Wind Power in Power Systems: 3 An Introduction

Koko: px
Aloita esitys sivulta:

Download "Wind Power in Power Systems: 3 An Introduction"

Transkriptio

1 Wind Power in Power Systems: 3 An Introduction Historia ja nykytila Sähköistymisen tuomat edut huomattiin ympäri maailmaa 1880-luvulla Thomas Alva Edisonin näyttäessä tietä. Voimakas yllyke sähköjärjestelmien käytölle oli ajatus siitä, että niiden käyttöönotto oli askel kohti modernia yhteiskuntaa. Tekninen kehitys johti käytettyjen jännitetasojen nousuun, vaihtosähkön käyttöön ja laitosten yksikkökokojen kasvuun: taloudellinen yksikkökoko lämpövoimalaitokselle oli 1930-luvulla 60 MW, 50-luvulla 180 MW ja 80-luvulla 1000 MW. Ensimmäinen sähköntuotantoon kehitetyn tuuliturbiinin esitteli Dane Poul la Cour vuonna 1891, jolloin tuulivoimalla ei kuitenkaan ollut juurikaan jalansijaa sähköjärjestelmien kehityksessä. Nykyisin kiinnostus tuulivoimaan on lisääntynyt merkittävästi esimerkiksi sen energiantuotannon päästöjä alentavan vaikutuksen takia. Tuulivoiman voimakas yleistyminen (yli 30 % kokonaisenergian tuotannosta) nykyisen kaltaisissa sähköverkoissa, jotka ovat suunniteltu suuria tahtigeneraattoreita ajatellen, aiheuttaa tarvetta uusille ratkaisuille verkkojen suunnittelu- ja käyttöperiaatteille. Tuulivoiman nykyverkkoihin integrointiin liittyviä kysymyksiä Tuulivoima ja sen aiheuttamat uudet tarpeet verkkojen käytössä ja suunnittelussa liittyvät tuulen luonteeseen, jolla tarkoitetaan tuulen nopeuden ja siten tehontuotannon voimakasta vaihtelua sekä toisaalta esimerkiksi suhteellisen uusiin generaattorityyppeihin. Tuulivoiman integroituminen osaksi sähköverkkoja ei saa vaarantaa verkkojen pääasiallista tarkoitusta, joka on sähkönjakelu. Integroitumisen haasteina voidaan pitää seuraavia kahta asiaa: jännitetason pito hyväksyttävissä rajoissa kaikilla verkon asiakkailla sekä verkon tehotasapainon hallinta. Tuulivoimantuotannon luonteenpiirteitä Tuulen teho Ilmamassojen väliset lämpötilaerot saavat aikaan tuulen. Tuuli itsessään voi olla globaali, alueellinen tai paikallinen ilmiö. Tuulen nopeus vaihtelee jatkuvasti ajanhetken ja korkeuden funktiona ja siihen vaikuttavat myös esimerkiksi maanpinnan muodot. Näistä syistä johtuen tuuli on turbulenttista sillä korkeudella, jolla tuuliturbiinit sitä hyödyntävät. Tuulen nopeuden vaihtelu saattaa vaikuttaa tuulivoimalla tuotetun sähkönlaatuun. Vaikutukset ovat voimakkaasti riippuvaisia käytetystä tuuliturbiinin teknologiasta. Esimerkiksi muuttuvanopeuksiset tuuliturbiinit kykenevät varastoimaan tuulen puuskan aiheuttamat tehonmuutokset niiden pyöriviin massoihin ulostulotehon pysyessä tasaisena. Päivittäiset ja pidempikestoiset tuulennopeuden vaihtelut aiheuttavat lisäksi tarpeita säätää sähköverkon tehotasapainoa. Tuulen teho läpi pinnan A (esimerkiksi roottorin pinta) voidaan laskea seuraavalla kaavalla: Power in wind 1 AV 3 [ ] 2 W missä, on ilman tiheys [kg/m 3 ] ja V on tuulen nopeus [m/s]

2 Lisäksi ilman tiheys on ilmanpaineen ja lämpötilan funktio, jotka puolestaan ovat merenpinnasta mitatun korkeuden funktioita. Edellä mainitulla kaavalla voidaan laskea tuulen kokonaisteho aikayksikössä. Tuulivoimalassa tuulen teho muutetaan mekaaniseksi roottorin liike-energiaksi. Tämä aiheuttaa ilmamassan nopeuden pienenemistä lähellä roottoria. Jos liikkuvan ilmamassan sisältämästä liike-energiasta saataisiin kaikki energia talteen, pysähtyisi ilmamassa roottorin leikkauspinnalle. Tämä puolestaan aiheuttaisi ilmamassan kasautumista. Teoreettinen maksimi tuulesta saatavalle teholle saadaan seuraavalla kaavalla: P Bets 1 3 C 3 P Bets AV 2 1 AV [ W ] Tehontuotanto Tuotetun teho määrä vaihtelee tuulennopeuden kuutiossa, joten 10 % tuulennopeuden muutos aiheuttaa 30 % muutokset tuotettuun tehoon. Alla oleva kuva 1 kuvaa kuvaan erään yksikön tehon tuotannon muuttumista tuulen nopeuden funktiona. Kuva kw lapakulmasäädöllä toteutetun tuulivoimalan tehokäyrä. Tuulivoimalan tehon tuotanto alkaa, kun tuulen nopeus ylittää voimalan käynnistymisnopeuden (eng. cut-in wind speed). Nimellisteho saavutetaan yleensä noin m/s tuulennopeudella. Nämä nopeudet riippuvat luonnollisesti tuulivoimalan ominaisuuksista. Nimellistehon saavuttamisen jälkeen tuulennopeuden kasvaessa, tehontuotanto pyritään pitämään nimellisessä säätämällä voimalan ominaisuuksia muuttaa tuulen energiaa mekaaniseksi liike-energiaksi. Säätö tehdään esimerkiksi lapakulmasäädöllä (eng. bitch-control) tai sakkaussäädöllä (eng. stall-controll). Tuulennopeuden kasvaessa yli voimalan sammutusnopeuden (egn. cut-ou wind speed) tuulivoimala joudutaan ajamaan alas. Tyypillisesti tämä nopeus on luokkaa m/s. Lapakulmasäädössä voimalan roottorin lapojen kulmaa suhteessa tuuleen muutetaan niin, että osa tuulen energiasta hukataan. Sakkaussäädössä roottorin lavat ovat aerodynaamiselta muotoilultaan sellaiset, että tuulennopeuden kasvaessa osa tuulen energiasta hukataan automaattisesti. Huomattavaa on se, että tuulipuiston tehokäyrä ei vastaa kaikkien tuulivoimayksiköiden yhteenlaskettua käyrää. Tähän vaikuttaa esimerkiksi se, että eri yksiköt kohtaavat erilaiset

3 tuuliolosuhteet johtuen sekä eri sijoituspaikoista että vierekkäisten yksiköiden aiheuttamista tuulennopeuden muutoksista. Hystereesi, cut-out efekti ja voimaloiden yhdistämisen vaikutukset Kun tuulennopeus kasvaa yli sammutusnopeuden tehontuotanto lakkaa ja toisaalta, kun tuulennopeus taas laskee alle sammutusnopeuden, voimala siirtyy taas tuottamaan tehoa. Tässä välissä on kuitenkin huomattava viive, joka riippuu käytetystä teknologiasta. Tuuliturbiinin uudelleen käynnistäminen vaatii yleensä tuulennopeuden pienenemistä 3-4 m/s. Tätä kuvaa kuvan 1 silmukka piirrettynä osaltaan katkoviivoitettuna. Tästä käytettään myös nimeä hystereesisilmukka. Tuulen nopeuden ylittäessä sammutusnopeuden laajalla alueella, voi asennetusta tuulivoimasta poistua merkittävä määrä suhteellisen nopeasti, esimerkiksi alle tunnissa. Tällä voi olla negatiivisia vaikutuksia sähköverkkojen toimintaan. Yksittäisten tuulivoimalayksiköiden ja yksittäisten tuulipuistojen yhdistämisellä suuremmiksi kokonaisuuksiksi on positiivisia vaikutuksia sähköverkkojen toimintaan ja sähkön laatuun. Kuva 2 esittää asian perusperiaatetta tehontasoittumisesta, kun yksikkömäärä kasvaa. Kuva 2. Tuulivoimaloiden yhdistämisen vaikutuksia tuotettuun tehoon nähden. Positiivinen vaikutus voimaloiden yhdistämisessä perustuu kahteen näkökulmaan: - suurempi määrä yksiköitä yhdessä tuulipuistossa - tuulipuistojen maantieteellinen jakautuminen laajalle alueelle Yksiköiden suuri määrä tuulipuistossa pienentää tuulen puuskien (nopeiden vaihteluiden) vaikutuksia, koska puuska ei vaikuta yhtä aikaa kaikkiin yksiköihin. Ideaalitilanteessa tuulipuiston ulostulotehon vaihtelu prosenteissa pienenee kaavan n -1/2 mukaisesti, jossa n on yksiköiden määrä. Puolestaan tuulipuistojen jakaantuminen maantieteellisesti pienentää merkittävästi päivittäisten tuuliolosuhteiden sekä muuttuvien säätilojen vaikutuksia.

