A sivu 1(4) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE



Samankaltaiset tiedostot
TOIMINTAOHJE AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA. Valintakoe on kaksiosainen:

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit TUULEN TEHO

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

Tuulivoiman ympäristövaikutukset

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

VOIMALASÄÄTIMET Sivu 1/ FinnPropOy Puhelin: Y-tunnus:

Näin rakennettiin Torkkolan tuulivoimapuisto

Lämpöä tuulivoimasta ja auringosta. Kodin vihreä energia Oy

PVO-INNOPOWER OY. Tuulivoima Suomessa ja maailmalla Tuulta Jokaiselle, Lapua Suunnitteluinsinööri Ari Soininen

Päivän vietto alkoi vuonna 2007 Euroopan tuulivoimapäivänä, vuonna 2009 tapahtuma laajeni maailman laajuiseksi.

TuuliWatti rakentaa puhdasta tuulivoimaa

SMG-4500 Tuulivoima. Kahdeksannen luennon aihepiirit. Tuulivoiman energiantuotanto-odotukset

MERELLISEN TUULIVOIMAN TUOMAT HAASTEET. VELMU-seminaari Michael Haldin Metsähallitus Pohjanmaan luontopalvelut

Kuinka valita tuulivoima-alue? Anni Mikkonen, Suomen Tuulivoimayhdistys Pori,

DEE Tuulivoiman perusteet

Tuulivoima. Energiaomavaraisuusiltapäivä Katja Hynynen

TUULIVOIMATUET. Urpo Hassinen

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2)

Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta

Mökkisähköistyksen toteutus tuulivoimalla

TUULIVOIMALOIDEN MELUVAIKUTUKSET

Tuulivoimapuisto, Savonlinna. Suomen Tuulivoima Oy, Mikkeli

Kaukoluettavine mittareineen Talouslaskelmat kustannuksineen ja tuottoineen on osattava laskea tarkasti

Tuulivoiman teknistaloudelliset edellytykset

TUULIVOIMAPUISTO Ketunperä

Tuulivoima Suomessa. Anni Mikkonen, Suomen Tuulivoimayhdistys Tuulikiertue

Tuulesta temmattua rahaa. Tuulienergian mahdollisuudet maanomistajille Ilpo Mattila Energia-asiamies MTK Joensuu

Tuulivoimaa kiinteistöjen ja teollisuuden tarpeisiin

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE

AURINKOSÄHKÖN HYÖDYNTÄMISMAHDOLLISUUDET SUOMESSA

Tuulimittausten merkitys ja mahdollisuudet tuulipuiston suunnittelussa ja käytössä

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä. Rev CGr TBo Hankilannevan tuulivoimapuiston välkeselvitys.

Tuulesta temmattua rahaa. Tuulienergian mahdollisuudet maanomistajille Ilpo Mattila Energia-asiamies MTK MTK- Häme

Wind Power in Power Systems: 3 An Introduction

Tuulivoimaretkeily Ratiperälle

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

Tuulivoimarakentamisen mahdollisuudet Vaasan seudulla Vindkraftsbyggandets möjligheter i Vasaregionen

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä

Tuulivoima ja maanomistaja

Tuuli- ja aurinkosähköntuotannon oppimisympäristö, TUURINKO Tuuli- ja aurinkosähkön mittaustiedon hyödyntäminen opetuksessa

Sähkö ja magnetismi 2

Ilmankos Energiailta. Timo Routakangas

STY:n tuulivoimavisio 2030 ja 2050

Tuulivoiman kehityshistoria ja nykytila

Tuulivoiman maisemavaikutukset

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä

Primäärienergian kulutus 2010

Tuulivoima Suomessa Näkökulma seminaari Dipoli

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä. Rev CGr TBo Ketunperän tuulivoimapuiston välkeselvitys.

Aurinkosähkön tuotanto ja aurinkopaneelit. Jukka Kaarre

Melun huomioon ottaminen tuulivoimahankkeiden kaavoituksessa ja lupakäytännöissä. Ilkka Niskanen

Tietoa maanomistajille

Onko Suomesta tuulivoiman suurtuottajamaaksi?

