2. Termodynamiikan perusteet



Samankaltaiset tiedostot
2. Termodynamiikan perusteet

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

1 Eksergia ja termodynaamiset potentiaalit

6. Yhteenvetoa kurssista

PHYS-A0120 Termodynamiikka syksy 2016

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

T H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1):

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH

PHYS-A0120 Termodynamiikka syksy 2017

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde

Molaariset ominaislämpökapasiteetit

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208

PHYS-A0120 Termodynamiikka syksy 2016

Lämpöopin pääsäännöt

PHYS-A0120 Termodynamiikka syksy 2017

4. Termodynaamiset potentiaalit

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics)

3. Statistista mekaniikkaa

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

Ch 19-1&2 Lämpö ja sisäenergia

Termodynamiikka. Fysiikka III Ilkka Tittonen & Jukka Tulkki

FYSA242 Statistinen fysiikka, Harjoitustentti

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa

Ekvipartitioteoreema

Clausiuksen epäyhtälö

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 /

Teddy 1. välikoe kevät 2008

PHYS-A0120 Termodynamiikka syksy 2016

4. Termodynaamiset potentiaalit

1 Clausiuksen epäyhtälö

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ

PHYS-A0120 Termodynamiikka syksy 2016

energian), systeemi on eristetty (engl. isolated). Tällöin sekä systeemiin siirtynyt

PHYS-A0120 Termodynamiikka. Emppu Salonen

3. Statistista mekaniikkaa

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

4. Termodynaamiset potentiaalit

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI

Harvan kaasun sisäenergia ja lämpökapasiteetit

Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia.

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1

S , Fysiikka III (Sf) tentti/välikoeuusinta

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

Statistinen fysiikka, osa A (FYSA241)

7 Termodynaamiset potentiaalit

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA

Ohjeellinen pituus: 2 3 sivua. Vastaa joko tehtävään 2 tai 3

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Lämpöopin pääsäännöt. 0. pääsääntö. I pääsääntö. II pääsääntö

8. Klassinen ideaalikaasu

Statistinen fysiikka, osa A (FYSA241)

kuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä

= 84. Todennäköisin partitio on partitio k = 6,

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

Fysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa?

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Thermodynamics is Two Laws and a Li2le Calculus

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-A0120 Termodynamiikka syksy 2016

Palautus yhtenä tiedostona PDF-muodossa viimeistään torstaina

Luku Pääsääntö (The Second Law)

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Statistinen fysiikka, osa A (FYSA241)

2. Termodynamiikan perusteet

Luento Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

6-1 Hyötysuhde ja tehokerroin

Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Luku 7 ENTROPIA

FY9 Fysiikan kokonaiskuva

VII LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ

Termofysiikan perusteet

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa

1. Johdanto. FYSA241, kevät Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja.

Luku6 Tilanyhtälö. Ideaalikaasun N V. Yleinen aineen. paine vakio. tilavuus vakio

η = = = 1, S , Fysiikka III (Sf) 2. välikoe

6. Entropia, lämpötila ja vapaa energia

3. Statistista mekaniikkaa

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

Transkriptio:

Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 2. Termodynamiikan perusteet 1

TD ja SM Statistisesta fysiikasta voidaan johtaa TD Monissa sovelluksista mikroskooppista teoriaa ei kuitenkaan ole Seurataan tässä historiallista järjestystä ja aloitetaan TD:stä Muistutus: Klassinen TD Termodynaamisten muuttujien välillä vallitsee 4 pääsääntöä (teorian postulaatit) tilanyhtälö (systeemistä riippuva yhteys) Termodynaamiset muuttujat Ovat makrotilaa karakterisoivia suureita. Ekstensiiviset (verrannollinen systeemin kokoon) E, V, N, M, S entropia = tästä lisää myöhemmin Intensiiviset (riippumaton systeemin koosta) T, ρ, P, B, µ 2