4 Peruskysymyksiä liittyen tuulivoimaan integrointiin Tässä kappaleessa olevia asioita esitetään perustuen kuvaan 3. Kuvassa P G on teho joka otetaan verkosta, P D tehon kulutus, P L verkon häviöt johto-osien impedansseissa Z 1 -Z 3 ja P W on tuulivoimalla tuotettu teho. Näiden tietojen perusteella seuraava yhtälö on aina voimassa: P G P D P L P W Kuva 3. Tuulivoimaloiden yhdistämisen vaikutuksia tuotettuun tehoon nähden. Sähköverkon tehtävä on syöttää sähkö kuluttajille järkevään hintaan. Kuluttajan näkökulmasta voidaan määrittää kolme perusvaatimusta liittyen sähköverkkoihin ja sähkönjakeluun (eng. consumer requirement, CR): CR1: kuluttajan liittymispisteen jännitetason pitää olla hyväksytyissä rajoissa CR2: tehoa pitää olla tarjolla kuluttajan sitä tarvitessa CR3: tarjolla olevan tehon tulee olla järkevän hintaista Toisaalta tuulivoiman tuottajilla on myös vaatimuksia verkoille, jotta he voivat toimittaa tuottamansa energian verkkoon. Vaatimukset (eng. Wind power requirement, WP): WP1: voimalan liittymispisteen jännitetason pitää olla pysyä sopivissa rajoissa WP2: tuotettu teho pitää pystyä syöttämään verkkoon joka tilanteessa WP3: verkon luotettavuus voimalan liittymispisteessä Tuulivoiman verkkoon integroinnin ongelmat tai haasteet liittyvät edellä esitettyihin CR ja WP kohtiin ja niiden taloudellisesti tehokkaaseen toteuttamiseen varsinkin tilanteessa, jossa tuulivoimaa on runsaasti. CR1 ja WP1 Liittyen kuvaan 3, kuluttajan liittymispisteen jännite U 3 on riippuvaista impedanssista Z 1 ja Z 3 sekä tehosta P D, kun jännite U 0 on vakio ja verkossa ei ole tuulivoimalaa. Jos tuulivoimala lisätään verkkoon, jännite U 1 muuttuu tehon P W muutoksen seurauksena. Tämä puolestaan vaikuttaa myös kuluttajan liittymispisteen jännitteeseen U 3. Jännitteen U 3 muutokset ovat riippuvaisia pääasiassa kuitenkin impedanssista Z 1. Jos Z 1 on pieni, ovat jännitemuutokset kuluttajan liittymispisteessä pienempiä suhteessa P W muutoksiin kuin jos Z 1 on suuri. Kuluttajan liittymispisteen jännitemuutoksiin voidaan vaikuttaa pienentävästi pienentämällä impedansseja Z 1 ja Z 3, tai käyttämällä jännitteensäätömuuntajaa lähellä kulutusta tai ohjaamalla jännitettä U 1 esimerkiksi loistehon säädöllä. Lisäksi tuulivoimalan tapauksessa kuluttajan liittymispisteen jännitettä voidaan säätää ohjaamalla voimalan liittymispisteen jännitettä ohjaamalla itse tuulivoimalaa.

5 Puolestaan tuulivoimalan liittymispisteen näkökulmasta edellä esitetyt toimenpiteet pätevät myös lukuun ottamatta säätömuuntajan käyttöä lähellä kuluttajaa. Analogia tähän on, että tuulivoimalan jännitteeseen voidaan vaikuttaa käyttämällä säätömuuntajaa lähellä itse voimalaitosta. CR2 ja WP2 Tilanteissa, joissa tuulivoimalaa ei ole, kuluttajan tarvitseman tehon saatavuus perustuu perinteisten laitosten kykyyn tuottaa tehoa P G. Kulutetun tehon kasvu aiheuttaa väliaikaisesti systeemin taajuuden muuttumisen. Muutoksen voimakkuus riippuu verkon pyörivistä massoista sekä sähköntuotantoon liittyvien laitteiden säätöjärjestelmistä. Taajuuden muutos tai tehotasapaino pyritään palauttamaan verkossa olevilla tuotantolaitteiden ensiö- ja toisiosäätölaitteilla, joiden viiveet vaihtelevat sekuntiluokasta useisiin kymmeniin minuutteihin. Tehotasapainon saavuttamisen vaatimuksia ovat: - verkossa tulee olla tarpeeksi tehotasapainon säätöön tarkoitettua ensiö- ja toisiosäätökapasiteettia (nopeasti ja viiveellä reagoivaa kapasiteettia) - tehonsäätöön tarkoitetuilla voimalaitoksilla tulee aina olla riittävä tehoreservi pystyäkseen säätämään tehontuotantoaan vaaditulle tasolle Tuulivoiman integroituminen lisää sähköverkkoihin uuden tilamuutoksia (jännite, taajuus) aiheuttavan lähteen. Lisäksi tuulivoiman tehon P W pieneneminen aiheuttaa vastaavan tilanteen perinteisille tuotantolaitteille kuin kuluttajan tehontarpeen kasvu. Jos tuulivoima yleistyy merkittävästi, tehontasapainon saavuttamisen vaatimuksia voi olla tarpeen muuttaa suuremmiksi. Tuulivoiman yleistymisen seurauksena tilanteet, joissa tehonsäätöä tarvitaan tulevat kasvamaan. Euroopasta saadut kokemukset osoittavat kuitenkin, että ensiösäätötarve ei välttämättä kasva jos tuulipuistot hajautetaan maantieteellisesti. Toisiosäätötarpeeseen tuulivoiman lisääntyminen vaikuttaa kuitenkin merkittävästi. Tämä on tapauskohtaista riippuen yksittäisten järjestelmien ominaisuuksista kuten kuormitusten käyttäytymisestä, perinteisten voimalaitosten säädön joustavuudesta sekä tuulivoiman määrästä ja maantieteellisestä jakautumisesta. Puolestaan kustannukset liittyen kasvaviin vaatimuksiin tehonsäädön suhteen riippuvat perinteisten voimalaitosten tyypeistä, eri sähköverkkojen välisistä yhteyksistä sekä tietenkin itse vaatimuksista. Tuulivoiman näkökulmasta tehonsaatavuus ongelmaa ei ole mutta verkon käytettävyys voi muodostua ongelmaksi. Yleisesti tuulivoimantuottajat haluavat tuottaa tehoa niin paljon kuin se vallitsevassa tilanteessa on mahdollista. Tämä voi aiheuttaa sähkösiirrossa pullonkauloja ja stabiilisuusongelmia riippuen sähköverkon rakenteesta ja tuulivoiman määrästä. CR3 ja WP3 Sähköverkkojen suunnittelussa otetaan huomioon tietyn luotettavuustason edut suhteessa tason saavuttamisen kustannuksiin. Täydellisen luotettavaa verkkoa ei edut-kustannukset - suhteen mukaan ole järkevää rakentaa. Taloudellisesti järkevässä sähköverkon rakentamisessa on huomioitava kaksi tekijää. Ensiksi verkossa pitää olla riittävä tehontuotantokapasiteetti, kuvassa 3 P G, jotta tarvittava maksimiteho P D +P L voidaan tyydyttää riittävällä todennäköisyydellä. Välttämättä kaikissa tilanteissa tai esimerkiksi kaikkina vuoden tunteina tämän ei tarvitse olla mahdollista juurikin kustannussyistä. Esimerkiksi voi olla taloudellisesti järkevämpää maksaa asiakkaalle kuormanohjausmahdollisuudesta kuin rakentaa uusi voimala pientä vuotuista käyttöaikaa

