BM20A0300, Matematiikka KoTiB1

Samankaltaiset tiedostot
Matematiikka B1 - avoin yliopisto

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

Matematiikka B1 - TUDI

2 Osittaisderivaattojen sovelluksia

b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)

Tutki, onko seuraavilla kahden reaalimuuttujan reaaliarvoisilla funktioilla raja-arvoa origossa: x 2 + y 2, d) y 2. x + y, c) x 3

1.7 Gradientti ja suunnatut derivaatat

Matematiikan perusteet taloustieteilij oille I

Mat Matematiikan peruskurssi C2

sin(x2 + y 2 ) x 2 + y 2

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

Jouni Sampo. 5. helmikuuta 2014

BM20A0900, Matematiikka KoTiB3

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta

Derivaatta: funktion approksimaatio lineaarikuvauksella.

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

Ratkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1

origo III neljännes D

MATP153 Approbatur 1B Harjoitus 5 Maanantai

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Matematiikan tukikurssi

Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 2012

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

Analyysi I (sivuaineopiskelijoille)

r > y x z x = z y + y x z y + y x = r y x + y x = r

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

Matematiikan tukikurssi. Toinen välikoe

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

Johdatus reaalifunktioihin P, 5op

Matematiikan tukikurssi

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

Differentiaalilaskenta 1.

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

Differentiaali- ja integraalilaskenta 2

Matematiikka B3 - Avoin yliopisto

Matematiikan tukikurssi

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

f(x) f(y) x y f f(x) f(y) (x) = lim

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

Vektorianalyysi II (MAT21020), syksy 2018

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Matematiikan tukikurssi

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

Diskreetti derivaatta

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Talousmatematiikan perusteet: Luento 6. Derivaatta ja derivaattafunktio Derivointisääntöjä Ääriarvot ja toinen derivaatta

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

Mapusta. Viikon aiheet

5 Differentiaalilaskentaa

l 1 2l + 1, c) 100 l=0

1 Euklidiset avaruudet R n

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I

Ratkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I

Sisältö Sisältö 14.Useamman muuttujan funktioiden integrointi

12. Hessen matriisi. Ääriarvoteoriaa

Osittaisdifferentiaaliyhtälöt

Funktiot, L4. Funktio ja funktion kuvaaja. Funktio ja kuvaus. Yhdistetty funktio. eksponenttifunktio. Logaritmi-funktio. Logaritmikaavat.

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

Talousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio

Vektorianalyysi I MAT21003

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Luento 9: Yhtälörajoitukset optimoinnissa

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Laskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2

Johdatus tekoälyn taustalla olevaan matematiikkaan

Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 23.

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

Transkriptio:

BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja niiden ratkaisut) löytyy Nopasta.

Kurssin sisältö Usean muuttujan funktiot ja niiden kuvaajat Osittaisderivaatat 2 Usean muuttujan funktion differentiaali Suunnattu derivaatta ja gradientti Osittaisderivaattojen sovelluksia Ääriarvot, niiden löytäminen, luokittelu ja sovellukset Pienimmän neliösumman menetelmä Lagrangen kertoimet Kaksiulotteinen integraali

1 Osittaisderivaatat 1.1 Usean muuttujan funktiot, (Functions of several variables) Yhden (reaali)muuttujan funktio f(x) on kuvaus, jossa jokaista määrittelyjoukon pistettä (x 1, x 2, x 3,..., x n ) vastaa yksikäsitteinen reaaliluku f(x 1, x 2, x 3,..., x n ) 3 Vastaavasti kahden muuttujan funktio f(x, y) on kuvaus jossa jokaista pisteparia (x, y) vastaa yksikäsitteinen reaaliluku f(x, y). Kahden muuttujan funktion kuvaaja, ts. yhtälön z = f(x, y) kuvaaja, on joukko pisteitä R 3 :ssa, joiden koordinaatit ovat (x, y, f(x, y)). Kahden muuttujan funktio voidaan esittää graafisesti myös tasokäyrinä f(x, y) = C xy tasossa (topografinen kartta). Tasokäyrät ovat käyrien, joilla kuvaaja z = f(x, y) leikkaa tasot z = C, projektioita xy tasoon.

1.2 Raja arvot ja jatkuvuus, (Limits and continuity) Raja arvo lim (x,y) (a,b) f(x, y) = L jos ja vain jos jokaista positiivista kokonaislukua ɛ vastaa positiivinen luku δ = δ(ɛ) siten, että f(x, y) L < ɛ, kun 0 < (x a) 2 + (y b) 2 < δ, (1) 4 ts. jos kaikki pisteet (a, b):n ympäristössä paitsi mahdollisesti piste (a, b) kuuluvat f:n määrittelyjoukkoon ja jos f(x, y) lähestyy L:ää kun (x, y) (a, b). Jos raja arvo on olemassa, se on yksikäsitteinen. Jotta raja arvo olisi olemassa, on f(x, y):n lähestyttävä lukua L, kun (x, y) lähestyy (a, b):tä kaikista suunnista xy tasossa. Esim. Onko funktiolla f(x, y) = 2xy x 2 +y raja arvoa, kun 2 (x, y) (0, 0)