Maatuulihankkeet mahdollistavat teknologiat. Pasi Valasjärvi

Uutta tuulivoimaa Suomeen. TuuliWatti Oy

Tuulivoiman linnustovaikutukset ja vaikutusten vähentäminen. BirdLife Suomi ry

OPAS: OMAKOTITALOT JA VAPAA-AJAN ASUNNOT. Opas aurinkosähkön hyödyntämiseen

Tuulivoima Suomessa. Heidi Paalatie Suomen Tuulivoimayhdistys ry Helsinki - Lappeenranta

Energian tuotanto ja käyttö

Louen tuulivoimapuisto

Maatilan Energiahuolto TUULIVOIMA HEINOLA OY. Martti Pöytäniemi, RUOVESI

TUULIVOIMA JA KANSALLINEN TUKIPOLITIIKKA. Urpo Hassinen

Ota yhteyttä maahantuojaan tai paikalliseen jälleenmyyjään selvittääksemme kuinka voimme auttaa sinua valjastamaan tuulen.

Erkki Haapanen Tuulitaito

Tuulivoimatuotanto Suomessa Kehityskulku, tavoitteet, taloudellinen tuki ja kehitysnäkymät

Energiaa luonnosta. GE2 Yhteinen maailma

Wind Power in Power Systems: 24 Introduction to the Modelling of Wind Turbines

FYSIIKAN HARJOITUSTEHTÄVIÄ

Luku 6 Uusiutuva energia. ELEC-C6001 Sähköenergiatekniikka ja Prof. Jorma Kyyrä

Tuulivoimaa meidänkin kuntaan? Kuntavaalit 2017

DEE Tuulivoima

TUULIVOIMAMELUN MITTAUS- JA MALLINNUSTULOSTEN

Tuulivoimatuotannon ajankohtaiskatsaus. Anni Mikkonen, Suomen Tuulivoimayhdistys

Energia ja ilmastonmuutos- maatilojen uusiutuvan energian ratkaisuja

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

Suprajohtava generaattori tuulivoimalassa

Yleistä kaavoituksesta ja vaadittavista luvista

THE REAL DISTRIBUTED POWER SOLUTION

Ajan, paikan ja laadun merkitys ylijäämäenergioiden hyödyntämisessä. Samuli Rinne

TUULIVOIMA KOTKASSA Tuulivoima Suomessa

Aurinkosähkön hyödyntäminen ja kannattavuus taloyhtiössä

Energia- ja ilmastostrategia VNS 7/2016 vp

Tuulienergialla tuotetun sähköntuotannon lisäys Saksassa vuosina Ohjaaja Henrik Holmberg

Tuulisuuden kartoitus Suomessa

Uudista käsityksesi puhtaasta energiasta

Tuulivoimatuotannon yleiset edellytykset. Erkki Kunnari Metsähallitus / Laatumaa Suomen Tuulivoimayhdistys

Keski-Suomen tuulivoima-alueet Pihlajakoski - Kärpänkylä

UUSIUTUVA ENERGIA HELSINGIN ENERGIAN KEHITYSTYÖSSÄ Atte Kallio Projektinjohtaja Helsingin Energia

Heikki Rautio. Tuulivoimalan aluesuunnitelma

Humppilan Urjalan Tuulivoimapuisto

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa.