6 varten. Sähköverkkojen mitoituksessa käytetään yleisesti n-1 kriteeriä. Tämä tarkoittaa sitä, että suurimman tehontuottajan poistuminen verkosta ei saa vaarantaa yhdenkään kuluttajan sähkönsaantia. Tällöin muilla yksiköillä tulee olla riittävästi tehoreserviä, jotta verkosta irrotettu yksikkö saadaan korvattua. Toinen tärkeä tekijä on se, että verkkojen tehonsiirtokapasiteetin tuottajilta kuluttajille tulee olla riittävä. Kapasiteettiin vaikuttaa myös verkon ja käytettyjen komponenttien luotettavuus. Luotettavuus ei millään komponentilla tai verkolla on täydellinen. Tästä johtuen verkossa pitää olla riittävästi varakapasiteettia (varayhteyksiä, varavoimaa) tehonsiirtoa varten. Riittävän varakapasiteetin määrittämisessä tarkastellaan taas kerran saavutettuja etuja suhteessa niiden edellyttämien toimien aiheuttamiin kustannuksiin. Tuulivoiman yleistyminen muuttaa tehtyjä kompromisseja luotettavuuden ja kustannusten suhteen. Tuulivoimatehon kasvu sähköverkossa pienentää tehontuotannon huippukulutuksen aikaisen vajauksen todennäköisyyttä ja näin ollen parantaa sähköverkon luotettavuutta. Toisaalta tämä mahdollistaa myös se, että muilla tuotantomuodoilla tuotettavan tehon tai asennetun tehon määrää voidaan pienentää ilman luotettavuuden heikkenemistä. Sähköverkon luotettavuusaisoissa pitää myös huomioida tuulivoiman vaikutukset verkon tehontason muutoksiin. Tämä voi vaatia muutoksia verkon säätöön, jotta sopiva luotettavuustaso voidaan säilyttää. Tuulipuistoa ja sähköverkkoa yhdistämän johto-osan (Z 2 ) luotettavuus vaikuttaa tuulivoiman saatavuuteen. Tuulipuistot sijaitsevat yleensä suhteellisen kaukana, jolloin kyseenomaisien johto-osien rakentamiskustannukset ovat suuret. Tällöin varayhteyksien rakentaminen ei ole välttämättä kannattavaa. Jännitteenlaatuvaatimukset aiheuttavat myös kustannuksia. Tuulivoimalla tuotetun tehon P W vaihtelut aiheuttavat verkon jännitetason vaihteluita. Tämä voi vaatia tuulivoimalalta kykyä jännitteensäätöön tai verkkoon asennettavat säätölaitteet voivat tulla tarpeellisiksi. Tärkeimmät tilanteet jännitetasojen tarkasteluun ovat tilanteet, joissa tuulivoimanteho PW on maksimi ja kuormien teho P D minimi sekä päinvastainen tilanne. Lisäksi näiden tilanteiden todennäköisyydet pitää arvioida, jonka perusteella säätölaitteiden tarve arvioidaan. Taloudellisesti ei ole järkevää kyetä vastaan jännitesäädön vaatimuksiin kaikista epätodennäköisimmissä tilanteissa.

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2)

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2) SMG-4500 Tuulivoima Kuudennen luennon aihepiirit Tuulivoimalan energiantuotanto-odotukset Aiheeseen liittyvä termistö Pinta-alamenetelmä Tehokäyrämenetelmä Suomen tuulivoimatuotanto 1 AIHEESEEN LIITTYVÄ

Lisätiedot

SMG-4500 Tuulivoima. Kahdeksannen luennon aihepiirit. Tuulivoiman energiantuotanto-odotukset

SMG-4500 Tuulivoima. Kahdeksannen luennon aihepiirit. Tuulivoiman energiantuotanto-odotukset SMG-4500 Tuulivoima Kahdeksannen luennon aihepiirit Tuulivoiman energiantuotanto-odotukset Tuulen nopeuden mallintaminen Weibull-jakaumalla Pinta-alamenetelmä Tehokäyrämenetelmä 1 TUULEN VUOSITTAISEN KESKIARVOTEHON

Lisätiedot

Wind Power in Power Systems. 16. Practical Experience with Power Quality and Wind Power (Käytännön kokemuksia sähkön laadusta ja tuulivoimasta)

Wind Power in Power Systems. 16. Practical Experience with Power Quality and Wind Power (Käytännön kokemuksia sähkön laadusta ja tuulivoimasta) Wind Power in Power Systems 16. Practical Experience with Power Quality and Wind Power (Käytännön kokemuksia sähkön laadusta ja tuulivoimasta) 16.1 Johdanto Täydellinen sähkön laatu tarkoittaisi, että

Lisätiedot

Liisa Haarla Fingrid Oyj. Muuttuva voimajärjestelmä taajuus ja likeenergia

Liisa Haarla Fingrid Oyj. Muuttuva voimajärjestelmä taajuus ja likeenergia Liisa Haarla Fingrid Oyj Muuttuva voimajärjestelmä taajuus ja likeenergia Mikä muuttuu? Ilmastopolitiikka, teknologian muutos ja yhteiskäyttöjärjestelmien välinen integraatio aiheuttavat muutoksia: Lämpövoimalaitoksia

Lisätiedot

Laajamittainen tuulivoima - haasteita kantaverkkoyhtiön näkökulmasta. Kaija Niskala Säteilevät naiset seminaari Säätytalo 17.3.

Laajamittainen tuulivoima - haasteita kantaverkkoyhtiön näkökulmasta. Kaija Niskala Säteilevät naiset seminaari Säätytalo 17.3. Laajamittainen tuulivoima - haasteita kantaverkkoyhtiön näkökulmasta Kaija Niskala Säteilevät naiset seminaari Säätytalo 17.3.2009 2 Kantaverkkoyhtiölle tulevia haasteita tuulivoimalaitoksen liityntä tehotasapainon

Lisätiedot

Maatuulihankkeet mahdollistavat teknologiat. Pasi Valasjärvi

Maatuulihankkeet mahdollistavat teknologiat. Pasi Valasjärvi Maatuulihankkeet mahdollistavat teknologiat Pasi Valasjärvi Sisältö Yritys ja historia Mikä mahdollistaa maatuulihankkeet? Tuotetarjonta Asioita, joilla tuulivoimainvestointi onnistuu Verkkovaatimukset

Lisätiedot

Tuulivoiman ympäristövaikutukset

Tuulivoiman ympäristövaikutukset Tuulivoiman ympäristövaikutukset 1. Päästöt Tuulivoimalat eivät tarvitse polttoainetta, joten niistä ei synny suoria päästöjä Valmistus vaatii energiaa, mikä puolestaan voi aiheuttaa päästöjä Mahdollisesti

Lisätiedot

Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta

Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta Miksi voimajärjestelmän inertialla on merkitystä? taajuus häiriö, esim. tuotantolaitoksen irtoaminen sähköverkosta tavanomainen inertia pieni

Lisätiedot

Liittymissäännöt tuulivoimaloiden liittämiseksi Suomen voimansiirtoverkkoon

Liittymissäännöt tuulivoimaloiden liittämiseksi Suomen voimansiirtoverkkoon FINGRID OYJ Liittymissäännöt tuulivoimaloiden liittämiseksi Suomen voimansiirtoverkkoon 31.3.29 Liittymissäännöt tuulivoimaloiden ja maakohtaiset lisätäsmennykset tuulivoimaloiden liittämiseksi Suomen