Tasapainon lajit Muistutus: määrittelimme TD tasapainon (TDTP) TDTD:ssä systeemin makrotila ei muutu spontaanisti Relaksaatioaika = aika, joka kuluu TDTP:n saavuttamiseen. Tasapainon lajeja Kemiallinen tasapaino: hiukkasten lukumäärä ja laji ei muutu (µ vakio) Mekaaninen tasapaino: ei mekaanista työtä = P vakio, hyvin määritelty Terminen tasapaino: ei lämmön johtumista = T vakio, hyvin määritelty muuttuja Mitä on lämpö? Järjestelmän kokonaislämpö ei ole hyvin määritelty käsite sen sijaan energian siirto lämpönä (ts. energian muutos lämmön johtumisena) on. Karvalakkiselitys: atomaarinen epäjärjestynyt energian siirto (vrt. mekaninen työ = järjestynyttä energiaa) 3

Nollas pääsääntö, lämpötila Muistetaan: terminen tasapaino = ei lämmön siirtoa = sama T Nollas pääsääntö TD0: Terminen tasapaino on transitiivista. A on tasapainossa B:n kanssa ja B tasapainossa C:n kanssa = A on tasapainossa C:n kanssa. Toisin sanoen: T A = T B ja T B = T C = T A = T C. TD:ssä lämpötila määritellään lämpömittarilla, TD0:n avulla. 1. Rakennetaan lämpömittari, esim. elohopeaa lasiputkessa 2. A:n lämpötila mitataan saamalla mittari termiseen tasapainoon sen kanssa ja lukemalla asteikolta T A. 3. Jos mittari on yhtä aikaa TP:ssä A:n ja C:n kanssa, on sekä 3.1 A ja C samassa lämpötilassa (sama mittarilukema, sama T ) 3.2 TD0: A ja C termisessä tasapainossa 4. Tiedetään, kokeilematta, lämpötilan avulla, että A ja C termisessä tasapainossa. = T hyödyllinen suure 4

Ideaalikaasu Valaisevampi lämpötilan käsite saadaan klassisesta ideaalikaasusta. Historiallisesti kokeelliset havainnot kaasulle: Boyle P 1/V (T vakio) Gay-Lussac P T (V vakio) Charles V T (P vakio) Nämä voidaan yhdistää klassisen ideaalikaasun tilanyhtälöksi PV = Nk B T Yksiköistä Yllä N on kaasumolekyylien lukumäärä. Voidaan mitata lukumäärää mooleissa h (1 mooli=n A hiukkasta), jolloin N moolimäärä n = N/N A ja PV = [N A k B ]T = nrt N A i Boltzmannin vakio k B ei ole varsinainen luonnonvakio, vaan mittayksiköiden muunnoskerroin Kelvinin ja Joulen välillä. = Voitaisiin ottaa T :n yksiköksi J tai ev, jolloin asetetaan k B 1. (Tilanyhtälön yksiköt ovat energian, [PV ] =J.) 5

Ideaalikaasu lämpömittarina PV = Nk B T Ideaalikaasu lämpömittarina, absoluuttinen nollapiste Ideaalikaasun laajenemista voidaan käyttää hyväksi ja rakentaa kaasulämpömittari. Olennainen ero elohopea- tms. mittariin: asteikon nollakohta ei ole enää mielivaltainen, vaan kiinnitetty: P 0; V vakio tai V 0; P vakio. = Olemassa absoluuttinen nollapiste Celsius- ja Fahrenheit-asteikot vaativat lämpömittarin kalibroimista kahdessa pisteessä. Esim Celsius: veden sulaminen 0 C ja höyrystyminen 100 C normaalipaineessa. Ideaalikaasu: absoluuttinen nolla = Tarvitsee valita vain yksi kalibraatiopiste 6

Tilamuuttujat, funktiot, yhtälöt Tilamuuttujat Valitut riippumattomat TD muuttujat, määräävät makrotilan. Tilanfunktiot TD suureet, jotka riippuvat vain makrotilasta (eli tilamuuttujista) Tilanyhtälö Tilanmuuttujien keskinäinen riippuvuus, esim. ideaalikaasu PV = Nk B T Muuttujien valinta Tarkastelemme alkuvaiheessa (E, V, N)-systeemiä, eli tilamuuttujat ovat energia, tilavuus ja hiukkasten määrä. Muut, kuten P, T voidaan sitten ratkaista tilanyhtälöistä. Esim 1-atomiselle ideaalikaasulle E = 3 2 Nk BT = T = E/( 3 2 Nk B) (Joulen laki) P = Nk B T /V 7