Ilmajoki, tuulivoima-alueiden vaiheyleiskaava

Energia- ja ilmastostrategia VNS 7/2016 vp

Wind Power in Power Systems. 16. Practical Experience with Power Quality and Wind Power (Käytännön kokemuksia sähkön laadusta ja tuulivoimasta)

MARKUS FLINCK TUULIVOIMALAN RAKENNE

Liisa Haarla Fingrid Oyj. Muuttuva voimajärjestelmä taajuus ja likeenergia

Kiimassuo asemakaavaa ja Kiimassuon tuulivoima -asemakaavaa koskevasta hyväksymispäätöksestä tehdystä valituksesta annettava lausunto

Transkriptio:

A sivu 1(4) TOIMINTAOHJE 7.6.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit tehdä merkintöjä artikkeliin. 2) Ennen tehtävien suorittamista artikkeli kerätään pois. Tämän jälkeen jaetaan tekstiosioon liittyvät tehtävät ja samalla kertaa myös toinen osio, jossa on matematiikan, loogisen päättelyn ja fysiikan/kemian tehtävät. Aikaa molempien osioiden tehtävien tekoon on yhteensä 2 tuntia 45 minuuttia. ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

A sivu 2(4) Tuulienergia, tulevaisuuden energialähde? 1. Tuulivoiman historiaa Tuulivoiman ensimmäisistä käyttöönottopaikoista ei historiantutkijoilla ole varmaa tietoa. Purjealusten käyttövoimana tuulta on käytetty kauan ennen historiallisen ajan alkua. Eräät tutkijat arvioivat kiinalaisten käyttäneen tuulimyllyjä veden pumppaamiseen jo 4 000 vuotta sitten. Persialaisten tiedetään käyttäneen tuulimyllyjä veden pumppaamiseen ja viljan jauhamiseen ennen ajanlaskumme alkua. Eurooppaan tuulimyllyjen käyttö levisi mahdollisesti ristiretkeläisten mukana 1100-luvulla. Euroopan länsiosissa tuulet olivat voimakkaampia ja oikukkaampia kuin itäisen Välimeren alueella ja tuulimyllyjen rakennetta jouduttiin muuttamaan. Alunperin vaakasuuntainen tuulimyllyn akseli sijoitettiin hieman vinoon ja myllyt varustettiin jo 1400-luvulla tornilla. Vanhoissa alankomaalaisissa maalauksissa näkyy 1600-luvulla käytettyjä tuulimyllyjä. Näiden avulla vallattiin lisää viljelysmaata: ensin padottiin meren rannikkoa ja näin syntyneitä patoaltaita tyhjennettiin tuulimyllyjen avulla. Suomessa ensimmäinen tuulimylly mainitaan Turusta vuodelta 1463. 1500-luvun loppupuolen veroluetteloiden mukaan tuulimyllyjä oli käytössä Varsinais-Suomessa, Vaasan seudulla ja Oulun seudulla. Vuoden 1900 paikkeilla Suomessa oli käytössä tuhansia tuulimyllyjä. Näistä vain pieni osa on säilynyt nykypäiviin asti. 2. Tuulivoimalan toimintaperiaate Tuulimyllyjen tai tuulivoimaloiden tuottama energia on alunperin auringon säteilyenergiaa. Auringon lämpösäteilyn teho Suomen leveysasteilla on kesäkuukausina noin 1 kilowatti maanpinnan neliömetriä kohti. Lämpösäteily aiheuttaa maapallolla ilmanpaineen vaihteluita, kun auringon vaikutuksesta lämmennyt ilma kohoaa ylöspäin. Ilmanpaineen erot ja maapallon pyörimisliike yhdessä aiheuttavat tuulet. Tuulimyllyssä tuulen liike-energia muutetaan mekaaniseksi energiaksi, jonka avulla voidaan esimerkiksi pumpata vettä tai jauhaa viljaa. Tuulivoimalassa tuulen mekaaninen energia muutetaan ensin sähköenergiaksi. Sähköenergiaa voidaan siirtää helposti sähköjohtojen avulla haluttuun energian käyttöpaikkaan. Nykyaikaisessa tuulivoimalassa käytetään tuulen energian keräämiseksi useimmiten roottoria, jossa on kolme aerodynaamisesti muotoiltua lapaa. Roottori pystyy muuttamaan siihen osuvan tuulen liike-energiasta pyörimisliikkeen energiaksi teoriassa 60 %, käytännössä enintään 50 %. Vakiintuneeksi rakenneratkaisuksi on muodostunut vaaka-akselinen roottori, jossa roottorin siivet eli lavat pyörivät pystytasossa. Ensimmäiset sähköä tuottavat tuulivoimalat olivat teholtaan varsin vaatimattomia, muutaman kilowatin tehoisia. Seuraus oli, että voimalat olivat tehoonsa nähden sangen kalliita. Nykyisin pystytään teollisesti valmistamaan tuulivoimaloita, joiden teho on yli 1 000 kilowattia. Tällaiseen voimalaan tarvitaan noin 65 metrin roottorihalkaisija ja noin 60 metrin korkuinen torni. Täysin tyynellä ilmalla voimala ei tietenkään kehitä sähköä. Pienin tuulen nopeus, jolla voimala toimii, on 3 5 m/s. Maksimiteho saavutetaan tuulen nopeuden ollessa noin 15 m/s. Jos tuuli kasvaa yli nopeuden 25 m/s, laitos pysäytetään laiterikkojen estämiseksi.