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

Tuulivoiman vaikutukset voimajärjestelmään

Tuulivoiman vaikutukset voimajärjestelmään 1 Tuulivoiman vaikutukset voimajärjestelmään case 2000 MW Jussi Matilainen Verkkopäivä 9.9.2008 2 Esityksen sisältö Tuulivoima maailmalla ja Suomessa Käsitteitä Tuulivoima ja voimajärjestelmän käyttövarmuus

Lisätiedot

Lämpöä tuulivoimasta ja auringosta. Esa.Eklund@KodinEnergia.fi. Kodin vihreä energia Oy 30.8.2012

Lämpöä tuulivoimasta ja auringosta. Esa.Eklund@KodinEnergia.fi. Kodin vihreä energia Oy 30.8.2012 Lämpöä tuulivoimasta ja auringosta 30.8.2012 Esa.Eklund@KodinEnergia.fi Kodin vihreä energia Oy Mitä tuulivoimala tekee Tuulivoimala muuttaa tuulessa olevan liikeenergian sähköenergiaksi. Tuulesta saatava

Lisätiedot

Wind Power in Power Systems: 15 Wind Farms in Weak Power Networks in India

Wind Power in Power Systems: 15 Wind Farms in Weak Power Networks in India Wind Power in Power Systems: 15 Wind Farms in Weak Power Networks in India Johdanto Tuulivoiman rakentaminen Intiaan kiihtyi 1990-luvulla tuotantotukien ja veroalennusten jälkeen. Luvun kirjoittamisen

Lisätiedot

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA SMG-4500 Tuulivoima Viidennen luennon aihepiirit Tuulivoimaloiden generaattorit Toimintaperiaate Tahtigeneraattori Epätahtigeneraattori Tuulivoimalakonseptit 1 YLEISTÄ ASIAA GENERAATTOREISTA Generaattori

Lisätiedot

Päivän vietto alkoi vuonna 2007 Euroopan tuulivoimapäivänä, vuonna 2009 tapahtuma laajeni maailman laajuiseksi.

Päivän vietto alkoi vuonna 2007 Euroopan tuulivoimapäivänä, vuonna 2009 tapahtuma laajeni maailman laajuiseksi. TIETOA TUULIVOIMASTA: Maailman tuulipäivä 15.6. Maailman tuulipäivää vietetään vuosittain 15.kesäkuuta. Päivän tarkoituksena on lisätä ihmisten tietoisuutta tuulivoimasta ja sen mahdollisuuksista energiantuotannossa

Lisätiedot

Onko Suomesta tuulivoiman suurtuottajamaaksi?

Onko Suomesta tuulivoiman suurtuottajamaaksi? Onko Suomesta tuulivoiman suurtuottajamaaksi? Ilmansuojelupäivät Lappeenranta 18.-19.8.2015 Esa Peltola VTT Teknologian tutkimuskeskus Oy Sisältö Mitä tarkoittaa tuulivoiman suurtuottajamaa? Tuotantonäkökulma

Lisätiedot

Tuotantorakenteen muutos haaste sähköjärjestelmälle. johtaja Reima Päivinen Käyttövarmuuspäivä

Tuotantorakenteen muutos haaste sähköjärjestelmälle. johtaja Reima Päivinen Käyttövarmuuspäivä Tuotantorakenteen muutos haaste sähköjärjestelmälle johtaja Reima Päivinen Käyttövarmuuspäivä Tuulivoiman ja aurinkovoiman vaikutukset sähköjärjestelmään sähköä tuotetaan silloin kun tuulee tai paistaa

Lisätiedot

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA SMG-4500 Tuulivoima Viidennen luennon aihepiirit Tuulivoimaloiden generaattorit Toimintaperiaate Tahtigeneraattori Epätahtigeneraattori Vakionopeuksinen voimala Vaihtuvanopeuksinen voimala 1 YLEISTÄ ASIAA

Lisätiedot

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1. SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen

Lisätiedot

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa.

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit ILMAVIRTAUKSEN ENERGIA JA TEHO. Ilmavirtauksen energia on ilmamolekyylien liike-energiaa. SMG-4500 Tuulivoima Kolmannen luennon aihepiirit Tuulen teho: Betzin lain johtaminen Tuulen mittaaminen Tuulisuuden mallintaminen Weibull-jakauman hyödyntäminen ILMAVIRTAUKSEN ENERGIA JA TEHO Ilmavirtauksen

Lisätiedot

Kaukoluettavine mittareineen Talouslaskelmat kustannuksineen ja tuottoineen on osattava laskea tarkasti

Kaukoluettavine mittareineen Talouslaskelmat kustannuksineen ja tuottoineen on osattava laskea tarkasti Tornio 24.5.2012 Tuulivoimala on vaativa hanke Esim. viljelijän on visioitava oman tilansa kehitysnäkymät ja sähkötehon tarpeet Voimalan rakentaminen, perustuksen valu ja lujuuslaskelmat ovat osaavien

Lisätiedot

Melun huomioon ottaminen tuulivoimahankkeiden kaavoituksessa ja lupakäytännöissä. Ilkka Niskanen

Melun huomioon ottaminen tuulivoimahankkeiden kaavoituksessa ja lupakäytännöissä. Ilkka Niskanen Melun huomioon ottaminen tuulivoimahankkeiden kaavoituksessa ja lupakäytännöissä Ilkka Niskanen Paljon mielipiteitä, tunnetta, pelkoa, uskomuksia 2 Tuulivoimaa Euroopassa ja Suomessa Maa Pinta-ala km2

Lisätiedot

Tuulivoima. Energiaomavaraisuusiltapäivä 20.9.2014. Katja Hynynen

Tuulivoima. Energiaomavaraisuusiltapäivä 20.9.2014. Katja Hynynen Tuulivoima Energiaomavaraisuusiltapäivä 20.9.2014 Katja Hynynen Mitä on tuulivoima? Tuulen liike-energia muutetaan toiseen muotoon, esim. sähköksi. Kuva: http://commons.wikimedia.org/wiki/file: Windmill_in_Retz.jpg

Lisätiedot

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit TUULEN TEHO

SMG-4500 Tuulivoima. Kolmannen luennon aihepiirit TUULEN TEHO SMG-4500 Tuulivoima Kolmannen luennon aihepiirit Tuulen teho: Betzin lain johtaminen Tuulivoimalatyypeistä: Miksi vaaka-akselinen, miksi kolme lapaa? Aerodynamiikkaa: Tuulivoimalan roottorin lapasuunnittelun

Lisätiedot

Wind Power in Power Systems: 24 Introduction to the Modelling of Wind Turbines

Wind Power in Power Systems: 24 Introduction to the Modelling of Wind Turbines Wind Power in Power Systems: 24 Introduction to the Modelling of Wind Turbines Johdanto Tässä kappaleessa esitetään näkökohtia liittyen tuulivoimaloiden simulointiin ja niiden mallintamiseen. Tietokonemallinnuksen

Lisätiedot

Joustavuuden lisääminen sähkömarkkinoilla. Sähkömarkkinapäivä 7.4.2014 Jonne Jäppinen, kehityspäällikkö, Fingrid Oyj

Joustavuuden lisääminen sähkömarkkinoilla. Sähkömarkkinapäivä 7.4.2014 Jonne Jäppinen, kehityspäällikkö, Fingrid Oyj Joustavuuden lisääminen sähkömarkkinoilla Sähkömarkkinapäivä 7.4.2014 Jonne Jäppinen, kehityspäällikkö, Fingrid Oyj 74 Tuotannon ja kulutuksen välinen tasapaino on pidettävä yllä joka hetki! Vuorokauden

Lisätiedot

Voimalaitosten jännitteensäädön asetteluperiaatteet

Voimalaitosten jännitteensäädön asetteluperiaatteet Tekninen ohje 1 (9) Voimalaitosten jännitteensäädön asetteluperiaatteet Sisällysluettelo 1 Johdanto... 2 2 Jännitteensäätö... 2 2.1 Jännitteensäädön säätötapa... 2 2.2 Jännitteensäädön asetusarvo... 2

Lisätiedot

Aurinkovoimalan haasteet haja-asutusalueella

Aurinkovoimalan haasteet haja-asutusalueella Aurinkovoimalan haasteet haja-asutusalueella Seppo Suurinkeroinen sähkönlaatuasiantuntija Oy Urakoitsijapäivä Kouvola Yhteydenotto paneeleiden asentajalta: Kun paneelit tuottaa sähköä enemmän, jännite

