Luokitettujen aineistojen analysointi



Samankaltaiset tiedostot
Regressioanalyysi. Vilkkumaa / Kuusinen 1

Testejä suhdeasteikollisille muuttujille

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Kuusinen/Heliövaara 1

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia

Maximum likelihood-estimointi Alkeet

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Load

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Sovellettu todennäköisyyslaskenta B

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

3.6 Su-estimaattorien asymptotiikka

Testit laatueroasteikollisille muuttujille

Matematiikan tukikurssi

Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61

805306A Johdatus monimuuttujamenetelmiin, 5 op

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

4.0.2 Kuinka hyvä ennuste on?

Väliestimointi (jatkoa) Heliövaara 1

Epäyhtälöt ovat yksi matemaatikon voimakkaimmista

1 Rajoittamaton optimointi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

5.7 Uskottavuusfunktioon perustuvia testejä II

1. Tilastollinen malli??

pitkittäisaineistoissa

Harjoitus 7: NCSS - Tilastollinen analyysi

Yleistetyistä lineaarisista malleista

Mat Tilastollisen analyysin perusteet, kevät 2007

Kaksisuuntainen varianssianalyysi. Heliövaara 1

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2

Sovellettu todennäköisyyslaskenta B

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Tilastollinen päättely II, kevät 2017 Harjoitus 2A

Ilkka Mellin (2008) 1/5

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Todennäköisyyden ominaisuuksia

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia

Osa 2: Otokset, otosjakaumat ja estimointi

Sovellettu todennäköisyyslaskenta B

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

805306A Johdatus monimuuttujamenetelmiin, 5 op

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista?

pitkittäisaineistoissa

Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1

Mat Tilastollisen analyysin perusteet, kevät 2007

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Sovellettu todennäköisyyslaskenta B

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Johdatus tn-laskentaan perjantai

Estimointi. Vilkkumaa / Kuusinen 1

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Testit järjestysasteikollisille muuttujille

tilastotieteen kertaus

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

Mat Tilastollisen analyysin perusteet, kevät 2007

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

2. Uskottavuus ja informaatio

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

Todennäköisyyslaskun kertaus. Heliövaara 1

Yleistetyn lineaarisen mallin perusteita

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Sovellettu todennäköisyyslaskenta B

k S P[ X µ kσ] 1 k 2.

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

pisteet Frekvenssi frekvenssi Yhteensä

Tilastollinen aineisto Luottamusväli

T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1

Inversio-ongelmien laskennallinen peruskurssi Luento 7

Vastepintamenetelmä. Kuusinen/Heliövaara 1

D ( ) E( ) E( ) 2.917

Johdatus regressioanalyysiin. Heliövaara 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Harjoitus 2: Matlab - Statistical Toolbox

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

30A02000 Tilastotieteen perusteet

Transkriptio:

Luokitettujen aineistojen analysointi (805334A/805678S) luentomuistiinpanot syksyllä 2007 Markku Rahiala

1 JOHDANTO 1.1 Diskreetteihin muuttujiin liittyvää todennäköisyyslaskentaa Kuten Tilastotieteen perusteet- kurssilla aikanaan määriteltiin, tarkoitetaan diskreetillä satunnaismuuttujalla muuttujaa, jolla on vain äärellinen tai korkeintaan numeroituva määrä erilaisia mahdollisia arvoja. Niinpä diskreetin satunnaismuuttujan X jakauma voidaankin esittää kaikkein luontevimmin ns. pistetodennäköisyyksien p j = P (X = x j ) j =1, 2,... avulla. Symbolit x 1,x 2,... tarkoittavat X:n mahdollisia arvoja ja niiden muodostamaa joukkoa S X = {x j } sanotaan X:n supportiksi. (Huom.: Arvot x j eivät välttämättä ole reaalilukuja.) Mikäli x j :t ovat jonkin vektoriavaruuden alkioita, voidaan X:n odotusarvo määritellä muodossa EX = j p j x j. (1.1) Samaan tapaan voidaan tietysti laskea myös X:n erilaisten funktioiden odotusarvoja Eg(X) = j p j g(x j ), (1.2) joista esimerkkinä mainittakoon var(x) = E(X EX) 2 = j p j (x j EX) 2 = j 2 p j x 2 j p j x j. j Aikaisemmilla kursseilla on jo esitelty ns. Poisson- jakauma, jonka pistetodennäköisyydet ovat muotoa p j = P (X = x j )= λj j! e λ j =0, 1, 2,... (1.3) jossa λ>0 on parametrin asemassa. Tälle jakaumaperheelle löytyy paljon käyttöä tälläkin kurssilla, sillä erilaiset havaitut frekvenssit ovat aina ei-negatiivisia kokonaislukuja. Palautettakoon mieliin, että Poisson- muuttujan X odotusarvo ja varianssi ovat EX = λ ja var(x) = λ. Toinen keskeinen jakaumatyyppi tällä kurssilla tulee olemaan ns. multinomijakauma: Ajatellaan, että n- kertaisen toistokokeen jokaisella koetoistolla on k 1