A sivu 3(4) Suuren tuulivoimalan roottori pyörii noin 20 30 kierrosta minuutissa. Roottorin pyörittämän sähkögeneraattorin pyörimisnopeus on oltava joko 1 000 tai 1 500 kierrosta minuutissa. Nopeuksien sovittamiseksi toisiinsa tarvitaan kallis ja huoltoa vaativa vaihdelaatikko, jolla pyörimisnopeus nostetaan generaattorille sopivaksi. Lisäksi tarvitaan ohjaus- ja säätöjärjestelmä, joka kääntää roottorin asennon tuulen suuntaiseksi. Tuulivoimalan generaattorina on perinteisesti käytetty epätahtigeneraattoria, joka ottaa tarvitsemansa magnetoimisvirran siitä sähköverkosta, johon voimalan tuottama sähkö syötetään. Tällaisen generaattorin etuna on edullinen hinta ja luotettavuus. Tällä hetkellä kehitetään ratkaisuja, joissa käytetään roottorin kanssa samalla nopeudella pyörivää moninapaista, vaihtelevalla ja hitaalla pyörimisnopeudella toimivaa generaattoria. Tällöin hankalasta, kalliista ja huoltoa vaativasta vaihdelaatikosta voidaan luopua. Tällaista generaattoria ei kuitenkaan voida suoraan yhdistää sähköverkkoon, vaan generaattorin kehittämä sähkö on ensin muutettava tasasähköksi ja sen jälkeen sellaiseksi vaihtosähköksi, jonka taajuus on tarkasti sama kuin vaihtosähköverkon taajuus. Nykyaikainen tehoelektroniikka tekee tällaisen ratkaisun mahdolliseksi ja hinnaltaan edulliseksi. Tuulivoimalan käyttö voidaan tehdä täysin automaattiseksi. Nykyaikainen tuulivoimala tarvitsee kaksi huoltokäyntiä sekä 3 4 häiriöiden aiheuttamaa korjauskäyntiä vuodessa. Tuulivoimalat rakennetaan yleensä tuulipuistoiksi tuuliolosuhteiltaan edullisille alueille kuten meren rannikoille. Tuulipuistossa voi olla jopa kymmeniä voimaloita. Suurimmat tuulipuistot maailmassa ovat teholtaan jo 100 000 kilowatin luokkaa. Tämä vastaa suunnilleen 80 000 asukkaan suomalaisen kaupungin suurinta sähkötehon tarvetta. 3. Tuulienergian kustannukset Voimaloiden rakentaminen on kallis investointi. Jotta rakentamiskustannuksia olisi helpompi verrata, on eri voimalatyyppien rakentamiskustannukset tapana ilmoittaa yhtä rakennettua eli installoitua kilowattia kohti. Laitoksen rakentamiskustannukset saadaan kertomalla kyseinen ominaiskustannus laitoksen teholla kilowatteina lausuttuna. Tuulivoimalan ominaisrakennuskustannukset ovat tällä hetkellä noin 700 euroa installoitua kilowattia kohti, jos laitoksen teho on 1 000 kilowatin luokkaa. Perinteisen kivihiiltä polttavan lauhdutusvoimalan ominaisrakentamiskustannukset ovat samaa suuruusluokkaa ja ydinvoimalan noin kaksinkertaiset. Tuotetun sähkön hintaa laskettaessa on otettava huomioon, että tuulivoimalan käyttöikä on noin 25 vuotta. Tänä aikana on voimalan tuottamallaan sähköenergialla ansaittava takaisin siihen sijoitettu pääoma. Lisäksi kustannuksissa on mukaan otettava sijoitetun pääoman reaalikorko. Vuotuiseen kunnossapitoon kuluu arviolta 1 2 % tuulivoimalan hankintahinnasta. Tuulivoimalan käyttämä polttoaine, tuuli, joka itse asiassa on auringon säteilyenergiaa, on ilmaista, uusiutuvaa ja saasteetonta. Tuulta ei kuitenkaan ole saatavissa joka hetki. Jos tuuli on liian heikko, ei voimala tuota mitään. Heikolla tuulella voimala tuottaa vain osan maksimitehostaan. Liian voimakkaalla tuulella voimala on pakko pysäyttää laiterikkovaaran takia. Maksimaalisella tehollaan tuulivoimala voi toimia vain osan vuoden tunneista. Tuulivoimalan vuotuinen käyttöaste on tapana ilmoittaa voimalan tehonhuipun käyttöajan avulla. Tällä tarkoitetaan tuntimäärää, joka tuottaisi saman vuotuisen sähköenergian kuin

