Luento 5 Riippuvuudet vikapuissa Esimerkkejä S:sta hti Salo L 1100, 0015 TKK 1
Toisistaan riippuvat vikaantumiset Riippuvuuksien huomiointi erustapahtumien taustalla voi olla yhteisiä syitä Nämä on pyrittävä huomioimaan muuten saadut riskiarviot ovat alakanttiin, koska muuten yhteisten syiden vaikutus ei näy tuloksissa Edellyttää tilastojen rakentamista ja käyttöä siten, että yhteiset vikaantumissyyt tunnistetaan» Voi olla käytännössä haasteellista Esimerkki Järjestelmässä kolme komponenttia, ja Järjestelmä toimii, jos komponenteista vähintään kaksi toimii so. /3 portti Komponentit voivat vikaantua toisistaan riippumatta Lisäksi komponentit, ja voivat vikaantua yhteisistä syistä joko pareittain tai kaikki kolme Merkitään tapahtumia» komponentti vikaantuu vast.,» vikaantuu mistään muista syistä riippumatta vast.,» komponentit ja vikaantuvat yhteisestä syystä, komponentti toimii edelleen vast.,» kaikki kolme komponenttia vikaantuvat yhteisestä syystä
Vikapuuesitys Vikapuuesitys T /3 -komponentin vikaantuminen Vikaantumissyyt toisensa poissulkevia φ φ 3
4 Vikaantumisen minimikatkosjoukot Vikaantumisen minimikatkosjoukot Vikaantuminen tapahtuu, kun Edellisen kalvon tulosten perusteella muiden parien leikkaukset tyhjiä Minimikatkosjoukoiksi saadaan siis Saadaan siis riippumattomille tapahtumille, leikkauksen tn paljon pienempi kuin parien T T T
Vikaantumistodennäköisyys Oletettakoon, että Kukin komponenteista vikaantuu toisistaan riippumatta samalla todennäköisyydellä Q 1 areittaiset samasta syystä aiheutuvat vikaantumiset tapahtuvat kukin tn:llä Q Kaikki kolme vikaantuvat yhteisestä syystä tn:llä Q 3 Tällöin järjestelmä vikaantuu siis tn:llä T 3 Q Q Q 1 3 Jos esimerkiksi Q 1 0.05, Q 0.0, Q 0.01, niin T 3 0.05 3 0.0 0.01 0.0075 0.06 0.01 0.0775 Yhteisten riskitekijöiden osuus kokonaisriskistä siis 0.06 0.01 0.0775 Ts. riippumattomien vikojen vaikutus verraten vähäinen, koska näitä kerrotaan tulotermillä 90.3% 3 5
Riippuvuudet ja ehdolliset tn:t Lähtökohtia Edellisellä kerralla perustapahtumat oletettiin riippumattomiksi ks. pumppujärjestelmä Jos perustapahtumilla yhteisiä vikaantumissyitä, niin yhden perustapahtuman tn kasvaa, jos toisen tapahtuman tiedetään tapahtuneen Esim. jos perustapahtumia, on kaksi kuten edellä siten ja että nämä voivat toteutua joko riippumatta, tai yhteisestä syystä, niin Merkitään p, p, x f x f ' x p p p p x x p x > Minimi saavutetaan kohdassa x 0, mikä vastaa riippumattomuutta 0 6
β-faktorimalli Lähtökohtia Järjestelmässä komponentit tuplataan m-kertaiseksi Yhteisen vikaantumissyyn tapahtuessa kaikki komponentit vikaantuvat β-parametri ilmaisee, miten suuressa osassa vikaantuminen aiheutuu yhteisestä syystä, ts. β λc λ λ c missä λ c on yhteisen syyn aiheuttama vikaantumistaajuus ja λ on riippumaton vikaantumistaajuus Jos Q t on järjestelmän kokonaisvikaantumistn, niin järjestelmä vikaantuu siis» riippumattomasti tn:llä Q 1 1- β Q t» yhteisestä syystä kaikkien komponenttien vikaantuessa tn:llä Q m β Q t Tarkalleen k komponenttia 1 < k < m ei voi vikaantua yhteisestä syystä, koska yhteinen syy vikaannuttaa kaikki komponentit k valitua komponenttia 1 < k < m vikaantuu todennäköisyydellä Q k 0, k,...,m-1 7