erilaista tulosvaihtoehtoa. Merkitään symbolein X 1,..., X k kunkin tulostyypin lukumäärää n toistossa. (Tällöin tietysti aina X 1 +... + X k n.)kombinatorisin perustein on helppo todeta, että ainoa tilanteeseen sopiva jakaumamalli on seuraavaa muotoa: Merkitään tulosvaihtoehtojen todennäköisyyksiä kussakin koetoistossa symbolein p 1,..., p k ( p 1 +... + p k =1) ja asetetaan P (X 1 = x 1,..., X k = x k ) = n! x 1! x k! px1 1 px k k (1.4) kun x 1 +... + x k = n, x j N, j =1,..., k. Todennäköisyydet p 1,..., p k ovat tässä tapauksessa parametrien asemassa. Jos k =2, voidaan ajatella, että toinen tulosvaihtoehdoista vastaa kokeen onnistumista ja toinen epäonnistumista. Tällöin tilanne on aivan saman kaltainen kuin binomijakaumaa johdettaessa. Näin ollen on luonnollista, että (1.4):n mukaan tällöin P (X 1 = x 1 ) = P (X 1 = x 1,X 2 = n x 1 ) = n! x 1!(n x 1 )! px1 1 (1 p 1) n x1 kun x 1 N, 0 x 1 n. Multinomijakauma on siis vain binomijakauman luonteva yleistys tilanteeseen, jossa tulosvaihtoehtoja on enemmän kuin kaksi. Binomijakauman ominaisuuksiin vedoten on helppo todeta, että EX j = np j ja var(x) =np j (1 p j ) j =1,..., k. (1.5) Lisäksi voidaan todeta, että joten EX i X j = n(n 1)p i p j cov(x i,x j )=EX i X j EX i EX j = np i p j. (1.6) Niinikään binomijakaumatulkintaan perustuen voidaan todeta, että järkevin tapa estimoida todennäköisyysparametrit p j on ilmeisesti käyttää estimaattoreita p j = X j n, j =1,..., k, (1.7) ts. eri tulosvaihtoehtojen koetoistosarjassa havaittuja suhteellisia frekvenssejä. 2

1.2 2 x 2 kontingenssitaulukot Ajatellaan, että n koehenkilöstä osa altistuu tekijälle A, jonka epäillään lisäävän sairauden S vaaraa. Seurataan koehenkilöiden kohtaloita jonkin aikaa ja katsotaan, ketkä sairastuvat tautiin S seuranta-ajan kuluessa. Tulokset on luontevinta esittää 2 x 2- taulukon muodossa Sairastuminen S S Altis- A N AS N A S N A tus Ā N ĀS N Ā S N Ā N S N S n Tällaisia taulukoita sanotaan kontingenssitaulukoiksi. On helppo huomata, että tilanne on juuri sellainen, jota kuvaamaan multinomijakauma konstruoitiin. Vaikka kyseessä tällä kertaa onkin kahden kaksiarvoisen muuttujan yhteisjakauma, on multinomijakauma tietysti ainoa luonteva malli tilanteelle. Jakauman todennäköisyysparametreista voidaan muodostaa vastaava taulukko Sairastuminen S S Altis- A p AS p A S p A tus Ā p ĀS p Ā S p Ā p S p S 1 Tämän yhteisjakauman puitteissa voidaan tietysti tarkastella myös ehdollisia todennäköisyyksiä p S A = p AS p AS = p A p AS + p A S ja p S Ā = pās p Ā p ĀS = p ĀS + p Ā S joita kutsutaan sairastumisriskeiksi (tai sairastumisvaaroiksi) altistuneille ja altistumattomille koehenkilöille. Riskin asemasta voidaan voidaan sairastumisalttiutta mitata myös ns. oddseilla o A = p S A = p S A = p AS p S A 1 p S A p A S ja o Ā = p S Ā = p S Ā = pās p S Ā 1 p S Ā p Ā S. 3

Altistuneiden ja altistumattomien henkilöiden sairastumistaipumuksia voidaan vertailla keskenään ainakin seuraavilla tunnusluvuilla: 1 o Riskiero (risk difference) RD = p S A p S Ā 2 o Riskisuhde (risk ratio) RR = p S A p S Ā 3 o Odds ratio OR = o A = p AS pā S, o Ā p A S p ĀS jota joskus kutsutaan myös ristitulosuhteeksi. Nähdään heti, että OR = RR 1 p S Ā 1 p S A, joten OR ja RR ovat hyvin lähellä toisiaan, mikäli tauti on harvinainen. Esimerkki 1.1: Tarkastellaan seurantatutkimusta, jossa runsaasta 22000 koehenkilöstä puolet arvottiin hoitoryhmään, puolet kontrolliryhmään. Hoitoryhmälle syötettiin aspiriinia, kontrolliryhmälle plaseboa. Seuranta-ajan kuluessa ilmenneet sydäninfarktitapaukset rekisteröitiin seuraavin tuloksin: Sydäninfarkti Kyllä Ei Hoi- Aspirin 104 10933 11037 to Plasebo 189 10845 11034 293 21778 22071 Käyttämällä sellitodennäköisyyksien estimaattoreina vastaavia suhteellisia frekvenssejä (1.7) saadaan ristitulosuhteen estimaatiksi 104 10845 ÔR = 10933 189 =0.546, joten aspiriinipotilaiden odds saada sydäninfarkti on lähes puolta pienempi kuin plaseboryhmällä. Infarktiriskien estimaatit olisivat p S A = 104 =9.4 10 3 11037 ja p S Ā = 189 11034 =17.1 10 3, joten riskisuhteeksi saadaan RR =0.549 ja riskieroksi RD = 7.7 10 3. 4