A sivu 4(4) todellinen voimala, jos voimala voisi koko ajan pyöriä maksimitehollaan ilman heikon tuulen tai liian voimakkaan tuulen aiheuttamaa tehon pienenemistä. Vuodessa on 8 760 tuntia. Suomen rannikolla tyypillinen tehonhuipun käyttöaika tuulivoimalalle on noin 2 100 tuntia. Maapallon tuulisimmilla alueilla päästään lähes 3 000 tunnin tehonhuipun käyttöaikaan. Tuulivoimalalla tuotetun sähkön hinta riippuu, paitsi voimalan rakentamiskustannuksista, myös oleellisesti sijaintipaikalla saavutettavasta tehonhuipun käyttöajasta. Mitä pitempi on vuotuinen tehonhuipun käyttöaika, sitä edullisempaa on tuotettu sähkö. Tällä hetkellä Suomen tuulipuistojen tuottaman sähkön keskihinta on noin 0,04 euroa tuotettua kilowattituntia kohti. Hinta ei vielä ole kilpailukykyinen kivihiiltä polttamalla tuotetun sähkön hinnan kanssa. Voimalan ominaisrakennuskustannusten tulisi pudota noin puoleen, jotta päästäisiin samalle hintatasolle kivihiilivoimalan tuottaman sähkön kanssa. 4 Tuulivoimalan ympäristövaikutukset Tuulivoimalan osien valmistaminen vaatii energiaa. Normaalisti tuulivoimala tuottaa sen valmistukseen kulutetun energian takaisin 3 6 kuukaudessa. Tuulivoimala ei aiheuta kasvihuonekaasupäästöjä, ei myöskään hiukkaspäästöjä. Loppuun käytetyn tuulivoimalan alueen maisemointi ja kunnostus on varsin yksinkertaista ja halpaa. Suomen ilmastossa on ongelmana lapojen jäätyminen. Irtoavat jäät voivat pudotessaan aiheuttaa vaaraa. Lisäksi esiintyy meluhaittoja 300 1000 metrin säteellä tuulivoimalasta sekä törmäyshaittoja linnustolle. Ulkonäköhaitat ovat paljolti makuasioita, mutta tuulipuiston vaatima ala on suurempi kuin perinteisen lämpövoimalan. Korkeat tuulipuiston tornit näkyvät yli 10 kilometrin päähän. Pyörivät lavat voivat edelleen aiheuttaa häiriöitä langattomalle tietoliikenteelle. Mm. televisiokuva voi häiriytyä. Tuulivoimaan liittyvä perusongelma on sähkön varastointi. Sähköenergia on energiamuoto, joka on tuotettava kulutushetkellä. Kun ei tuule tai kun tuulee liian kovaa, on sähkö tuotettava muilla voimalatyypeillä. Käytännön ongelmia alkaa esiintyä, kun tuulisähkön osuus ylittää 5 % sähkön kokonaistuotantotehosta. Nykytekniikan aikana ratkaisuna voisivat olla pumppuvoimalat, joissa ylijäämäsähköenergiaa varastoidaan pienen kulutuksen aikana pumppaamalla vettä pumppuvoimalan yläaltaaseen. Suuren sähkönkulutuksen aikana varastoitua vettä juoksutettaisiin vesiturpiinien kautta ala-altaaseen ja siten tuotettaisiin generaattorien avulla sähköä. Tulevaisuuden saasteettomana varastointitekniikkana pidetään vetytekniikkaa. Sähkön ylituotannon aikana tavallista vettä hajotetaan sähkövirran avulla vedyksi ja hapeksi. Syntyvä vety varastoidaan ja poltetaan tarvittaessa kaasuturpiinivoimaloissa. Saadaan sekä sähköä että kaukolämpöä. Polttoprosessi on saasteeton, koska vedyn palaessa syntyy jäteaineena pelkästään vettä.