Prosessit Reversiibeli prosessi: järjestelmä koko prosessin ajan TDTP:ssä. Oltava hidas relaksaatioaikaan verrattuna Tilanyhtälö voimassa koko ajan Irreversiibeli ei reversiibeli (Esim. liian nopeasti, hystereesiä jne.) Spontaani ilman ulkoisten olosuhteiden muutosta (kohti tasapainoa; tasapainossa ei spontaaneja prosesseja.) Mikä pidetään vakiona: terminologiaa Isoterminen vakiolämpötilassa Isobaarinen vakiopaineessa Isokoorinen vakiotilavuudessa Adiabaattinen eli isentrooppinen: lämpöä ei siirry eli entropia vakio 8

Energian säilyminen Systeemiin voidaan siirtää energiaa tekemällä työtä tai lämmittämällä. Energian on säilyttävä. F E Q TD1, I pääsääntö: energian säilyminen Systeemin energian infinitesimaalinen muutos on summa systeemiin tehdystä työstä d W ja siihen johdetusta lämmöstä d Q Huom etumerkit: de = d W + d Q d W > 0: ympäristö tekee työtä eli luovuttaa energiaa järjestelmälle d W < 0: järjestelmä luovuttaa energiaa eli tekee työtä 9

Energia on tilamuuttuja Työ ja lämpö eivät tilanmuuuttujia de = d W + d Q Järjestelmän sisäenergia E on tilamuuttuja, notaatio de W ja Q ovat erillisiä suureita energian siirossa, mutta eivät erillisiä tilamuuttujia = notaatio d W E E = Q = UI t E E = W = UI t Q I U I U Prosessin jälkeen järjestelmä ei muista kumpaa sai: työtä vai lämpöä. 10

Reversiibeli työ F dx A P Työ reversiibelissä prosessissa Työnnetään mäntää voimalla F = PA matka dx = työ d W = F dx = PA dx = P dv d W rev. = P dv F P P + P A dx Työ irreversiibelissä prosessissa Systeemi ei ehdi tasapainottua, männän takana ylipaine P + P d W irr. > P dv 11

Kaasun puristaminen, työ, lämpö, sisäenergia P B C 2 C 1 A Reversiibeli puristus A:sta B:hen, tehty työ Z B Z B Z A W = d W = dv P = dv P A A B (= pinta-ala käyrän alla) Työ riippuu polusta, W 1 > W 2. E tilanfunktio = muutos ei riipu polusta E 1 = E 2 = E B E A W 1 > W 2 TD1: E = W + Q = Q = E W. V = Q 1 < Q 2, siirtyvä lämpö riippuu tiestä, ei tilanfunktio. Etumerkkimuistutus dv < 0 = W > 0. Kaasuun tehdään työtä (puristetaan) Toiseen suuntaan: dv > 0 = W < 0 Kaasu tekee työtä (laajetessaan) 12

Syklinen prosessi P B C 1 Kiertoprosessi A:sta B:hen reittiä 1, takaisin reittiä 2. Tehty työ Z W = d W C 1 +C 2 Z = Z dv P dv P C2 A = C 1 C 2 Z A B dv (P 1 P 2 ) V Koko kierrossa E = 0 = Q = W. (= pinta-ala renkaan sisällä) Etumerkit Tässä tapauksessa W > 0, Q < 0, eli järjestelmään tehdään työtä ja se luovuttaa lämpöä: kone muuttaa työtä lämmöksi. Moottorissa sykli myötäpäivään, jolloin kone muuttaa lämpöä työksi. 13