Todettakoon vielä, että mikäli p S A = p S Ā, sanotaan sairastumisen olevan altistumisesta riippumatonta. Tällöin olisi tietysti RD = 0 ja RR = OR = 1. 1.3 K x L- kontingenssitaulut Ajatellaan nyt yleisemmin kahta diskreettiä satunnaismuuttujaa X ja Y, joiden mahdollisia arvoja merkitään symbolein x 1,..., x K ja y 1,..., y L. Merkitään muuttujien yhteisjakauman pistetodennäköisyyksiä symbolein p ij = P (X = x i, Y = y j ), i =1,..., K, j =1,..., L (1.8) ja reunajakaumien pistetodennäköisyyksiä symbolein L p i = P (X = x i )= j=1 K p j = P (Y = y j )= i=1 p ij, i =1,..., K, p ij, j =1,..., L. (1.9) Jos muuttujista X ja Y on saatu n toisistaan riippumatonta havaintoa, on havaintoaineisto kaikkein taloudellisimmin esitettävissä frekvenssitaulukon Y y 1... y L x 1 N 11... N 1L N 1 X.............. x K N K1... N KL N K N 1... N L n muodossa. Tällaisia frekvenssitaulukoita sanotaan kontingenssitaulukoiksi. Ainoa järkevä jakaumamalli frekvenssien N 11,..., N KL yhteiskäyttäytymiselle on luonnollisesti multinomijakauma (1.4) todennäköisyyksin p 11,..., p KL ja koetoistojen lukumääränä n. Mikäli yhteisjakauman pistetodennäköisyyksistä ei tehdä 5

p ij :t luontevinta estimoida vastaavilla suh- mitään rajoittavia lisäoletuksia, on teellisilla frekvensseillä (1.7): p ij = N ij n, i =1,..., K, j =1,..., L. Kuten Tilastotieteen perusteet- kurssilla opetettiin, sanotaan satunnaismuuttujia X ja Y toisistaan riippumattomiksi ( X Y ), joss (jos ja vain jos) p ij = p i p j i =1,..., K, j =1,..., L. (1.10) Toisaalta µ ij = E(N ij )=np ij tuloksen (1.5) mukaisesti. Logaritmoimalla µ ij saadaan siis log µ ij = log n + log p ij = log n + log p i + log p j + ξ ij kullekin i =1,..., K, j =1,..., L, (1.11) kun otetaan käyttöön merkinnät ξ ij = log ( pij p i p j ). Hajoitelma (1.11) tuo etsimättä mieleen tavallisen kaksisuuntaisen varianssianalyysimallin. Huomattakoon, että (1.10):n mukaan X:n ja Y :n välinen riippumattomuus vastaa kaikkien interaktiotermien ξ ij häviämistä. Tämä havainto tulee olemaan varsin keskeisessä asemassa tällä kurssilla, sillä sen turvin varianssianalyysistä tuttua puhe- ja ajattelutapaa voidaan käyttää hyväksi diskreettien muuttujien välisiä riippuvuuksia tutkittaessa. (Myös log p ij - lukujen profiilikuvioita voidaan tulkita paljolti samaan tapaan kuin keskiarvoprofiileita varianssianalyysin yhteydessä.) Miten sitten riippuvuuden voimakkuutta voidaan mitata? Ajatellaan aluksi, että X ja Y olisivat nominaaliasteikollisia muuttujia, ts. että luokkien välillä olisi 6

vain laadullisia eroja. Eräänlaiseksi assosiaatiomitaksi (riippuvuusmitaksi) kelpaisi varmasti ainakin tuttu χ 2 - testisuure χ 2 = K L i=1 j=1 (N ij n p i p j ) 2 n p i p j, (1.12) jota peruskurssilla käytettiin X:n ja Y :n välisen riippumattomuuden testaamiseen. Sillä on kuitenkin se huono puoli, että sen jakauma (ja niin ollen sen suuruusluokka) riippuu voimakkaasti luokkien lukumääristä K ja L. Herää kysymys, voitaisiinko assosiaation voimakkuutta mitata jollakin helpommin tulkittavalla, mieluiten välillä [0, 1] vaihtelevalla mittarilla. Mukavinta olisi, mikäli mittari tietyssä mielessä muistuttaisi regressioanalyysistä tuttua yhteiskorrelaatiokertoimen neliötä R 2. Kirjallisuudessa on ehdotettu kahtakin tällaista mittaria, ns. Goodmanin ja Kruskalin τ:ta τ = K L 1 i=1 j=1 p i p 2 ij L j=1 p2 j 1 L j=1 p2 j (1.13) sekä ns. epävarmuuskerrointa U = K L i=1 j=1 p ij p i p j p ij log L. (1.14) j=1 p j log p j (Mittalukuja (1.13) ja (1.14) laskettaessa p ij :t korvataan estimaattoreillaan p ij = Nij n, ts. suhteellisilla frekvensseillä.) On helppo todeta, että 0 τ 1 ja 0 U 1. Jos X Y,on τ =0 ja U =0. 1.4 K x L- taulukot, kun luokittelijat ovat järjestysasteikollisia Jos edellä hahmotellun kaksiulotteisen taulukon muodostaneet luokittelijat X ja Y ovat nominaalisia, ei mahdollisen riippuvuuden suunnasta tai monotonisuudesta voida tietenkään sanoa mitään. Jos taas sekä X että Y ovat ordinaalisia (järjestysasteikollisia), voidaan järkevästi mitata sekä mahdollisen riippuvuuden voimakkuutta että sen suuntaa. On jopa mahdollista konstruoida riippuvuusmittoja, jotka luonteeltaan muistuttavat jonkin verran tavallista korrelaatiokerrointa. Kontingenssitaulukoiden yhteydessä käytettäväksi sopii parhaiten ns. 7