Lisätiedot

Automaattisen taajuudenhallintareservin sovellusohje

Automaattisen taajuudenhallintareservin sovellusohje LIITE 1 1 (6) Automaattisen taajuudenhallintareservin sovellusohje 1 Yleistä Tässä liitteessä on määritetty automaattisen taajuudenhallintareservin (FRR-A) vaatimukset reservinhaltijalle sekä tarvittava

Lisätiedot

Voimalaitosten jännitteensäädön asetteluperiaatteet

Voimalaitosten jännitteensäädön asetteluperiaatteet Tekninen ohje 1 (8) Voimalaitosten jännitteensäädön asetteluperiaatteet Sisällysluettelo 1 Johdanto... 2 2 Jännitteensäätö... 2 2.1 Jännitteensäädön säätötapa... 2 2.2 Jännitteensäädön asetusarvo... 2

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Roottorin toimintaperiaate TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Roottorin toimintaperiaate Roottorin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Tuulivoimalan tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

Tuulimittausten merkitys ja mahdollisuudet tuulipuiston suunnittelussa ja käytössä

Tuulimittausten merkitys ja mahdollisuudet tuulipuiston suunnittelussa ja käytössä Tuulimittausten merkitys ja mahdollisuudet tuulipuiston suunnittelussa ja käytössä Energiamessut 2010 Tampere Erkki Haapanen, DI erkki.haapanen(at)tuulitaito.fi Miksi tämä esitys Suomessa yleisin tuulivoimalan

Lisätiedot

Tuulivoiman integraatio Suomen sähköjärjestelmään - kommenttipuheenvuoro

Tuulivoiman integraatio Suomen sähköjärjestelmään - kommenttipuheenvuoro Tuulivoiman integraatio Suomen sähköjärjestelmään - kommenttipuheenvuoro Sanna Uski-Joutsenvuo Säteilevät naiset seminaari 17.3.2009 Tuulivoiman fyysinen verkkoon liityntä Laajamittainen tuulivoima Suomessa

Lisätiedot

Aurinkovoimalan haasteet haja-asutusalueella

Aurinkovoimalan haasteet haja-asutusalueella Aurinkovoimalan haasteet haja-asutusalueella Seppo Suurinkeroinen sähkönlaatuasiantuntija Oy Urakoitsijapäivä Kouvola Yhteydenotto paneeleiden asentajalta: Kun paneelit tuottaa sähköä enemmän, jännite

Lisätiedot

Tuulivoiman teknistaloudelliset edellytykset

Tuulivoiman teknistaloudelliset edellytykset Tuulivoiman teknistaloudelliset edellytykset Erkki Haapanen, DI erkki.haapanen@tuulitaito.fi +358505170731 puh. www.tuulitaito.fi 25.2.2011 Tuulitaito Karttojen, kuvien ja tekstien tekijänoikeuksista Pohjakartta-aineisto:

Lisätiedot

Wind Power in Power Systems

Wind Power in Power Systems Wind Power in Power Systems 5. Power Quality Standards for Wind Turbines (Sähkön laatustandardit tuuliturbiineille) 5.1 Johdanto Tuulivoima sähköverkossa vaikuttaa jännitteen laatuun, minkä vuoksi vaikutukset

Lisätiedot

BILAGA 3 LIITE 3. Fotomontage och synlighetsanalys Valokuvasovitteet ja näkymäanalyysi

BILAGA 3 LIITE 3. Fotomontage och synlighetsanalys Valokuvasovitteet ja näkymäanalyysi BILAGA 3 LIITE 3 Fotomontage och synlighetsanalys Valokuvasovitteet ja näkymäanalyysi SUUNNITTELU JA TEKNIIKKA VINDIN AB/OY Molpe-Petalax tuulivoimapuisto Näkymäalueanalyysi ja valokuvasovitteet FCG SUUNNITTELU

Lisätiedot

BL20A0400 Sähkömarkkinat. Valtakunnallinen sähkötaseiden hallinta ja selvitys Jarmo Partanen

BL20A0400 Sähkömarkkinat. Valtakunnallinen sähkötaseiden hallinta ja selvitys Jarmo Partanen BL20A0400 Sähkömarkkinat Valtakunnallinen sähkötaseiden hallinta ja selvitys Jarmo Partanen Valtakunnalliset sähkötaseet Kaikille sähkökaupan osapuolille on tärkeää sähköjärjestelmän varma ja taloudellisesti

Lisätiedot

PVO-INNOPOWER OY. Tuulivoima Suomessa ja maailmalla 15.6.2011 Tuulta Jokaiselle, Lapua Suunnitteluinsinööri Ari Soininen

PVO-INNOPOWER OY. Tuulivoima Suomessa ja maailmalla 15.6.2011 Tuulta Jokaiselle, Lapua Suunnitteluinsinööri Ari Soininen PVO-INNOPOWER OY Tuulivoima Suomessa ja maailmalla 15.6.2011 Tuulta Jokaiselle, Lapua Suunnitteluinsinööri Ari Soininen Pohjolan Voima Laaja-alainen sähköntuottaja Tuotantokapasiteetti n. 3600 MW n. 25

Lisätiedot

A sivu 1(4) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

A sivu 1(4) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE A sivu 1(4) TOIMINTAOHJE 7.6.2002 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Valintakoe on kaksiosainen: 1) Lue oheinen teksti huolellisesti. Lukuaikaa on 20 minuuttia. Voit

Lisätiedot

Luku 9: Tuulivoiman arvo (The Value of Wind Power)

Luku 9: Tuulivoiman arvo (The Value of Wind Power) Luku 9: Tuulivoiman arvo (The Value of Wind Power) 9.1 Johdanto Lennart Söder Voimalaitoksen tehtävä on syöttää kuormia taloudellisesti, luotettavasti ja ympäristöystävällisesti. Eri voimalaitokset suoriutuvat

Lisätiedot

Jännitteensäädön ja loistehon hallinnan kokonaiskuva. Sami Repo Sähköenergiatekniikka TTY

Jännitteensäädön ja loistehon hallinnan kokonaiskuva. Sami Repo Sähköenergiatekniikka TTY Jännitteensäädön ja loistehon hallinnan kokonaiskuva Sami Repo Sähköenergiatekniikka TTY Agenda Taustaa Tutkimuskysymykset ja tavoitteet Simuloitava malli Skenaarioiden tarkastelu Tekniset tulokset Taloudelliset

Lisätiedot

Sähkön varastointi utopiaa vai realismia? Jussi Mäntynen

Sähkön varastointi utopiaa vai realismia? Jussi Mäntynen Sähkön varastointi utopiaa vai realismia? Jussi Mäntynen Agenda Sähkövarastot tänään Markkinoiden tarpeet Sähkövarasto ratkaisut Utopiaa vai realismia? Sähkövarastot tänään Utopiaa? Public 2012, Siemens

Lisätiedot

VOIMALAITOSTEKNIIKKA MAMK YAMK Tuomo Pimiä

VOIMALAITOSTEKNIIKKA MAMK YAMK Tuomo Pimiä VOIMALAITOSTEKNIIKKA 2016 MAMK YAMK Tuomo Pimiä Voimalaitoksen säätötehtävät Voimalaitoksen säätötehtävät voidaan jakaa kolmeen toiminnalliseen : Stabilointitaso: paikalliset toimilaiteet ja säätimet Koordinointitaso:

Lisätiedot

Tuulivoimatuotanto Suomessa Kehityskulku, tavoitteet, taloudellinen tuki ja kehitysnäkymät

Tuulivoimatuotanto Suomessa Kehityskulku, tavoitteet, taloudellinen tuki ja kehitysnäkymät Tuulivoimatuotanto Suomessa Kehityskulku, tavoitteet, taloudellinen tuki ja kehitysnäkymät Anni Mikkonen Suomen Tuulivoimayhdistys Loimaa, 23.3.2010 Suomen Tuulivoimayhdistys ry Perustettu 1988 20 -vuotisjuhlat