Esimerkki: ideaalikaasun isoterminen laajeneminen Tyypillisiä ideaalikaasun laajenemis/kokoonpuristumisprosesseja: Isoterminen ( dt = 0) laajeneminen / kokoonpuristuminen Adiabaattinen ( d Q = 0) laajeneminen / kokoonpuristuminen Käytännössä usein lämmön johtuminen on hidasta, nopeat prosessit ovat adiabaattisia. Esim. ääniaalto: värähtelyliike, jossa ilma puristuu ja laajenee adiabaattisesti. Isoterminen laajeneminen PV = Nk B T = vakio = P = Nk BT V Z V1 Z V1 W 0 1 = dvp(v ) = Nk B T V 0 V 0 dv V = Nk B T ln V 0 V 1 Ideaalikaasulle energia riippuu vain hiukkasmäärästä ja lämpötilasta (ei paineesta/tilavuudesta) eli E = E(N, T ) = isotermisessä prosessissa de = 0 ja d Q = d W 14

Esimerkki: ideaalikaasun adiabaattinen laajeneminen Adiabaattinen laajeneminen «d Q = 0 = P dv TD1 3 = de = d 2 PV = 3 (P dv + V dp) 2 = 5 3 dv V = dp P = PV 5/3 = P 0 V 5/3 0 = 5 3 ln V V 0 = ln P P 0 Ns. adiabaattinen tilanyhtälö PV 5/3 =vakio Nyt Nk B T = PV = PV 5/3 /V 2/3 = T 1 V 2/3 Puristettaessa (V ) adiabaattisesti P nousee nopeammin kuin isotermisessä prosessissa. Syy: nyt lämpöä ei johdu pois = T nousee, mikä itsessään nostaa painetta. 15

Responssifunktiot Vastefunktio eli responssifunktio Kuvaa järjestelmän vastetta ulkoisten parametrien muutoksiin. Määritellään käytännössä tilanfunktion osittaisderivaattana Riippumattomia tilanmuuttujia on monta (tällä kurssilla tyypillisesti 3) = määriteltävä, mitkä tilanmuuttujat/funktiot pidetään vakiona. (Oletetaan koko ajan reversiibeliys ja N=vakio) Esimerkkejä: Huom! notaatio y alaindeksisuure vakiona derivoitaessa. x z Lämpokapasiteetti vakiotilavuudessa C V = ` E T tai V,N vakiopaineessa C P = (E+PV ) T P,N ` Kokoonpuristuvuus isoterminen κ T = 1 V V P ` tai T,N adiabaattinen κ S = 1 V V P S,N (S = entropia vakio = adiabaattinen, palataan tähän) ` Lämpölaajenemiskerroin vakiopaineessa α = 1 V V T P,N 16

Lämpökapasiteetti Totuttu: lämpökapasiteetti on lämmitysenergia/lämpötilan muutos. Lämpö Q ei ole tilanmuuttuja, joten tämä ei riitä hyväksi termodynaamiseksi määritelmäksi (Q ei ole hyvin määritelty järjestelmän ominaisuus). Sen sijaan vakiotilavuudessa d Q dv =0 = de, joten määritellään Lämpökapasiteetti vakiotilavuudessa on sisäenergian muutos (vaste) lämpötilan (ulkoinen parametri) muuttuessa, olettaen että järjestelmä pidetään vakiotilavuudessa. C V = «E T V,N eli syst. vaste z } { d Q dv =0 = de = C V ulk. muutos z} { dt 17

Lämpökapasiteetti vakiopaineessa Jos nyt sähkövastuksella lämmitetään huoneilmaa, voidaanko käytää C V :tä lämpötilan laskemiseen? Ei, huoneilmassa P vakio, ja kaasu laajenee lämmetessään. (Myös kiinteät, nesteet, mutta paljon vähemmän.) Lämpökapasiteetti vakiopaineessa Laajeneminen vaatii energiaa (P dv ) = vakiopaineessa lämpötilan nostoon vaaditaan enemmän energiaa kuin vakiotilavuudessa. Isobaariselle prosessille määritellään lämpökapasiteetti vakiopaineessa C P : C P dt = d Q dp=0 = de + P dv = C P = «E + P T P,N joka kertoo tarvittavan lämmön määrän lämpötilan nostamiseksi vakiopaineessa. «V, T P,N 18