A sivu 5(4) Osio 1 (Tekstin ymmärtäminen) Nimi: Sos.turvatunnus: A VALINTATEHTÄVÄ Vastaa seuraaviin tehtäviin valitsemalla vaihtoehto (rasti ruutuun) -OIKEIN, jos väite on yhtenevä tekstin kanssa -VÄÄRIN, jos väite ei ole yhtenevä tekstin kanssa Arvostelu: 5 oikein: 1 p, 6 oikein: 2 p, 7 oikein: 3 p, 8 oikein: 4 p 1. Tuulimyllyjen käyttö levisi Eurooppaan mahdollisesti ristiretkeläisten mukana. 2. Tuulivoimalla tuotettu energia on alunperin auringon säteilyenergiaa. 3. Tuulivoimalan perinteinen pyörimisnopeutta nostava vaihdelaatikko pyritään uusissa voimalaratkaisuissa korvaamaan tehoelektroniikalla. 4. Suuren tuulivoimalan rakentamiskustannus on noin 10 000 euroa voimalatehon kilowattia kohti. 5. Tuulivoimalla tuotetun sähkön hinta halpenee, kun tehonhuipun käyttöaika kasvaa. 6. Tuulivoimalan rakentamiseen tarvittavan energian takaisin tuottamiseen kuluu voimalalta kymmenen vuotta. 7. Energian varastointi on perusongelma tuulienergian käytössä. 8. Vetytekniikka voi tulevaisuudessa ratkaista tuulienergian varastointiongelman. OIKEIN VÄÄRIN B KIRJOITUSTEHTÄVÄT Arviointiperusteina ovat asiasisällön luotettavuus, tekstin johdonmukaisuus, kielen virheettömyys sekä tiedon asiasisällön ja olennaisten johtopäätösten välittyminen. Vastausten tulee pohjautua tekstiin. Molemmat kirjoitustehtävät arvioidaan asteikolla 0 3 pistettä.

A sivu 6(4) Tehtävä 1: Selosta tuulipuiston ympäristövaikutuksia. Missä suhteessa tuulienergia on ympäristön kannalta edullista? Mitä ongelmia tuulipuistoihin liittyy ympäristön kannalta Suomen ilmastossa? Tehtävä 2: Selosta tuulipuiston tuottaman sähköenergian kustannuksiin vaikuttavia tekijöitä. Mistä erilaisista kustannuksista tuulisähkön hinta muodostuu ja miten tuulisähkön hintaan voidaan vaikuttaa?