Esimerkki Jäähdytysjärjestelmä Jäähdytys edellyttää sekä pumpun että venttiilin toimivan umpusta ja venttiilistä osasysteemit tuplataan luotettavuuden parantamiseksi umppu saattaa olla käynnistymättä S, pump failure to start tai käydä liian vähän aikaa R, pump failure to run Venttiili saattaa olla avaumatta VO, valve failure to open q R Käynnissä olevan pumpun vikaantumistaajuus λ R» Jos pumppu käy ajan T, niin se vikaantuu tänä aikana todennäköisyydellä T λ 0 R e λ R t dt λ R T 0 λr e λ t R 1 e λ R T 8
9 Jäähdytysjärjestelmän vikapuu Jäähdytysjärjestelmän vikapuu Rakennetaan vikapuu Minimikatkosjoukoiksi saadaan V V V V V 6 5 4 3 1,,,,
Vikaantumistn:n laskenta 1/3 rvioidaan yhteisistä syistä aiheutuvat vikaantumistaajuudet β-faktorimallilla β S miten suuressa osassa osassa tapauksista pumppu jää käynnistymättä yhteisestä syystä? β R miten suuressa osassa pumppu ei käy tavoiteaikaa T yhteisestä syystä? β VO miten suuressa osassa venttiili ei avaudu yhteisestä syystä? Minimikatkosjoukkojen tn:t V V V V β β [1 β q 1 β q ] S [1 β q ] VO q q S VO V [ ] 1 βvo qvo [1 β q 1 β q ] S S β VO R S S q R VO R R R R 10
Vikaantumistn:n laskenta /3 Järjestelmän System vikaantumistn:n approksimoida ylhäältä summalla S 6 i 1 i Huom! osa katkosjoukoista esim., V osin päällekkäisiä, kyse siis approksimaatiosta ylhäältä Tarkastellaan parametrien arvoja q S 0.0, q VO 0.01 λ R 0.05/h, T 1 h q R 1-exp-0.05 0.0487 β S β R β VO 0.1 Katkosjoukkojen todennäköisyydet V V [ 0.9 0.0 0.9 0.0487] 0.1 0.0 0.1 0.0487 [ 0.9 0.01] V 0.000081 0.1 0.01 0.001 V V [ 0.99 0.01] [ 0.9 0.0 0.9 0.0487] 0. 000613 0.003831 0.006877 11
Vikaantumistn:n laskenta 3/3 Vikaantumistodennäköisyys siis 6 S i 1 i 0.013014 Yhteisten syiden, V osuus kokonaisriskistä S V S Yhteisten syiden merkitys siis iso, vaikka β- parametrit verraten pieniä Huomioita Yhden pumppu-venttiililinjan luotettavuus Jos voitaisiin tuplata ilman yhteisiä vikaantumisia so. β-parametrit nollia, niin vikaantumistn olisi Ts. yhteiset vikasyyt alentavat luotettavuutta 0.006877 0.013014 0.001 0.013014 5,8 % 7,7 % S 1 q q q S R [ S 1 ] 0. 006194 VO 0.0787 1
Yhteisvikaantumisen estimointi β-faktorimallin kritiikki Oletus siitä, että yhteinen vika aiheuttaa kaikkien komponenttien vikaantumisen on kovin vahva» Esim. kolmen komponentin /N-järjestelmässä ks. luennon alku yhteiset syyt vikaannuttavat joko kaksi esim. tai kolme komponenttia Yhteistodennäköisyyksien estimointia voidaan tehdä eri tavoin» β-faktorimallissa kysytään, miten suurella tn:llä joku muu komponentti myös vikaantunut yhteisestä syystä, jos yhden komponentin tiedetään vikaantuneen» Jos komponentteja kaksi ja s.e. yhteisen vikaantuminen on tapahtuma, niin β Multiple Greek Letter MGL-malli Yleistää β-faktorimallin siten, että yhteinen syy ei vikaannuta välttämättä kaikkia komponentteja Kysymykset» β- faktori: millä tn:llä ainakin yksi toinen komponentti vikaantuu yhteisestä syystä, jos ko. komponentti vikaantunut?» γ-faktori: millä tn:llä ainakin kaksi muuta komponenttia vikaantuu yhteisestä syystä, jos ko. komponentti on vikaantunut yhteisestä syystä vähintään yhden toisen komponentin kanssa? 13