Lisätiedot

Suprajohtava generaattori tuulivoimalassa

Suprajohtava generaattori tuulivoimalassa 1 Suprajohtava generaattori tuulivoimalassa, Seminaaripäivä, Pori 2 Tuulivoiman kehitysnäkymät Tuuliturbiinien koot kasvavat. Vuoden 2005 puolivälissä suurin turbiinihalkaisija oli 126 m ja voimalan teho

Lisätiedot

Tuulivoima ja sähköverkko

Tuulivoima ja sähköverkko 1 Tuulivoima ja sähköverkko Kari Mäki Sähköenergiatekniikan laitos 2 Sisältö Sähköverkon rakenne Tuulivoima sähköverkon näkökulmasta Siirtoverkko Jakeluverkko Pienjänniteverkko Sähköverkon näkökulma yleisemmin

Lisätiedot

Siirtokapasiteetin määrittäminen

Siirtokapasiteetin määrittäminen 1 (5) Siirtokapasiteetin määrittäminen 1 Suomen sähköjärjestelmän siirtokapasiteetit Fingrid antaa sähkömarkkinoiden käyttöön kaiken sen siirtokapasiteetin, joka on mahdollinen sähköjärjestelmän käyttövarmuuden

Lisätiedot

DEE Tuulivoiman perusteet

DEE Tuulivoiman perusteet Viidennen luennon aihepiirit Tuulivoimaloiden generaattorit Toimintaperiaate Tahtigeneraattori Epätahtigeneraattori Tuulivoimalakonseptit 1 YLEISTÄ ASIAA GENERAATTOREISTA Generaattori on laite, joka muuttaa

Lisätiedot

Tuulivoimalatekniikan kehityksen vaikutus syöttötariffin tasoon

Tuulivoimalatekniikan kehityksen vaikutus syöttötariffin tasoon Tuulivoimalatekniikan kehityksen vaikutus syöttötariffin tasoon 27.7.2015 Raportin laatinut: Tapio Pitkäranta Diplomi-insinööri, Tekniikan lisensiaatti Tapio Pitkäranta, tapio.pitkaranta@hifian.fi Puh:

Lisätiedot

Offshore puistojen sähkönsiirto

Offshore puistojen sähkönsiirto Offshore puistojen sähkönsiirto Johdanto Puistojen rakentamiseen merelle useita syitä: Parempi tuotannon odotus Poissa näkyvistä Rannikolla hyviä sijoituspaikkoja ei välttämättä saatavilla Tästä seuraa

Lisätiedot

Kuinka valita tuulivoima-alue? Anni Mikkonen, Suomen Tuulivoimayhdistys Pori, 3.11.2010

Kuinka valita tuulivoima-alue? Anni Mikkonen, Suomen Tuulivoimayhdistys Pori, 3.11.2010 Kuinka valita tuulivoima-alue? Anni Mikkonen, Suomen Tuulivoimayhdistys Pori, 3.11.2010 Perustettu 1988 Suomen Tuulivoimayhdistys ry Jäsenistö: 100 yritystä Lähes 200 yksityishenkilöä Foorumi tuulivoimayrityksille

Lisätiedot

Suunnittelee ja valmistaa itseseisovia putki ja ristikkomastoja pientuulivoimaloille 1 250 kw

Suunnittelee ja valmistaa itseseisovia putki ja ristikkomastoja pientuulivoimaloille 1 250 kw PORI YLIOPISTOKESKUS 21.9.2010 Esa Salokorpi Cell +358 50 1241 esa@nac.fi Oy Nordic AC Ltd Suunnittelee ja valmistaa itseseisovia putki ja ristikkomastoja pientuulivoimaloille 1 250 kw Modulaarinen rakenne

Lisätiedot

Sähköjärjestelmä antaa raamit voimalaitoksen koolle

Sähköjärjestelmä antaa raamit voimalaitoksen koolle Sähköjärjestelmä antaa raamit voimalaitoksen koolle Käyttövarmuuspäivä 2.12.2013 Johtava asiantuntija Liisa Haarla, Fingrid Oy Adjunct professor, Aalto-yliopisto Sisältö 1. Tehon ja taajuuden tasapaino

Lisätiedot

Tuulivoiman arvo (The Value of Wind Power)

Tuulivoiman arvo (The Value of Wind Power) 1 Wind Power in Power Systems -jatko-opintokurssi Chapter 9: Tuulivoiman arvo (The Value of Wind Power) Antti Rautiainen 28.5.2009 Sisältö 2 9.1 Johdanto (Introduction) 9.2 Voimalaitoksen arvo (The Value

Lisätiedot

Superkondensaattorit lyhyiden varakäyntiaikojen ratkaisuna

Superkondensaattorit lyhyiden varakäyntiaikojen ratkaisuna Superkondensaattorit lyhyiden varakäyntiaikojen ratkaisuna - Sovelluksena huipputehon rajoitus kuvantamislaitekäytössä Teemu Paakkunainen Senior Application Engineer Eaton Power Quality Oy Superkondensaattorit

Lisätiedot

VOIMALASÄÄTIMET Sivu 1/5 10.6.2009. FinnPropOy Puhelin: 040-773 4499 Y-tunnus: 2238817-3

VOIMALASÄÄTIMET Sivu 1/5 10.6.2009. FinnPropOy Puhelin: 040-773 4499 Y-tunnus: 2238817-3 VOIMALASÄÄTIMET Sivu 1/5 VOIMALASÄÄTIMET Sivu 2/5 YLEISTÄ VOIMALASÄÄTIMISTÄ Miksi säädin tarvitaan ja mitä se tekee? Tuulesta saatava teho vaihtelee suuresti tuulen nopeuden mukaan lähes nollasta aina

Lisätiedot

Primäärienergian kulutus 2010

Primäärienergian kulutus 2010 Primäärienergian kulutus 2010 Valtakunnallinen kulutus yhteensä 405 TWh Uusiutuvilla tuotetaan 27 prosenttia Omavaraisuusaste 32 prosenttia Itä-Suomen* kulutus yhteensä 69,5 TWh Uusiutuvilla tuotetaan

Lisätiedot

Sähköntuotanto ja ilmastonmuutoksen hillintä haasteet tuotannolle, jakelulle ja varastoinnille

Sähköntuotanto ja ilmastonmuutoksen hillintä haasteet tuotannolle, jakelulle ja varastoinnille Sähköntuotanto ja ilmastonmuutoksen hillintä haasteet tuotannolle, jakelulle ja varastoinnille Seppo Valkealahti Electrical Energy Engineering Tampere University seppo.valkealahti@tuni.fi 1 Energian kokonaisvaranto

Lisätiedot

TUULIVOIMALOIDEN MELUVAIKUTUKSET

TUULIVOIMALOIDEN MELUVAIKUTUKSET TUULIVOIMALOIDEN MELUVAIKUTUKSET Tuulivoima Kotkassa 28.11.2013 Jani Kankare Puh. 040 574 0028 Jani.Kankare@promethor.fi Promethor Oy Vuonna 1995 perustettu asiantuntijayritys, jonka yhtenä toimialueena

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Jännitestabiiliushäiriö Suomessa 1992. Liisa Haarla

Jännitestabiiliushäiriö Suomessa 1992. Liisa Haarla Jännitestabiiliushäiriö Suomessa 1992 Liisa Haarla Pohjoismainen voimajärjestelmä 1992 Siirtoverkko: Siirtoyhteydet pitkiä, kulutus enimmäkseen etelässä, vesivoimaa pohjoisessa (Suomessa ja Ruotsissa),

Lisätiedot

Näin rakennettiin Torkkolan tuulivoimapuisto

Näin rakennettiin Torkkolan tuulivoimapuisto Näin rakennettiin Torkkolan tuulivoimapuisto Merikaarrontie N Torkkola Vähäkyrö 7 Torkkolan tuulivoimapuisto sijaitsee Vaasassa, Merikaarrontien varrella, Kyrönjoen eteläpuolella. Pinta-ala: noin 1 000

Lisätiedot

215.3 MW 0.0 MVR pu MW 0.0 MVR

215.3 MW 0.0 MVR pu MW 0.0 MVR Sami Repo, TTKK/Sähkövoimatekniikka 1 ESIMERKKI KÄYTTÖVARMUUDEN MÄÄRITTÄMISESTÄ Testijärjestelmässä on kaksi solmupistettä, joiden välillä on kaksi rinnakkaista identtistä johtoa, joidenka yhdistetty impedanssi