Goodmanin ja Kruskalin γ: Ajatellaan, että tarkasteltavasta perusjoukosta valitaan umpimähkään kaksi havaintoa, ( X 1 Y 1 ) ja ( X 2 Y 2 ). Havaintoparia sanotaan X:n ja Y :n suhteen konkordantiksi, jos joko tai X 1 <X 2 ja Y 1 <Y 2 X 1 >X 2 ja Y 1 >Y 2. Paria sanotaan vastaavasti diskordantiksi, jos joko tai X 1 <X 2 ja Y 1 >Y 2 X 1 >X 2 ja Y 1 <Y 2. Huomattakoon, että jos jompi kumpi muuttujista X ja Y saa saman arvon molemmissa havaintoyksiköissä, ei pari ole sen paremmin konkordantti kuin diskordanttikaan. Todennäköisyys, jolla umpimahkään valittu pari on konkordantti, on selvästikin muotoa K L Π C = 2 p ij p kl. i=1 j=1 k>i l>j Vastaavasti diskordantin parin valintatodennäköisyys on K L Π D = 2. i=1 j=1 p ij k>i l<j p kl Goodmanin ja Kruskalin γ määritellään seuraavasti: γ = Π C Π D Π C +Π D. (1.15) Selvästikin 1 γ 1 ja γ =0, jos X Y. Kun γ:aa estimoidaan havaintoaineiston perusteella, korvataa p ij :t vastaavilla suhteellisislla frekvensseillä p ij = Nij n. Tällöin on helppo huomata, että γ:n lauseketta voidaan supistaa 2n 2 :lla, jolloin saadaan jossa C = K L i=1 j=1 N ij k>i l>j γ = N kl C D C + D, (1.16) = konkordanttien parien lukumäärä havaintoaineistossa 8

ja K L D = i=1 j=1 N ij k>i l<j N kl = diskordanttien parien lukumäärä havaintoaineistossa. Esimerkki 1.2: EK (Elinkeinoelämän keskusliitto) järjestää jäsenilleen neljännesvuosittain kyselyn, jossa kysellään kaikenlaisia tuotannon määrän, työtekijämäärän, tilauskannan ym. kehitykseen liittyviä odotuksia sekä vastaavia toteutumia viimeksi kuluneen vuosineljänneksen osalta. Kysymysten vastausvaihtoehdot ovat kolmiarvoisia, kasvanut / pysynyt ennallaan / vähentynyt, joten vastausvaihtoehtojen välillä on päivänselvä järjestys. Yhdistämällä nousuhdannevuosien 1980 ja 1985 kaikki kyselyt yhteen saatiin metalliteollisuusyritysten vastauksista seuraava frekvenssitaulukko: Työvoiman määrä Kasvanut Pysynyt ennallaan Vähentynyt Tuo- Kasvanut 173 161 43 tannon Pysynyt ennallaan 92 318 59 määrä Vähentynyt 6 64 58 Konkordanttien parien lukumääräksi saadaan C = 173 (318 + 59 + 64 + 58) + 161 (59 + 58) + 92 (64 + 58) + 318 58 = 134832 ja doskordanttien parien määräksi D =43 (92 + 318 + 6 + 64) + 161 (92 + 6) + 59 (6 + 64) + 318 6 = 42456. Goodmanin ja Kruskalin gammaksi saadaan siis γ = C D C + D = 0.52, joten tuotannon määrän ja työvoiman määrän kehityksen välillä näyttää vallitsevan kohtalainen positiivinen assosiaatio. Ohjelmallisesti Goodmanin ja Kruskalin gamma on kenties helpointa laskea R:n avulla esimerkiksi seuraavalla tavalla: 9

R-koodi: > SB<-as.matrix(read.table("c:/mr/data/SBMet.tab")) > SB V1 V2 V3 1 173 161 43 2 92 318 59 3 6 64 58 > concordant <- function(x) { tablowright <- function(r, c) {lr <- x[(nrows > r) & (ncols > c)] sum(lr) } nrows <- row(x) ncols <- col(x) sum(x * mapply(tablowright, r = nrows, c = ncols)) } > discordant <- function(x) { tablowleft <- function(r, c) {ll <- x[(nrows > r) & (ncols < c)] sum(ll) } nrows <- row(x) ncols <- col(x) sum(x * mapply(tablowleft, r = nrows, c = ncols)) } > > C <- concordant(sb) > D <- discordant(sb) > gamma <- (C - D) / (C + D) > C [1] 134832 > D [1] 42456 > gamma [1] 0.5210505 > 10