Ideaalikaasun lämpökapasiteetti Sisäenergia riippuu vain T :stä (ei V :stä eikä P:stä). E = 3 2 Nk BT = «E T V,N = «E T P,N = 3 2 Nk B V (P, T, N) = Nk B T P = P «V T P,N = Nk B Ideaalikaasun lämpökapasiteetit C V = 3 «3 2 Nk B C P = 2 + 1 Nk B = 5 2 Nk B γ = C P C V = 5 3 Tämä on adiabaattisessa tilanyhtälössä PV γ =vakio esiintyvä eksponentti. Tämä siis yksiatomiselle kaasulle, moniatomiselle 3 :n tilalla voi olla muu luku. 2 19

Osittaisderivaattaharjoituksia Osittaisderivaattapyöritystä Johdetaan relaatiota esim. responssifunktioiden välille. Esimerkkejä: oletetaan riippumattomat muuttujat x ja y, sekä z(x, y), w(x, y). «x = y z» «1 y x z Perustelu: ehto z=vakio kiinnittää käyrän x, y-tasossa, jolloin yhden muuttujan funktio y(x) tai x(y). Samoin x(w(y)): ««x x = y z w z «x y z «y z x Lasketaan dz(x, y) dx:n ja dy:n avulla. «w y z «z = 1 x y 20

Uusi tilanmuuttuja TD1:ssä esiintyvistä differentiaaleista d Q ja d W esitimme reversiibeleille prosesseille työn tilanmuuttujien avulla: P dv. Miten voisi tehdä saman lämmölle? Tarvitaan uusi TD suure S, joka Kuvaa atomaarisen tason epäjärjestystä eli lämpöliikettä On ekstensiivinen (kuten V ) On tilanfunktio, eli S(E, V, N) Tämä epäjärjestyksen mitta S on nimeltään entropia. S kasvaa, kun järjestelmään johdetaan lämpöä: d Q ds. Mikä on verrannollisuusikerroin? Yritetään arvailla. Liittyy lämpöön = mukana T. Kvanttimikrotilat: T pieni = melkein kaikki hiukkaset perustilalla. Pieni lämpö saa aikaan suuren epäjärjestyksen lisäyksen. T iso = epäjärjestys on valmiiksi suuri. Lisätty lämpö ei muuta paljoa. Yksinkertaisin yritys on itse asiassa oikea: ds rev. = d Q T Tämä ei ollut johto TD:ssä entropian käsite pitkällisen prosessin tulos SM:ssä määritellään ensin S, vasta sen avulla T 21

Entropia ensimmäisessä pääsäännössä TD1 reversiibelille prosessille Yleisessä tapauksessa myös hiukkasluku muuttuu, ja ensimmäinen pääsääntö esitetään yleensä muodossa: de = T ds P dv + µ dn Irreversiibeli muutos (Palataan taas tilanteeseen dn = 0) de = d W + d Q aina, energia säilyy de = T ds P dv aina, tilanmuuttujien välinen relaatio ei riipu tiestä d W > P dv irreversiibeli Näistä seuraa, että irreversiibelissä prosessissa d Q < T ds Kannattaa ajatella näin: reversiibelissä prosessissa entropia muuttuu vähiten 22

Lämmön siirtyminen, johdatusta toiseen pääsäntöön Tarkastellaan järjestelmiä: kuuma T h ja kylmä T c, välillä johtuu lämpöä. Arkikokemus: Kuuma kappale jäähtyy, kylmä lämpenee. Kaavana d Q h = d Q; d Q c = d Q > 0 Entropian avulla T h ds h = d Q; T c ds c = d Q z } { 1 Yhteenlaskettu entropia ds = ds h + ds c = 1 «z} { >0 d Q > 0 T c T h Vaihdetaan kuuma kylmä: edelleen ds > 0. Terminen tasapaino: T c = T h = ds = 0 Havaitaan: kokonaisentropia kasvaa, paitsi tasapainossa se ei muutu. Muistetaan myös Reversiibeli prosessi järjestelmä koko ajan tasapainossa Irreversiibeli prosessi entropia kasvaa enemmän kuin reversiibelissä >0 23