Lisätiedot

Tuulivoimarakentamisen merkitys ja vaikutukset

Tuulivoimarakentamisen merkitys ja vaikutukset Tuulivoimarakentamisen merkitys ja vaikutukset Suomessa tällä hetkellä 192 tuulivoimalaitosta kokonaisteho 366 MW Tuulivoimalaitoksia Teho Vuosituotanto Suomi Ruotsi Tanska Viro 192 kpl 2 754 kpl 5 126

Lisätiedot

DEE Tuulivoima

DEE Tuulivoima DEE-53020 Tuulivoima Aihepiiri 4 Tuulivoimalan rakenne Roottorin toimintaperiaate Roottorin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Tuulivoimalan tehonsäätö 1 TUULIVOIMALAN RAKENNE

Lisätiedot

Sähkönjakelutekniikka osa 1. Pekka Rantala

Sähkönjakelutekniikka osa 1. Pekka Rantala Sähkönjakelutekniikka osa 1 Pekka Rantala 27.8.2015 Opintojakson sisältö 1. Johdanto Suomen sähkönjakelun rakenne Kantaverkko, suurjännite Jakeluverkot, keskijännite Pienjänniteverkot Suurjänniteverkon

Lisätiedot

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä. Rev01 03.02.2015 CGr TBo Ketunperän tuulivoimapuiston välkeselvitys.

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä. Rev01 03.02.2015 CGr TBo Ketunperän tuulivoimapuiston välkeselvitys. Page 1 of 11 Ketunperä-Välkeselvitys- CG150203-1- Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIPUISTO Ketunperä Välkeselvitys Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Rev01 03.02.2015 CGr

Lisätiedot

Vesivoiman rooli sähköjärjestelmän tuotannon ja kulutuksen tasapainottamisessa

Vesivoiman rooli sähköjärjestelmän tuotannon ja kulutuksen tasapainottamisessa Muistio 1 (5) Vesivoiman rooli sähköjärjestelmän tuotannon ja kulutuksen tasapainottamisessa 1 Johdanto Sähköjärjestelmässä on jatkuvasti säilytettävä tuotannon ja kulutuksen tasapaino. Sähköjärjestelmän

Lisätiedot

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Page 1 of 9 Portin_tuulipuisto_Valkeselvit ys- Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIVOIMAPUISTO Portti Välkeselvitys Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Rev01 28.09.2015 YKo

Lisätiedot

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Page 1 of 10 Parhalahti_Valkeselvitys_JR15 1211- Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIVOIMAPUISTO Parhalahti Välkeselvitys Versio Päivä Tekijät Hyväksytty Tiivistelmä Rev01 7.12.2015 YKo

Lisätiedot

TUULIVOIMAMELUN MITTAUS- JA MALLINNUSTULOSTEN

TUULIVOIMAMELUN MITTAUS- JA MALLINNUSTULOSTEN TUULIVOIMAMELUN MITTAUS- JA MALLINNUSTULOSTEN VERTAILUA WSP Finland Oy Heikkiläntie 7 00210 Helsinki tuukka.lyly@wspgroup.fi Tiivistelmä WSP Finland Oy on yhdessä WSP Akustik Göteborgin yksikön kanssa

Lisätiedot

Hajautetun energiatuotannon edistäminen

Hajautetun energiatuotannon edistäminen Hajautetun energiatuotannon edistäminen TkT Juha Vanhanen Gaia Group Oy 29.2.2008 Esityksen sisältö 1. Hajautettu energiantuotanto Mitä on hajautettu energiantuotanto? Mahdollisuudet Haasteet 2. Hajautettu

Lisätiedot

Energiantuotannon ja käytön muutosten vaikutukset voimajärjestelmän hallintaan ja kantaverkon kehitystarpeisiin

Energiantuotannon ja käytön muutosten vaikutukset voimajärjestelmän hallintaan ja kantaverkon kehitystarpeisiin Energiantuotannon ja käytön muutosten vaikutukset voimajärjestelmän hallintaan ja kantaverkon kehitystarpeisiin Jussi Jyrinsalo Sähkötutkimuspoolin tutkimusseminaari 18.10.2012 Johdanto Toimitusvarmuuden

Lisätiedot

Sähkön tuotannon ja varavoiman kotimaisuusaste korkeammaksi Sähkö osana huoltovarmuutta

Sähkön tuotannon ja varavoiman kotimaisuusaste korkeammaksi Sähkö osana huoltovarmuutta Sähkön tuotannon ja varavoiman kotimaisuusaste korkeammaksi Sähkö osana huoltovarmuutta Fingridin käyttövarmuuspäivä 26.11.2008, Mika Purhonen HVK PowerPoint template A4 24.11.2008 1 Sähkön tuotannon kapasiteetti

Lisätiedot

Tuulennopeuksien jakauma

Tuulennopeuksien jakauma Tuulennopeuksien jakauma Kaikki tuulennopeudet eivät ole yhtä todennäköisiä (no shit, Sherlock!) Tietyn tuulennopeuden todennäköisyystiheyden antaa varsin tarkasti kaksiparametrinen Weibullin jakauma W(v)

Lisätiedot

Tuulienergialla tuotetun sähköntuotannon lisäys Saksassa vuosina Ohjaaja Henrik Holmberg

Tuulienergialla tuotetun sähköntuotannon lisäys Saksassa vuosina Ohjaaja Henrik Holmberg IGCC-voimlaitosten toimintaperiaate ja nykytilanne Ohjaaja Henrik Holmberg IGCC-voimlaitoksissa (Integrated Gasification Combined Cycle) on integroitu kiinteän polttoaineen kaasutus sekä Brayton- että

Lisätiedot

Verkosto2011, 2.2.2011, Tampere

Verkosto2011, 2.2.2011, Tampere Verkosto2011, 2.2.2011, Tampere Sähköverkkoliiketoiminnan tavoitetila 2030 Jarmo Partanen, 040-5066564 Jarmo.partanen@lut.fi Perususkomuksia, vuosi 2030 sähkön käyttö kokonaisuutena on lisääntynyt energiatehokkuus

Lisätiedot

Kysyntäjousto Fingridin näkökulmasta. Tasevastaavailtapäivä 20.11.2014 Helsinki Jonne Jäppinen

Kysyntäjousto Fingridin näkökulmasta. Tasevastaavailtapäivä 20.11.2014 Helsinki Jonne Jäppinen Kysyntäjousto Fingridin näkökulmasta Tasevastaavailtapäivä 20.11.2014 Helsinki Jonne Jäppinen 2 Sähköä ei voi varastoida: Tuotannon ja kulutuksen välinen tasapaino on pidettävä yllä joka hetki! Vuorokauden

Lisätiedot

Mökkisähköistyksen toteutus tuulivoimalla

Mökkisähköistyksen toteutus tuulivoimalla Mökkisähköistyksen toteutus tuulivoimalla Tämä esitys pyrkii vastaamaan kysymykseen kuinka mökkisähköistyksen voi toteuttaa käyttäen tuulivoimaa. 1. Sähköistys tuulivoimalla Sähköistys toteutetaan tuulivoimalan

Lisätiedot

SÄHKÖN TOIMITUSVARMUUS

SÄHKÖN TOIMITUSVARMUUS SUOMEN ATOMITEKNILLISEN SEURAN VUOSIKOKOUS 21.2.2007 Eero Kokkonen Johtava asiantuntija Fingrid Oyj 1 14.2.2007/EKN Tavallisen kuluttajan kannalta: sähkön toimitusvarmuus = sähköä saa pistorasiasta aina

Lisätiedot

AURINKOSÄHKÖN HYÖDYNTÄMISMAHDOLLISUUDET SUOMESSA

AURINKOSÄHKÖN HYÖDYNTÄMISMAHDOLLISUUDET SUOMESSA AURINKOSÄHKÖN HYÖDYNTÄMISMAHDOLLISUUDET SUOMESSA Esityksen sisältö Johdanto aiheeseen Aurinkosähkö Suomen olosuhteissa Lyhyesti tekniikasta Politiikkaa 1 AURINKOSÄHKÖ MAAILMANLAAJUISESTI (1/3) kuva: www.epia.org