1.5 Erilaiset havainnointiasetelmat Palataan nyt luvussa 1.3 esitellyn K x L- frekvenssitaulukon erilaisiin analysointitapoihin. Aluksi on tärkeätä huomata, että tällaisen aineiston syntytapa voi edustaa ainakin kolmea, toisistaan selvästi poikkeavaa tyyppiä: 1 o Jos mikään taulukon marginaalifrekvensseistä ei ole kiinnitetty, on eri ruutujen ( sellien ) frekvenssit N ij luontevinta olettaa toisistaan täysin riippumattomiksi. Ajatellaan esimerkkinä aineistoa, joka koostuu noin 550 tiepätkällä vuosina 1981-86 sattuneista, kuolemaan johtaneista liikenneonnettomuuksista. Jaetaan tiepätkät ryhmiin toisaalta liikennesuoritteen, toisaalta raskaan liikenteen osuuden perusteella. Tällöin mitään onnettomuusmääriä ei ole etukäteen valittu, ja eri tiepätkillä sattuneita onnettomuusmääriä voidaan epäilemättä pitää toisistaan riippumattomina. Koska frekvenssit ovat aina luonnollisia lukuja, tulee etsimättä mieleen käyttää niiden käyttäytymisen kuvaamiseen Poisson- jakaumamallia N ij Poisson(µ ij ) N ij :t toisistaan riippumattomia µ ij :t vaihtelevat jollakin tietyllä tavalla liikennesuoritteen i ja raskaan liikenteen osuuden j mukaisesti Mallin mukaan olisi P (N 11 = n 11,..., N KL = n KL ) = K L i=1 j=1 µ nij ij n ij! e µij. (1.17) 2 o Jos havaintojen kokonaismäärä n on kiinnitetty, on aikaisemmin selitettyyn tapaan luontevinta ajatella, että kukin yksilö (tai havaintoyksikkö) joutuu ruutuun i, j todennäköisyydellä p ij toisten yksilöiden kohtaloista riippumatta. Tällöin ainoa järkevä malli olisi multinomijakaumamalli n! P (N 11 = n 11,..., N KL = n KL ) = n 11! n KL! pn11 pnkl KL, kun n 11 +... + n KL = n. (1.18) Esimerkkinä voidaan ajatella taulukkoa, joka syntyy, kun 3242 miespuolisen koehenkilön oikean ja vasemman silmän näkökyky mitataan ja luokitetaan neljään vaihtoehtoiseen luokkaan (paras kategoria / toiseksi paras / kolmanneksi paras / huonoin kategoria): Vasen silmä paras 2. paras 3. paras huonoin Oi- paras 821 112 85 35 kea 2. paras 116 494 145 27 sil- 3. paras 72 151 583 87 mä huonoin 43 34 106 331 Yhteensä 3242 11

3 o Kolmantena vaihtoehtona voidaan ajatella tilannetta, jossa esimerkiksi vaakarivimarginaalifrekvenssit N i = n i (i =1,..., K) on kiinnitetty. Esimerkkinä voidaan ajatella vaikkapa aineistoa, joka saatiin, kun 280 koehenkilöä jaettiin kahteen yhtä suureen ryhmään ja toiselle syötettiin C- vitamiinia yhden gramman päiväannoksina, toiselle taas plaseboa. Koehenkilöitä seurattiin kahden viikon ajan, jonka jälkeen laskettiin, kuinka monella oli ilmennyt vilustumisoireita ja kuinka monella ei. Vilustumis- Ei vilustumis- Yhoireita oireita teensä Plasebo 31 109 140 C- vitamiini 17 122 139 Tämän kaltaisessa tilanteessa on luontevinta käyttää omaa multinomijakaumamallia jokaisen vaakarivin frekvensseille 279 P (N i1 = n i1,..., N il = n il ) = n i! n i1! n il! pni1 pnil il, kun n i1 +... + n il = n i, i =1,..., K. Lisäksi on luontevaa ajatella, että eri vaakariveillä olevat frekvenssit olisivat täysin toisistaan riippumattomia. Kaikkien frekvenssien yhteiset pistetodennäköisyydet saadaan tällöin tulosääntöä noudattaen P (N 11 = n 11,..., N KL = n KL ) = K i=1 = n 1! n K! n! n i! n i1! n il! pni1 pnil il, n! n 11! n KL! pn11 11 pnkl KL. (1.19) Syvennytään nyt hetkeksi tilastollisen päättelyn perusperiaatteisiin toteamalla, että se, mitä parametreista voidaan havaintojen perusteella päätellä, määräytyy sen mukaan, miten parametreissa tapahtuvat muutokset vaikuttavat havaintojen käyttäytymiseen. Diskreettejä muuttujia tarkasteltaessa on havaintojen käyttäytyminen helpoimmin luonnehdittavissa pistetodennäköisyyksien P (p11,...,pkl) (N 11 = n 11,..., N KL = n KL ) avulla. Se, miten nämä pistetodennäköisyydet käyttäytyvät parametrien p 11,..., p KL funktiona, ratkaisee, millaisia johtopäätöksiä parametreista voidaan havaintojen perusteella vetää. Tällä funktiolla on oma hieno nimikin, sitä sanotaan havaintojen määräämäksi likelihood- funktioksi 12

L n11,...,n KL (p 11,..., p KL ) = P (p11,...,pkl) (N 11 = n 11,..., N KL = n KL ). Tällä tavalla ajatellen tuntuu täysin luonnolliselta ajatella, että mikäli kahden havaintoaineiston määräämät likelihood- funktiot ovat samat (ts. suoraan verrannolliset toisiinsa), pitäisi aineistojen perusteella parametreista tehtävien päätelmien myöskin olla samoja. Tätä periaatetta kutsutaan likelihood-periaatteeksi. (Huom.: Likelihood- funktiossa on tärkeätä vain sen muoto; vakiotermillä funktion edessä ei ole mitään merkitystä.) Tämän periaatteen mukaisesti on helppo todeta, että kaikkia havainnointiasetelmia 1 o 3 o voidaan käsitellä samalla tavalla. Kaavoissa (1.18) ja (1.19) todettiin, että asetelmiin 2 o ja 3 o liittyvät likelihood- funktiot ovat keskenään saman muotoisia. Lisäksi (1.18) voidaan kirjoittaa vaihtoehtoiseen muotoon merkitsemällä µ ij = np ij : P (N 11 = n 11,..., N KL = n KL ) = n! n 11! n KL! = n! n n e n K K L i=1 j=1 L i=1 j=1 p nij ij µ nij ij n ij! e µij, (1.20) sillä µ 11 +... + µ KL = n (p 11 +... + p KL )=n. Tämä osoittaa, että myös asetelmaan 1 o liittyviä havaintoja voidaan käsitellä kohtien 2 o ja 3 o tavoin, koska havaintojen määräämät likelihood- funktiot ovat samat. 13