TD2 Termodynamiikan toinen pääsääntö Järjestelmän ja ympäristön kokonaisentropia ei voi pienentyä ds tot. 0 dt Yhtäsuuruus toteutuu vain reversiibelissä prosessissa = Tasapainotila on suurimman entropian tila Huom! Kokonaisentropia, järjestelmä + ympäristö. Filosofointia Newtonin mekaniikan maailmankuvalle outo tulos: mikroskooppiset lait eivät anna ajalle suuntaa. (Newtonin mekaniikka determinististä, voidaan kääntää maailmankaikkeus menemään taaksepäin.) Myöskin kvanttimekaniikassa dynamiikka on determinististä mutta epätarkkuusperiaatteesta saadaan vihje: aaltofunktiota ei voida mitata. Kysymys ei olekaan liikelaeista vaan tiedosta. Entropia mittaa epätietoisuutta mikrotilasta. Alussa mikrotilaa ei tunneta tarkasti; ajan kuluessa epätietoisuus lisääntyy. 24

Työtä lämmöksi, lämpöä työksi U E I On helppoa rakentaa kone, joka muuttaa työtä lämmöksi, esim. kitkan, resistanssin tms. välityksellä Entropian muutos ds = d Q T > 0 Voidaanko muuttaa lämpöä suoraan työksi? d Q < 0 d W > 0 = ei, entropia pienenisi. Jossain täytyy entropian kasvaa. = On oltava kylmä lämpövarasto, jota lämmitetään. Syklisyys Huom! Tässä puhutaan koko ajan koneesta, joka palaa prosessin jälkeen alkutilaan (syklinen prosessi); eli työtä ei tehdä konetta kuluttamalla. 25

Carnot n kone Ideaalinen eli tehokkain mahdollinen lämpövoimakone. Kaksi lämpövarastoa T > Q > Q < T < W Otetaan kuumasta (T >) lämpö Q > = T > S > Luovutetaan kylmään (T <) lämpö Q < = T < S < Kone tekee työn W = Q > Q < Entropia kasvaa: Q< T < Q> (Sijoitetaan Q < = Q > W, pieni manipulaatio). Saadaan hyötysuhde η W Q > T> T< T > T > 0. Carnot n ideaalikoneen hyötysuhde Ideaalikoneessa entropia säilyy, η suurin. Tämä tunnetaan Carnot n koneena, hyötysuhde η C = W Q > = T> T< T > 26

Jääkaappi, lämpöpumppu Vastaava lasku johtaa hyötysuhteisiin jääkaapille ja lämpöpumpulle Kylmästä (T <) lämpö Q < = T < S < T > Kuumalle (T >) lämpö Q > = T > S > Koneeseen tehtävä työ W = Q > Q < Q > Säiliöiden entropia: Q> T > Q< T < 0 W Jääkaappi Tarkoituksena jäähdytys, hyötysuhde Q < Q < W T < T > T < T < Lämpöpumppu Tarkoituksena lämmitys, hyötysuhde Q > W T > T > T < 27

Carnot n kone T, S-tasossa, ideaalikaasun P, V -tasossa S C B P A ds = 0 dt = 0 B D A ds = 0 D C dt = 0 (Pinta-ala=koneen Q > 0) T (Pinta-ala = koneen W > 0) V A B Tuodaan energiaa isotermisesti d Q = T AB S B C Jäähdytetään (laajennetaan) adiabaattisesti d Q = 0 C D Luovutetaan energiaa isotermisesti: d Q = T CD S D A Lämmitetään (puristetaan) adiabaattisesti d Q = 0 Pohdittavaa: Mikä on T.S-kuvaajassa Q >, Q < ja hyötysuhde? Miltä näyttää epäideaalinen kone? Miksi sen hyötysuhde on pienempi? 28

Entropian muutos lämmön johtumisessa Lämpökapasiteetit C A = C B = C T A T B Alussa T A, T B Lopussa T T T Energia säilyy: C A (T T A )+C B (T T B ) = 0 = T = T A + T B 2 Lasketaan reversiibelinä muutoksena Z S = S A + S B = A Z d Q T + B d Q T = C A Z T T A Z dt T T +C B T B dt T = C ln T 2 T A T B = C ln (T A + T B ) 2 4T A T B 0, koska (T A T B ) 2 = (T A + T B ) 2 4T A T B 0 29