Lisätiedot

TuuliWatti rakentaa puhdasta tuulivoimaa 19.10.2011

TuuliWatti rakentaa puhdasta tuulivoimaa 19.10.2011 TuuliWatti rakentaa puhdasta tuulivoimaa 19.10.2011 Päivän ohjelma 19.10.2011 Jari Suominen,Toimitusjohtaja, TuuliWatti Oy Antti Heikkinen, Toimitusjohtaja, S-Voima Oy Antti Kettunen, Tuulivoimapäällikkö,

Lisätiedot

TUULIVOIMATUET. Urpo Hassinen 10.6.2011

TUULIVOIMATUET. Urpo Hassinen 10.6.2011 TUULIVOIMATUET Urpo Hassinen 10.6.2011 UUSIUTUVAN ENERGIAN VELVOITEPAKETTI EU edellyttää Suomen nostavan uusiutuvan energian osuuden energian loppukäytöstä 38 %:iin vuoteen 2020 mennessä Energian loppukulutus

Lisätiedot

Pohjoismaisen sähköjärjestelmän käyttövarmuus

Pohjoismaisen sähköjärjestelmän käyttövarmuus Pohjoismaisen sähköjärjestelmän käyttövarmuus 26.11.2003 Professori Jarmo Partanen Lappeenrannan teknillinen yliopisto 1 Skandinaavinen sähkömarkkina-alue Pohjoismaat on yksi yhteiskäyttöalue: energian

Lisätiedot

Tuulivoimaretkeily Ratiperälle

Tuulivoimaretkeily Ratiperälle 2018 Tuulivoimaretkeily Ratiperälle Biobisnestä Pirkanmaalle - hanke Suomen metsäkeskus, Julkiset palvelut Matkakertomus 1 (5) Biobisnestä Pirkänmäälle Biobisnestä Pirkanmaalle hankkeessa vastataan Suomen

Lisätiedot

METSÄHAKKEEN KÄYTÖN RAKENNE SUOMESSA

METSÄHAKKEEN KÄYTÖN RAKENNE SUOMESSA SusEn konsortiokokous Solböle, Bromarv 26.9.2008 METSÄHAKKEEN KÄYTÖN RAKENNE SUOMESSA MATTI MÄKELÄ & JUSSI UUSIVUORI METSÄNTUTKIMUSLAITOS FINNISH FOREST RESEARCH INSTITUTE JOKINIEMENKUJA 1 001370 VANTAA

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä. Rev01 02.12.2014 CGr TBo Hankilannevan tuulivoimapuiston välkeselvitys.

Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä. Rev01 02.12.2014 CGr TBo Hankilannevan tuulivoimapuiston välkeselvitys. Page 1 of 11 Hankilanneva_Valkeselvitys- CGYK150219- Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIVOIMAPUISTO HANKILANNEVA Välkeselvitys Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Rev01 02.12.2014

Lisätiedot

Käyttötoimikunta Antti-Juhani Nikkilä Loistehon merkitys kantaverkon jännitteiden hallinnassa

Käyttötoimikunta Antti-Juhani Nikkilä Loistehon merkitys kantaverkon jännitteiden hallinnassa Käyttötoimikunta Loistehon merkitys kantaverkon jännitteiden hallinnassa Sisältö Kantaverkon kompensoinnin ja jännitteensäädön periaatteet Fingridin uudet loissähköperiaatteet Miten lisääntynyt loisteho

Lisätiedot

Tuulivoima ja sähkömarkkinat Koneyrittäjien energiapäivät. Mikko Kara, Gaia Consulting

Tuulivoima ja sähkömarkkinat Koneyrittäjien energiapäivät. Mikko Kara, Gaia Consulting Tuulivoima ja sähkömarkkinat Koneyrittäjien energiapäivät Mikko Kara, Gaia Consulting 24.3.2017 Sisältö 1. Pohjoismainen markkina 2. Tuuli merkittävin uusiutuvista 3. Suhteessa pienellä määrällä tuulta

Lisätiedot

Uutta tuulivoimaa Suomeen. TuuliWatti Oy

Uutta tuulivoimaa Suomeen. TuuliWatti Oy Uutta tuulivoimaa Suomeen TuuliWatti Oy Päivän agenda Tervetuloa viestintäpäällikkö Liisa Joenpolvi, TuuliWatti TuuliWatin investointiuutiset toimitusjohtaja Jari Suominen, TuuliWatti Simo uusiutuvan energian

Lisätiedot

Sähköverkkovisio 2025? 16/03/2016 Jarmo Partanen

Sähköverkkovisio 2025? 16/03/2016 Jarmo Partanen Sähköverkkovisio 2025? TOIMINTAYMPÄRISTÖN MUUTOKSET Sähkömarkkinat 16/03/2016 Jarmo Partanen Sähkömarkkinat Driving Forces Sarjatuotantoon perustuva teknologia Sääriippuvainen sähkön tuotanto, jolla alhaiset

Lisätiedot

Latamäen Tuulivoimahanke, Luhanka

Latamäen Tuulivoimahanke, Luhanka Latamäen Tuulivoimahanke, Luhanka Melumallinnus Erkki Heikkola Raportin otsikko ja kirjoittajat Latamäen Tuulivoimahanke, Luhanka - Melumallinnus Erkki Heikkola Numerola Oy Asiakas Ilmatar Luhanka Oy Tiivistelmä

Lisätiedot

Neuvottelukunnan kokous Reima Päivinen. Kantaverkon käyttötoiminnan haasteet

Neuvottelukunnan kokous Reima Päivinen. Kantaverkon käyttötoiminnan haasteet 6.6.2018 Neuvottelukunnan kokous Reima Päivinen Kantaverkon käyttötoiminnan haasteet Häiriökeskeytykset liittymispisteissä 1,20 9 1,00 8 7 0,80 6 kpl 0,60 0,40 5 4 3 min 0,20 2 1 0,00 2008 2009 2010 2011

Lisätiedot

Korvennevan tuulivoimapuisto

Korvennevan tuulivoimapuisto S U U N N IT T EL U JA T EK N IIK K A OTSOTUULI OY Korvennevan tuulivoimapuisto Näkymäalueanalyysi ja valokuvasovitteet FCG SUUNNITTELU JA TEKNIIKKA OY 27.3.2015 FCG SUUNNITTELU JA TEKNIIKKA OY Korvennevan

Lisätiedot

Sodar tuulimittaustekniikka

Sodar tuulimittaustekniikka Sodar tuulimittaustekniikka Energiamessut Tampereella 26.10.2010 Erkki Haapanen, DI erkki.haapanen(at)tuulitaito.fi Sodar - äänitutka Sodar sonic radar Sodar mittaa äänipulssin avulla tuulen nopeutta ja

Lisätiedot

Suomen ilmasto- ja energiastrategia Fingridin näkökulmasta. Toimitusjohtaja Jukka Ruusunen, Fingrid Oyj

Suomen ilmasto- ja energiastrategia Fingridin näkökulmasta. Toimitusjohtaja Jukka Ruusunen, Fingrid Oyj Suomen ilmasto- ja energiastrategia Fingridin näkökulmasta Toimitusjohtaja Jukka Ruusunen, Fingrid Oyj Käyttövarmuuspäivä Finlandia-talo 26.11.2008 2 Kantaverkkoyhtiön tehtävät Voimansiirtojärjestelmän

Lisätiedot

Säätövoimaa tulevaisuuden sähkömarkkinalle. Klaus Känsälä, VTT & Kalle Hammar, Rejlers Teknologian tutkimuskeskus VTT Oy

Säätövoimaa tulevaisuuden sähkömarkkinalle. Klaus Känsälä, VTT & Kalle Hammar, Rejlers Teknologian tutkimuskeskus VTT Oy Säätövoimaa tulevaisuuden sähkömarkkinalle Klaus Känsälä, VTT & Kalle Hammar, Rejlers Teknologian tutkimuskeskus VTT Oy Sähkönjakelu muutoksessa Sähköä käytetään uusilla tavoilla mm. lämpöpumpuissa ja

Lisätiedot