, y, z) = (2x, 2y, 2z), F 1 (x, y, z) = ( 1 2 x, 2 5 y, 2 25 z), F 2 (x, y, z) = (1, 1, 1). Edellisestä nähdään, että kuvausten F 1, F 2 gradientit ovat lineaarisesti riippuvia, kun (x, y, z) = (4a, 5a, 25a), missä a R. Tällöin F 1 (4a, 5a, 25a) = 16a 2 1 < 0, kaikilla a R, joten tätä muotoa olevat pisteet eivät kiinnosta meitä, sillä meitä kiinnostavissa joukon S pisteissä tulee olla voimassa F 1 (x, y, z) = 0 ja F 2 (x, y, z) = 0 samanaikaisesti. Siispä kaikissa meitä kiinnostavissa pisteissä kuvaukset 32