5 Useamman muuttujan funktioiden raja arvot noudattavat samoja sääntöjä kuin yhden muuttujan funktioiden raja arvot, esim. jos lim (x,y) (a,b) f(x, y) = L ja lim (x,y) (a,b) g(x, y) = M lim (f(x, y) ± g(x, y) = L ± M (x,y) (a,b) lim f(x, y)g(x, y) = LM (x,y) (a,b) f(x, y) lim (x,y) (a,b) g(x, y) = L M Lisäksi jos F (t) on jatkuva, kun t = L, (2) lim F (f(x, y)) = F (L). (3) (x,y) (a,b) Funktio f(x, y) on jatkuva pisteessä (a, b), jos lim f(x, y) = f(a, b) (4) (x,y) (a,b)

1.3 Osittaisderivaatat, (Partial derivatives) Funktion f(x, y) ensimmäiset osittaisderivaatat muuttujien x ja y suhteen ovat funktiot f 1 (x, y) ja f 2 (x, y), jotka saadaan seuraavasti: 6 f(x + h, y) f(x, y) f 1 (x, y) = lim h 0 h f(x, y + k) f(x, y) f 2 (x, y) = lim, (5) k 0 k mikäli kyseiset raja arvot ovat olemassa. Ensimmäinen osittaisderivaatta f 1 (x, y) kertoo f(x, y):n muutosnopeuden x:n suhteen pisteessä x = a, kun y = b on vakio. Graafisesti: f 1 (a, b) on kuvaajan z = f(x, y) ja tason y = b leikkauskäyrän kulmakerroin pisteessä x = a.

Merkinnät: z x = x f(x, y) = f 1(x, y) = D 1 f(x, y) z y = y f(x, y) = f 2(x, y) = D 2 f(x, y) (6) 7 Osittaiderivaatat pisteessä (a, b): ( ) z x (a,b) = f(x, y) (a,b) = f 1 (a, b) = D 1 f(a, b) x z y (a,b) = ( f(x, y) y ) (a,b) = f 2 (a, b) = D 2 f(a, b) (7) Joskus käytetään myös merkintöjä f x ja f y. Osittaisderivaatoille pätevät samat säännöt kuin yhden muuttujan funktioiden derivaatoille (summa, tulo, osamäärä, käänteisfunktion derivaatta).

Pinnan z = f(x, y) normaalivektori pisteessä (a, b, f(a, b)): n = f 1 (a, b)i + f 2 (a, b)j k (8) Pinnan z = f(x, y) tangenttitason yhtälö pisteessä (a, b, f(a, b)): 8 z = f(a, b) + f 1 (a, b)(x a) + f 2 (a, b)(y b). (9) Pinnan z = f(x, y) normaalisuoran yhtälö: x a f 1 (a, b) = y b z f(a, b) = f 2 (a, b) 1 (10) Esim. Etsi kuvaajan z = sin(xy) normaalivektori ja tangenttitason ja normaalisuoran yhtälöt pisteessä x = π/3, y = 1.

1.4 Korkeamman kertaluvun derivaatat Jos z = f(x, y), voidaan laskea toisen kertaluvun derivaatat: Puhtaat toiset osittaisderivaatat x:n tai y:n suhteen 9 2 z x 2 = z x x = f 11(x, y) = f xx (x, y) 2 z y 2 = z y y = f 22(x, y) = f yy (x, y) (11) Toiset sekaderivaatat x:n ja y:n suhteen: 2 z x y = x z y = f 21(x, y) = f yx (x, y) 2 z y x = z y x = f 12(x, y) = f xy (x, y) (12)

Vastaavat merkinnät useamman muuttujan funktioille, esim. w = f(x, y, z) 5 w y x y 2 z = y x y w y z = f 32212(x, y, z) = f zyyxy (x, y, z) (13) 0 Oletetaan, että funktion f kaksi n:nnen kertaluvun sekaderivaattaa sisältää derivointeja eri järjestyksessä. Jos osittaisderivaatat ovat jatkuvia pisteessä P ja jos f ja kaikki n:ää alemman kertaluvun osittaisderivaatat ovat jatkuvia pisteen P ympäristössä, sekaderivaatat ovat samoja pisteessä P. Esim. Laske f 223 (x, y, z), f 232 (x, y, z) ja f 322 (x, y, z), kun f(x, y, z) = e x 2y+3z.

Osittaisderivaattoja esiintyy osittaisdifferentiaaliyhtälöissä: Laplacen yhtälö: Ratkaisu: 2 z x 2 + 2 z y 2 = 0 (14) 1 z = e kx cos(ky) ja z = e kx sin(ky) (15) Kahden muuttujan funktio, jolla on jatkuvat toiset osittaisderivaatat jossain tason osassa, on harmoninen, jos se toteuttaa Laplacen yhtälön. Aaltoyhtälö: Ratkaisu: 2 w t 2 = c2 2 w x 2 (16) w = f(x ct) + g(x + ct) (17)