Funktion derivoituvuus pisteessä



Samankaltaiset tiedostot
Differentiaalilaskenta 1.

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

Matematiikan tukikurssi

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki = 16 3 =

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

f(x) f(y) x y f f(x) f(y) (x) = lim

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

MAA7 HARJOITUSTEHTÄVIÄ

Matematiikan peruskurssi 2

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Matematiikan tukikurssi

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

Integrointi ja sovellukset

5. Numeerisesta derivoinnista

Johdatus reaalifunktioihin P, 5op

Matematiikan tukikurssi

Matematiikan tukikurssi

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Matematiikan perusteet taloustieteilij oille I

MATP153 Approbatur 1B Harjoitus 5 Maanantai

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

Matematiikan tukikurssi

Preliminäärikoe Pitkä Matematiikka

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Ratkaisut vuosien tehtäviin

Derivaatan sovellukset (ääriarvotehtävät ym.)

Differentiaalilaskennan tehtäviä

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

MS-A0102 Differentiaali- ja integraalilaskenta 1

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

Ratkaisuja, Tehtävät

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Vanhoja koetehtäviä. Analyyttinen geometria 2016

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

Differentiaali- ja integraalilaskenta

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)

x = 6 x = : x = KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 229.a) Funktio f ( x) = 2x+ Nollakohta f x b) Funktio gx ( ) = x

Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä

Yleisiä integroimissääntöjä

Muutoksen arviointi differentiaalin avulla

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

MATP153 Approbatur 1B Harjoitus 6 Maanantai

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

jakokulmassa x 4 x 8 x 3x

l 1 2l + 1, c) 100 l=0

4.1 Kaksi pistettä määrää suoran

MATEMATIIKKA 5 VIIKKOTUNTIA

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia

cos x cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo?

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

2 x 5 4x + x 2, [ 100,2].

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

11 MATEMAATTINEN ANALYYSI

Tehtävien ratkaisut

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

2 Funktion derivaatta

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

3 TOISEN ASTEEN POLYNOMIFUNKTIO


MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Matematiikan tukikurssi: kurssikerta 12

Analyysi I (sivuaineopiskelijoille)

1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo.

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

MATEMATIIKKA 5 VIIKKOTUNTIA

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

MS-A0102 Differentiaali- ja integraalilaskenta 1

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

3 Määrätty integraali

Tenttiin valmentavia harjoituksia

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Transkriptio:

Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a)) lähistöllä muistuttaa sitä enemmän suoraa, mitä suuremmalla suurennoksella kuvaajaa katsotaan. Kyseinen suora on sitten kuvaajan pisteeseen (a, f(a)) piirretty tangentti. Perustelu: f(x) = f(a)+f (a)(x a)+η(x a)(x a) f(a)+f (a)(x a), koska η(x a) 0, kun x a. / 9

Esimerkki A Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Tutkitaan funktion f(x) = sin(e x ) kuvaajaa pisteen (5, f(5)) lähistöllä erilaisilla suurennussuhteilla:.0 0.5 0.5.0 4.5 5.0 5.5 6.0 Kuvaajat väleillä [4, 6] ja [4,9; 5,]..0 0.5 0.5.0 4.95 5.00 5.05 5.0 / 9

Esimerkki A Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) 0.5 0.60 0.65 4.995 5.000 5.005 5.00 0.70 0.5 0.75.0 4.9995 5.0000 5.0005 5.000 Kuvaajat väleillä [4,99; 5,0] ja [4,999; 5,00]. 3 / 9

Esimerkki B Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Funktiolla f(x) = x sin(/x), f(0) = 0 sen sijaan käy origon lähellä huonosti. 0.8 0.6 0.4 0..0 0.5 0.5.0 0. Kuvaajat väleillä [, ] ja [ 0,; 0,]. 0.05 0.0 0.05 0.05 0.0 0.05 4 / 9

Esimerkki B Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Muodollisesti tämä ongelma nähdään tutkimalla erotusosamäärää f(0 + h) f(0) h = h sin h h = sin h, millä ei monisteen Esimerkin 3. perusteella ole minkäänlaista raja-arvoa, kun h 0. 5 / 9

Esimerkki C Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Derivoituvuus sallii vielä suhteellisen patologisenkin käyttäytymisen. Demoissa todistetaan, että funktio f(x) = x 3 + x 3/ sin x on derivoituva origossa, mutta kuvaajaa pitää suurentaa melkoisesti: 0.004 0.00 0.00 0.005 0.005 0.00 0.00 0.004 6 / 9

Esimerkki C Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) 0.0003 0.000 0.000 0.000 0.0005 0.000 0.0005 0.000 0.000 0.0003 0.00003 0.0000 0.0000 0.000 0.00005 0.0000 0.00005 0.000 0.0000 0.00003 7 / 9

Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Väite: Olkoon n positiivinen kokonaisluku ja a reaaliluku. Tällöin potenssifunktio f(x) = x n on derivoituva x = a ja f (a) = na n. Perustelu: Binomikaavan nojalla f(a + h) f(a) h kun h 0. ([ a n + na n + ( n) a n h + + h n] a n) = ( ) h n = na n + a n h + + h n na n, 8 / 9

Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Funktioiden raja-arvoja koskeva tuloksemme antavat melko suoraviivaisesti derivaatan laskusäännöt (todistukset monisteessa):. D(f + g) = Df + Dg kaikille derivoituville funktioille f ja g,. D(af) = a(df) kaikille derivoituville funktioille f ja vakioille a R, 3. D(f g) = (Df)g + f(dg) kaikille derivoituville funktioille f ja g, sekä 4. D(f/g) = ((Df)g f(dg))/g kaikille derivoituville funktioille f ja g. 9 / 9

Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Tehtävä: Derivoi funktio f(x) = x 5 + 5x 4 + 0x 3 + 0x + 5x +. Ratkaisu: derivoimiskaavan ja sääntöjen ja nojalla Df(x) = D(x 5 ) + 5D(x 4 ) + 0D(x 3 ) + 0D(x ) + 5D(x) + D() = 5x 4 + 0x 3 + 30x + 0x + 5. 0 / 9

Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Tehtävä: Derivoi funktio f(x) = x3 + x x. + Ratkaisu: Osamäärän derivointikaavan 4 nojalla Df(x) = [D(x3 + x )](x + ) (x 3 + x )[D(x + )] (x + ) = (3x + )(x + ) (x 3 + x )(x) (x + ) = (3x4 + 5x + ) (x 4 + 4x 4x) (x + ) = x4 + x + 4x + (x + ). / 9

Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Tehtävä: Määrää funktion f(x) = (x + x )/5 pisteeseen (, 4/5) piirretyn tangentin yhtälö. Ratkaisu: Nyt f (x) = (x + )/5, joten k = f () = 5/5 =. Kysytty tangentin yhtälö on siten (y 4 5 ) = (x ) y = x 6 5..0.5.0 0.5 3 0.5 / 9

Esimerkki 4.0 Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Pisteessä P = (0, ) on valonlähde. Säteet heijastuvat paraabelista y = x /4. Heijastuslain mukaan kaarevasta pinnasta valonsäde heijastuu pisteestä A siten, tuleva säde P A ja heijastunut säde AR muodostavat saman kulman pisteeseen A piirretyn tangentin AQ kanssa. B 4 3 P Q R A 3 4 Osoita, että heijastuneet säteet ovat kaikki y-akselin suuntaisia. 3 / 9

Ratkaisu (/) Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Olkoon A paraabelin piste (x 0, y 0 ), y 0 = x 0 /4. Olkoon β lähtevän säteen P A ja x-akselin välinen kulma, eli kuvassa kulma P BQ. Tällöin pisteiden A ja P koordinaattien erotuksen suhteena saadaan tan β = x 0 /4 x 0 0 = x 0 4 x 0. Merkitään säteen ja tangentin välistä kulmaa α = P AQ. Tällöin BQA = π (α + β), joten tangentin ja positiivisen x-akselin välinen kulma on π BQA = α + β. Tämän kulman tangentti saadaan derivoimalla tan(β + α) = f (x 0 ) = x 0. 4 / 9

Ratkaisu (/) Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Kahden kulman erotuksen tangentin kaavasta saadaan tan α = = = tan(α + β) tan β + tan(α + β) tan α x 0 x 0 4 + x 0 + x 0 ( x 0 4 x 0 ) x 0 4 + x 0 + x 0 8 = = x 0 = cot(α + β). x 0 4 + x 0 x 0 ( x 0 4 + x 0 ) Näin ollen α on kulman α + β komplementtikulma, joten heijastuslain mukaisesti säde AR muodostaa x-akselin kanssa kulman (α) + (α + β) = π/. MOT. 5 / 9

Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Jos x on jokin suure, käytämme sen (tyypillisesti pienestä) muutoksesta merkintää x (luetaan Delta-x). Jos jokin toinen suure y on x:n funktio, y = f(x), sen arvo muuttuu vastaten x:n arvon muutosta x x + x seuraavasti y = f(x + x) f(x). Näiden muutosten suhde on erotusosamäärä y x f(x + x) f(x) =. x 6 / 9

Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Jos tässä x 0, niin saamme raja-arvona derivaatan lim x 0 y x = f (x) = dy dx. Usein on hyödyllistä (mutta muodollisesti ajatellen hivenen epätarkkaa) ajatella tässä differentiaaleja dx ja dy hyvin pieninä, ns. infinitesimaalisina muutoksina. Täsmällisessä käsittelyssä ainoastaan niiden suhde on mielekäs, mutta käytännössä differentiaalien avulla voidaan tehdä useista analyysin tuloksista helpommin muistettavia. 7 / 9

Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) saa luonnollisen tulkinnan muutosnopeutena, kun muuttujana on aika (t). Aikavälillä t [t, t ] suure s = s(t) muuttuu arvosta s(t ) arvoon s(t ). Tällöin erotusosamäärä s t = s(t ) s(t ) t t kuvaa s:n keskimääräistä muutosnopeutta välillä [t, t ]. Tarkempi kuva tilanteesta saadaan, kun lyhennetään aikaväliä. Raja-arvona lim t 0 s(t + t) s(t) (t + t) t = s (t) saadaan tällöin hetkellinen nopeus kun tutkitaan aikaväliä [t, t + t] ja t 0. 8 / 9

Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Pesäpallon lukkari heittää tolppasyötön suoraan ylöspäin. Todetaan, että hetkellä t (sekunteina) pallon korkeus on h(t) = 0t 5t (metriä). Määrää pallon korkeuden keskimääräinen muutosnopeus väleillä A) t [0, ], B) t [, ], C) t [,; ] ja D) hetkellinen nopeus hetkellä t =. Ratkaisu: Sijoittamalla saadaan h(0) = h() = 0, h() = 5 ja h(,9) = 0,95. Näistä saadaan keskimääräisiksi nopeuksiksi v A = 0 0 0 = 0, v B = 0 5 = 5, v C = 0 0,95,9 = 9,5 metriä sekunnissa. Derivoimalla saadaan h (t) = 0 5t, josta h () = 0 m/s. Nähdään, että aikavälin lyhetessä keskimääräinen nopeus lähestyy hetkellistä nopeutta. Nopeudet ovat miinusmerkkisiä, koska ko. aikaväleillä pallo on putoamassa alaspäin. 9 / 9