1.6 ML- ja LR- periaatteet Korostettakoon aluksi, että valitun malliperheen parametrointi voidaan aina suorittaa lukemattomilla eri tavoilla; esimerkiksi multinomijakaumien (toistojen lukumääränä n) muodostama perhe voidaan parametroida joko sellitodennäköisyyksien p 11,..., p KL (p 11 +... + p KL =1) avulla tai aivan yhtä hyvin selliodotusarvojen µ 11,..., µ KL (µ 11 +... + µ KL = n) avulla, sillä µ ij = np ij. Jatkossa käytetään ehkä eniten odotusarvoihin liittyvää parametrointia. Kaavojen yksinkertaistamiseksi otetaan käyttöön merkinnät µ =(µ 1... µ p ), µ = µ(θ), θ Θ R p jossa θ sisältää kaikki oleelliset (vapaat) parametrit. Lisäksi merkitään N =(N 11... N KL ). Tällöin likelihood- funktiota voidaan merkitä lyhyesti symbolilla L N (θ) =L N(µ(θ)), ja se siis kertoo, kuinka suurella todennäköisyydellä kukin malliperheen jäsen voisi tuottaa juuri havaitut havainnot. Voidaan tietysti ajatella, että L N (µ) samalla kertoo, kuinka uskottavalta kukin malliperheen jäsen havaintojen valossa näyttää. (Tästä juontaa juurensa likelihood- funktion nimi.) Määritelmä 1.1: Ns. maximum likelihood- (ML-) estimointiperiaatteella tarkoitetaan seuraavaa menettelytapaa: Käytetään µ:n estimaattina (arviona) sitä malliperheeseen kuuluvaa parametriarvoa, johon liittyvä jakauma voisi tuottaa juuri saadut havainnot muita malliperheen jäseniä suuremmalla todennäköisyydellä. Tämä luontevan tuntuinen periaate johtaa seuraavaan menettelyyn: Muodostetaan havaintojen määräämä likelihood- funktio L N (µ). Haetaan L N (µ) funktion maksimi µ:n suhteen malliperheen puitteissa ja merkitään sitä µ(n):llä. Näin määriteltyä havaintojen funktiota µ = µ(n) sanotaan µ:n ML- estimaattoriksi. Määritelmä 1.2: K x L- frekvenssitaulukon kuvaamiseen käytettävää multinomijakaumamallia, jossa parametrien µ ij välille ei ole asetettu mitään muita kytkentöjä kuin ehto µ 11 +... + µ KL = n, sanotaan saturoiduksi (kyllästetyksi) malliksi. (Jokaista sellifrekvenssiä kohti on ikioma parametri, joten oleellisten 14

parametrien määrää ei tästä enää voitaisi lisätä.) Esimerkki 1.3: ovat muotoa Saturoidun multinomijakauman parametrien ML- estimaattorit µ ij = N ij ja p ij = N ij n. Tämä nähdään helpoimmin tarkastelemalla likelihood- funktion logaritmia log L N (µ) log K L i=1 j=1 ( µij ) Nij n K L = K L log n + i=1 j=1 N ij log µ ij = K L log n + (i j) (K L) N ij log µ ij + N KL log n µ ij (i j) (K L). Tällöin log L N (µ) µ ij = N ij µ ij N KL µ KL kun (i j) (K L), joten kaikki osittaisderivaatat ovat nollia, kun N ij µ ij = vakio kaikilla i =1,..., K, j =1,..., L. Tästä seuraa, että µ ij = N ij, joten samalla p ij = N ij n. Määritelmä 1.3: Olkoon x =(x 1... x p ) R p mielivaltainen vektori. Ajatellaan, että kuvauksen g : R p R q, g(x) =(g 1 (x)... g q (x)) komponenttifunktioiden ensimmäiset osittaisderivaatat ovat hyvin määriteltyjä ja jatkuvia. 15

Derivaattamatriisilla Dg(x) tarkoitetaan tällöin osittaisderivaatoista muodostuvaa q x p- matriisia g 1(x) x 1... Dg(x) =.......... g q(x) x 1... g 1(x) x p g q(x) x p. Huomautus 1.1: On helppo todeta, että yhdistetyn funktion f g(x) =f(g(x)) derivaattamatriisi on muotoa Df g(x) = Df(g(x)) Dg(x), (1.21) mikäli se on hyvin määritelty. Koulusta tuttu yhdistetyn funktion derivoimissääntö pätee siis myös vektoriarvoisille funktioille! Määritelmä 1.4: Havaintojen sisältämän, parametreja koskevan informaation määrää mittaavaksi informaatiomatriisiksi sanotaan p x p- matriisia I(θ) =cov(d θ log L N(θ) ). (1.22) Huomautus 1.2: Koska helposti voidaan osoittaa, että ED θ log L N (θ) =0, on itse asiassa I(θ) = ED θ log L N(θ) D θ log L N(θ) Lisäksi I(θ) = ( E ) log L θ N(θ) log L j θ N(θ) k voidaan lausua myös muodossa I(θ) = E D 2 θ log L N (θ). (1.23) = ) ( E 2 log L N θ j θ (θ) k. (1.24) 16