Kaasujen sekoitusentropia A B A + B Z S = Z ds A + Kaksi ideaalikaasua A ja B, sama T, alussa paineet P A, P B ja tilavuudet V A, V B : Poistetaan väliseinä, annetaan sekoittua mitä tapahtuu entropialle? Irreversiibeli (miksi?), lasku reversiibelisti. Eristetty = de = 0, dt = 0; luonnollisesti de A,B = 0, dt A,B = 0. = T ds = P dv = Nk B T dv ; erikseen A:lle ja B:lle V ds B = N A k B Z VA +V B V A = N A k B ln dv V + N Bk B 1 + V B V A Z VA +V B V B «+ N B k B ln dv V 1 + V A V B «Tämä on ns. sekoitusentropia. Esim. V A = V B, S = (N A + N B )k B ln 2 Gibbsin paradoksi Entä jos A ja B samaa kaasua = mitään ei tapahdu, S = 0. Tulkinta? Kvanttimekaniikan ratkaisu: saman kaasun molekyylejä ei voi identifioida. 30

Lämmön johtuminen ja sekoitusentropia, huomioita Pohdittavaa: lämmön johtuminen prosessissa Mikä nyt on kokonaisuuden ja osien d Q = 0? A+B kokonaisuutena eristetty järjestelmä. Mikä on reversiibelissä prosessissa ds:n ja d Q:n suhde? Entä irreversiibelissä? Miksi nyt prosessi ei ole reversiibeli. Huomioita laskutekniikasta Entropian ekstensiivisyys: S = S A + S B Entropia tilanmuuttuja: riittää löytää joku tilanmuuttujien reversiibeli tie alkutilasta lopputilaan ja laskea sitä pitkin 31

TD3 Tähän asti on laskettu vain entropian muutoksia ds. Mistä voidaan tietää entropian arvo? (Eli integroimisvakio integraalissa S = R S ds? ) Oikea vastaus löytyy vasta SM:stä, mutta klassisessa TD:ssa sitä ei voida perustella mistään tähänastisesta; entropiassa voi aina olla joku mielivaltainen vakio. Kvanttisysteemillä (myös monen hiukkasen) on aina alin energiatila, perustila. Kun T 0, on järjestelmän oltava tässä tilassa. Yksi tila = ei epäjärjestystä, entropiaa. Saadaan TD3 Tunnetaan myös nimellä Nernstin teoreema lim S(T ) = 0 T 0 (Olettaen, että järjestelmällä on yksikäsitteinen eli degeneroitumaton energian alin taso, perustila. ) 32

Klassisen ideaalikaasun entropia Pidetään N vakiona: de = 3 2 Nk B dt = T ds P dv Z P dv = S = + 3 Z T 2 T =vakio V =vakio Nk B dt T»Z dv = Nk B V + 3 Z 2 dt T = Nk B» ln V V 0 + 3 2 ln T T 0 + S 0 Huomioita Integroimisvakiot jäävät määräämättä T 0, V 0, S 0 Pitäisi ottaa TD3:sta (S(T = 0) = 0), mutta ei voida logaritmin takia! = Klassinen ideaalikaasu ristiriitainen T 0! Tarvitaan kvanttimekaaninen mikroskooppinen kuvaus. Tähän palataan kurssin B-osassa Klassisen TD:n laskuissa esiintyy vain entropian muutoksia, ongelma TD3:n kanssa tulee vasta mikroskooppisessa kuvauksessa 33

Kolmas pääsääntö ja lämpökapasiteetti Tarkastellaan entropian muutosta lämmityksessä (vakiotilavuudessa): S(T 1 ) S(T 0 ) = Z T1 T 0 ds = = Z T1 T 0 Z T1 d Q T dt C V (T ) T 0 T Miettimällä integraalin konvergenssia päätellään, että S(T 1 ) <, kun T 0 0 C V (T ) 0, kun T 0 Klassiselle ideaalikaasulle C V = 3 2 Nk B Taas nähdään, että klassinen ideaalikaasu on ristiriidassa TD3:n kanssa. 34