13. Sulan metallin nostovoima Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Jos putkessa, jonka poikkipinta-ala on A, painetaan männällä nestepinnat eri korkeuksille, syrjäytetään nestettä tilavuuden Ah verran. Arkhimedeen lain mukaan neste nostaa mäntää ylöspäin syrjäytetyn nesteen painovoiman suuruisella voimalla. Kuva 136. Samalla tavalla voidaan valumuotissa olettaa valukappaleen yläpuolelle jäävän tilavuuden syrjäyttävän sulaa metallia, jolloin metalli nostaa muotin yläosaa syrjäytetyn metallin painovoiman suuruisella voimalla (Kuva 137). Muotin yläosaan kohdistuva nostovoima voidaan laskea siis muottiontelon yläpuolelle jäävän tilavuuden kokoisen metallimäärän painovoimana eli: Kuva 137. A = kappaleen pinta-ala ylämuotissa g = painovoiman kiihtyvyys 10 m/s2 h = muottiontelon yläpuolelle jäävän hiekkakerroksen korkeus ρ = roo =valumetallin tiheys Korkeus h lasketaan kaatokanavassa olevan metallin pinnasta. Jos esimerkiksi kaatokanavan korkeutta lisätään, aiheuttaa se metallostaattisen paineen sekä samalla myös nostevoiman kasvamisen kaksinkertaiseksi. Joskus lisätäänkin metallostaattista painetta tiiviin valun aikaansaamiseksi korottamalla kaatokanavaa. Nostovoima on usein huomattavasti suurempi kuin valumetallin painovoima. Kuva 138. Taittoa tarkistettu 2.12.2015 (Tuula Höök) Muotinvalmistustekniikka Sivu 46
Kuva 139. Valukappaleet A ja B ovat ulkomitoiltaan yhtä suuria. Vaikka kappale A on massaltaan pienempi, synnyttää se kuitenkin huomattavasti suuremman nostevoiman muotin yläosaan kuin kappale B. Metallin nostovoiman huomioon ottaminen ei yksin riitä laskettaessa muotin painotustarvetta. Virtaavan metallin liike- energia synnyttää muotin täyttämishetkellä painesysäyksen, joka voi olla samaa suurusluokkaa kuin metallostaattinen painekin. Tästä syystä muotin kuormituslaskuissa pitää nostovoima kertoa vielä kahdella. Yläkehyksen ja siinä olevan hiekan massaa ei laskuissa yleensä oteta huomioon. ESIMERKKI Kuva 140. Laskettava yllä olevan kuvan (Kuva 140) mukaisen rautavalumuotin painotustarve: A = 0,4 m x 0,6 m = 0,24 m²; g = 10 m/s²; h = 0,15 m; ρ = 7200 kg/m³ F = 0,24 m² x 10 m/s² x 0,15 m x 7200 kg/m³ = 2600 kgm/s² = 2600 N, mikä vastaa 260 kg massaa Painotustarve on 2 x 260 kg = 520 kg Taittoa tarkistettu 2.12.2015 (Tuula Höök) Muotinvalmistustekniikka Sivu 47
Keernallisessa muotissa sula metalli pyrkii nostamaan keernaa ylöspäin. Keernaan vaikuttava nostovoima siirtyy keernankantojen ja mahdollisten keernatukien välityksellä ylämuottiin ja lisää kuormituksen tarvetta. Arkhimedeen lakiin perustuen voidaan keernan nostovoima laskea kaavasta: F = V g (ρ1 ρ2) F = keernan nostovoima V = keernan tilavuus muotissa g = painovoiman kiihtyvyys ρ1 = valumetallin tiheys ρ2 = keernan tiheys, tavallisesti 1,3 1,6 kg/dm³ Kun keernaan kohdistuva nostovoima lisätään muotin yläosaan kohdistuvaan nostovoimaan, saadaan kokonaisnostovoima. Muotissa pystyasennossa olevat keernat eivät pyri nousemaan, ellei keernan alle pääse sulaa metallia. Jos muotin yläpinnan tai keernan muodot ovat epämääräisiä, yksinkertaistetaan ne laskuissa tasopinnoiksi. Näin päästään riittävään tarkkuuteen. Kuva 141. Nykyisin valimoissa on tietokoneohjelmia, jotka tarvittavat tiedot saatuaan laskevat muottien painotustarpeen. Kuva 142. Muotti suljettu painottamalla käsin siirrettävillä pienillä painoilla Taittoa tarkistettu 2.12.2015 (Tuula Höök) Muotinvalmistustekniikka Sivu 48
ESIMERKKI Laskettava edellisen sivun kuvan (Kuva 141) mukaisen keernallisen teräsvalumuotin painotustarve. Muotin yläosaan kohdistuva nostovoima: A = 0,2m x 0,5 m = 0,1 m²; g = 10 m/s²; h = 0,12 m; ρ = 7800 kg/m³ F = 0,1 m² x 10 m/s² x 0,12 m x 7800 kg/m³ = 940 N Keernaan kohdistuva nostovoima: F = V g (ρ1 ρ2 ) V = 0,15 m x 0,15 m x 0,5 m = 0,011 m³; g = 10 m/s² ρ1 = 7800 kg /m³; ρ2= 1500 kg /m³ F = 0,011 m³ x 10 m/s² x (7800-1500) kg/m³ = 690 N Kokonaisnostovoima on 940 N + 690 N = 1630 N, mikä vastaa 163 kg:n massaa. Painotustarve on 2 x 163 kg = 326 kg = 330 kg Keernattoman muotin painotustarve voidaan laskea yksinkertaistetulla kaavalla: Painotustarve = 2 x A h ρ Kaavaan on sijoitettava A ja h desimetreinä sekä p yksikössä kg/dm³. Kuva 143. Muotti suljettu painottamalla nosturilla siirrettävillä isoilla painoilla Taittoa tarkistettu 2.12.2015 (Tuula Höök) Muotinvalmistustekniikka Sivu 49
KERTAUSTEHTÄVIÄ Miksi mallin pintaan tulevaa hiekkakerrosta ei saa sulloa liian tiiviiksi? Selvitä, mitä tarkoitetaan metallostaattisella paineella. Miten kaatokanavan korkeus vaikuttaa muottiin syntyvään metallostaattiseen paineeseen? Voiko muotin pohjaan kohdistuva voima olla suurempi kuin valumetallin painovoima? Perustele. Miten hiekkamuotin kovuus mitataan? Miksi sulan metallin nostevoima otetaan kaksinkertaisena muotin painotustarvetta laskettaessa? Miksi valumetallin tiheys vaikuttaa nostovoiman suuruuteen? Miten nostevoima muuttuu, jos kuvan 141 tapauksessa sulaa metallia pääsee keernakantojen alle? Taittoa tarkistettu 2.12.2015 (Tuula Höök) Muotinvalmistustekniikka Sivu 50