Kuten valtaosa kuulijoista varmasti jo tietää, asettaa I(θ) 1 rajat sille, miten tarkasti θ:n estimointi (virhevarianssin mielessä) voi ylipäätään onnistua, sillä E( θ θ)( θ θ) I(θ) 1, olipa θ mikä tahansa θ:n harhaton estimaattori. Merkitään nyt I 1 (θ) = 1 n I(θ), jolloin I 1(θ) mittaa siis informaation määrää havaintoyksikköä kohti laskettuna. Koska olemme olettaneet havaintoyksiköiden kohtalot toisistaan riippumattomiksi, ei I 1 (θ) siis riipu lainkaan n:stä. Voidaan osoittaa, että lievin likelihood- funktiota koskevin säännöllisyysoletuksin pätee ML- estimaattorien otantajakaumaa koskeva asymptoottinen tulos n ( θ θ) asympt. N p (0, I 1 (θ) 1 ). (1.25) Sama tulos voidaan kirjoittaa myös hieman epätäsmällisempään muotoon θ asympt. N p ( θ, I(θ) 1 ). Tästä nähdään, että ML- estimointiperiaate hyödyntää käytettävissä olevan havaintoinformaation asymptoottisesti optimaalisella tavalla. Näin ollen ML- estimaattorien sanotaan olevan asymptoottisesti tehokkaita. Saman tien voidaan todeta, että parametrijohdannaisen f(θ) R q ML- estimaattoriksi saadaan automaattisesti f( θ), jonka asymptoottinen otantajakauma on myöskin helppo selvittää. Koska ( ) 1 n (f( θ) f(θ)) = ndf(θ) ( θ θ)+op n, on n (f( θ) f(θ)) asympt. N q (0, Df(θ)I 1 (θ) 1 Df(θ) ). (1.26) ( ) 1 Tässä geneerinen symboli O P n tarkoittaa mitä tahansa satunnaismuuttujaa ( )) 1 (tai -jonoa), jolle lim n n var (O P n on äärellinen, positiivinen vakio. Tulokseen (1.26) liittyvää mahdollisuutta approksimoida kovarianssimatriisia cov(f( θ)) matriisilla Df(θ)I(θ) 1 Df(θ) sanotaan delta- menetelmäksi. 17

Esimerkki 1.4: Tarkastellaan luvussa 1.2 esiteltyä 2 x 2- taulukkoa ja ajatellaan, että sekä altistettuja että altistamattomia koehenkilöitä on valittu n o = 1 2 n kappaletta. Tällöin sairastumistodennäköisyyksien ML- estimaattorit kummassakin ryhmässä ovat p AS = N AS ja p n ĀS = NĀS. o n o Nämä estimaattorit ovat tietenkin toisistaan riippumattomia, ja toisaalta var ( p AS )= p AS(1 p AS ) n o ja var ( p ĀS )= pās (1 p ĀS ) n o. Tästä voidaan päätellä, että informaatiomatriisin inverssi on muotoa I 1 (p AS,p ĀS ) 1 = 1 ( ) pas (1 p AS ) 0. n o 0 p ĀS (1 p ĀS ) Odds ration logaritmin log (OR) = log [ pas 1 ] pās = f(p AS,p 1 p AS p ĀS ) ĀS ML- estimaattoriksi saadaan [ ] log (ÔR) = log N AS no N ĀS n o N AS jonka asymptoottinen varianssi saadaan selville delta- menetelmän avulla seuraavasti: f = 1 p AS 1 p AS + p AS p AS p AS (1 p AS ) 2 1 =, p AS (1 p AS ) N ĀS, joten f p ĀS = 1 p ĀS (1 p ĀS ) ) var (log (ÔR) 1 [ ] 1 n o p AS (1 p AS ) + 1 p ĀS (1 p ĀS ).. Likelihood- funktiota L N (µ) voidaan luontevasti hyödyntää myös hypoteesien testaamisessa: Ajatellaan, että tarkastelukehikkona toimiva yleishypoteesi (yleismalli) voidaan kirjoittaa muotoon H : µ M= {µ =(µ 11... µ KL ) µ 11 +... + µ KL = n + muut mahdolliset rajoitukset } ja että M o M on jokin tätä suppeampi parametriavaruuden osa. 18

Ns. nollahypoteesin H o : µ M o realistisuutta havaintojen valossa voidaan arvioida osamäärän Λ N = max µ M o L N (µ) max µ M L N (µ) perusteella. Merkitään H o - hypoteesin puitteissa muodostettua ML- estimaattoria symbolilla µ o. Tällöin siis Λ N = L N( µ o ) L N ( µ). Kuten Tilastollinen päättely 1- ja 2- kursseilla opetettiin, pätee lievin M o :aa ja L N (µ)- funktiota koskevin säännöllisyysoletuksin tulos 2 log Λ N asympt. χ 2 q, jossa q = dim(m) dim(m o ). Referenssijakauman vapausastemäärä määräytyy siis H o - hypoteesissa eliminoitujen parametrien lukumäärän mukaisesti. Jos nyt M vastaa saturoitua mallia (ts. µ:tä ei a priori koske muita rajoituksia kuin µ 11 +... + µ KL = n ), on µ ij = N ij i =1,..., K, j =1,..., L, joten Tällöin siis ja L N ( µ) = n! N 11! N KL! ( µ o Λ N = 11 N 11 ( N11 n ) N11 ( NKL n ) N11 ( ) µ o NKL KL N KL ) NKL. 2 log Λ N = 2 K L i=1 j=1 N ij log ( N ij µ o ). (1.27) ij 19

Tätä suuretta kutsutaan yleensä devianceksi (merkitään 2 log Λ N = dev N (H o ) ), ja se sopii sellaisenaan erinomaisesti testisuureeksi hypoteesin H o realistisuutta arvioitaessa. Mikäli kaikki sellifrekvenssit ovat riittävän suuria, voidaan deviancea luottavaisin mielin verrata χ 2 q- jakauman fraktiileihin. Suureen (1.27) rakennetta kannattaa verrata peruskurssilta tuttuun Pearsonin χ 2 - testisuureeseen K L i=1 j=1 (N ij µ o ij )2 µ o ij, (1.28) jonka asymptoottisen otantajakauman pitäisi olla niinikään χ 2 q- jakauman muotoinen hypoteesin H o vallitessa. Testisuureet (1.27) ja (1.28) saattavat erota toisistaan paljonkin ja niiden avulla voidaan joskus päätyä erilaisiin tulkintoihin H o :n uskottavuudesta havaintoaineiston N valossa. Deviancella on sekin houkutteleva ominaisuus, että jos hypoteesi M 1 M näyttää havaintojen valossa kovin uskottavalta ja yleismallia halutaan supistaa sen mukaiseksi, saadaan hypoteesin M o M 1 testaamiseen sopiva testisuure deviancien erotuksena seuraavasti: 2 [ log L N ( µ o ) log L N ( µ 1 )] = 2 [ log L N ( µ o ) log L N ( µ)] + 2 [ log L N ( µ 1 ) log L N ( µ)] (1.29) = dev N (H o ) dev N (H 1 ). 20

2 LOG- LINEAARISET TODENNÄKÖISYYSMALLIT 2.1 Kolmiulotteisten frekvenssitaulukoiden kuvaaminen Luvussa 1.3 todettiin jo alustavasti, että kaksiulotteisia K x L- taulukoita analysoitaessa voidaan mukavasti hyödyntää varianssianalyyttista puhetapaa, koska loglineaarisissa todennäköisyysmalleissa interaktioiden häviäminen vastasi luokittelijoiden välistä riippumattomuutta. Varianssianalyyttisen puhetavan varsinaiset edut tulevat kuitenkin näkyviin vasta kolmi- tai useampiulotteisia taulukoita analysoitaessa. Tässä luvussa esitellään tuon puhetavan tarjoamia mahdollisuuksia kolmiulotteisten taulukoiden osalta. Yleistämismahdollisuudet monimutkaisempiin tilanteisiin ovat ilmeiset. Esimerkki 2.1: Tarkastellaan esimerkkinä 2 x 2 x 2- taulukkoa, joka saatiin, kun erääseen 4.5 vuotta kestäneeseen seurantatutkimukseen osallistuneista koehenkilöistä jätettiin pois kaikki ne, joille kehittyi sydänvika seurantajakson aikana, sekä ne, jotka olivat seuranta-aikana harjoittaneet säännöllistä, voimaperäistä liikuntaa. Jäljelle jäi 2121 koehenkilöä, jotka luokitettiin persoonallisuustyypin ( A/B), veren kolesterolitason (normaali / korkea) sekä diastolisen verenpaineen (normaali / korkea) suhteen. Saatiin seuraava taulukko: Persoonallisuus- Koles- Verenpaine tyyppi teroli normaali korkea A normaali 716 79 korkea 207 25 B normaali 819 67 korkea 186 22 Kolmiulotteisten K x L x M- frekvenssitaulukoiden kuvaamiseen voidaan useimmiten soveltaa jotakin luvussa 1.5 mainittua mallia, ts. multinomijakaumamallia, tulomuotoista multinomijakaumamallia tai toisistaan riippumatomista Poissonmuuttujista koostuvaa mallia. Kuten tuolloin todettiin, ovat johtopäätökset aina samat, käytettiinpä mitä lueteltua mallityyppiä tahansa. Merkitään sellitodennäköisyyksiä nyt symbolein p ijk ja selliodotusarvoja symbolein µ ijk (i = 1,..., K, j = 1,..., L, k = 1,..., M). (Todennäköisyys- ja odotusarvoparametreihin saattaa liittyä otanta-asetelmasta johtuvia rajoitteita.) Ajatellaan, että indeksi i vastaa luokittelijan X eri tasoja, indeksi j luokittelijan Y tasoja ja indeksi k luokittelijan Z tasoja. Tällöin odotusarvoparametrit 21

µ ijk (tai todennäköisyysparametrit p ijk ) voidaan korvata varianssianalyyttisellä parametroinnilla log µ ijk = α + λ X i + λ Y j + λ Z k + λ XY ij + λ YZ jk + λ XZ ik + λ XY Z ijk i =1,..., K, j =1,..., L, k =1,..., M, (2.1) jossa λ- parametreja kutsutaan päävaikutuksiksi tai interaktioiksi aivan samaan tapaan kuin varianssianalyysissa on tapana. Yliparametroinnin välttämiseksi voidaan esimerkiksi edellyttää, että kunkin λ- parametrityypin summa jokaisen indeksin suhteen on =0 kaikilla muiden indeksien arvoilla, ts. M k=1 λ XY Z ijk =0 kaikilla i =1,..., K, j =1,..., L ja niin edelleen. (2.2) Nämä rajoitteet huomioon ottaen jää malliin juuri K L M vapaata parametria. (Huomautus: Otanta-asetelmasta johtuvat side-ehdot tulevat vielä rajoitteiden (2.2) lisäksi.) Mikäli λ- parametrit halutaan lausua µ- parametrien (tai p- parametrien) avulla, saadaan α = 1 KLM K L M i=1 j=1 k=1 log µ ijk, λ X i = 1 LM L M j=1 k=1 log µ ijk α, λ XY ij = 1 M M k=1 log µ ijk (α + λ X i + λ Y j ), λ XY ijk Z = log µ ijk (α + λ X i + λ Y j + λz k + λxy ij + λ XZ ik + λ YZ jk ), ja niin edelleen. 22