MGL-mallin estimointi 1/ lun esimerkin β- ja γ-parametrit β λ Komponenttien riippumattomat Q 1 ja pareittaiset Q vikaantumistn:t oletettiin samoiksi Q Q 3 β 33% Q1 Q Q3 0.05 0.0 0.01 Q3 λ 0% Q Q3 Tarkasteluissa ei kuitenkaan edetä näin päin, vaan niissä β- ja γ- parametreista johdetaan pareittaisten, kolmittaisten jne. yhteisten syiden aiheuttamien vikaantumisten Q,Q 3,Q 4,... tn:t m:n komponentin järjestelmässä yhden komponentin kokonaisvikaantumistn Q t total muodostuu siitä, että komponentti vikaantuu joko riippumatta tai kahden, kolmen jne. komponentin vikaantumisen aiheuttamasta yhteisestä syystä Yhdelle komponentille saadaan siis summa Q t m m 1 Q k k 1 1 k 0.0 0.01 14
MGL-mallin estimointi / Saadaan Q k -parametrien yhtälöt Q Q3 β Q1 Q Q Q3 λ Q Q3 Qt Q1 Q Q Ts. Q k -parametrit esitettävissä β- ja γ-parametrien algebrallisina lausekkeina arametrit estimoidaan tarkastelemalla, miten usein useammat komponentin vikaantuvat yhteissyistä» Esim. γ-parametri saadaan jakamalla vähintään kolmen komponentin yhteisvikaantumisten lkm vähintään kahden komponentin yhteisvikaantumisten lkm:llä Yleinen tapaus Merkitään ρ 1 1, ρ β, ρ γ,..., ρ m1 0 Tällöin pätee Q k 1 k m 1 k 1 k 1 i 1 3 3 1 ρ ρ Qt Q Q Q 1 3 i 1 β Qt 1 1 γ βq γβq t Huom! Modarres s. 78 virhe t 15
Leikkausjoukkojen lukumäärä 1/3 Lähtökohtia soissa järjestelmissä perustapahtumia voi olla satoja Näistä muodostuvia leikkausjoukkoja voi olla miljoonia tai peräti miljardeja laskennalliset haasteet äähuomio kohdistuu yleensä tn:ltään suurimpiin leikkausjoukkoihin esim. tn > 10-7 Miten tarkasteltavien leikkausjoukkojen määrää voidaan rajoittaa siten, että tn:ltään kynnysarvon alittavia leikkausjoukot ei välttämättä generoida? Lähestymistapa Järjestetään perustapahtumat tn:nsä mukaan alenevaan järjestykseen Rakennetaan puu, jossa» kullakin tasolla lisätään yksi vikaantuva perustapahtuma aiempien tasojen tapahtumiin» kullakin rivillä perustapahtumat esitetään em. tnjärjestyksen mukaisesti so. tn:ltään suurin ensin, sitten toinen jne. 16
Leikkausjoukkojen lukumäärä /3 Huomioita Olkoon i i:nnen perustapahtuman tn Vikajoukko FS failure set on joukko toteutuvia perustapahtumia Kun perustapahtumat ovat riippumattomia, niin vikajoukon tn on i FS FS i 1 i FS i 17
Leikkausjoukkojen lukumäärä 3/3 Tapahtuman lisääminen vikajoukkoon Jos FS on vikajoukko, joka saadaan lisäämällä vikajoukkoon FS perustapahtuma j, niin FS' i FS ' i i FS ' 1 j j i 1 i FS 1 j i FS i FS 1 j Kerrointermi j /1- j pienempi kuin 1 joss j < 0.5 Ts. jos FS:n tn on alle kynnysarvon, sama pätee tnehdon mukaisesti laajennetulle vikajoukolle vikajoukkojen määrää voidaan rajata Tapahtuman vaihtaminen toiseksi Jos FS saadaan vaihtamalla vikajoukossa FS perustapahtuma j tapahtumaksi k, niin FS" k 1 j i 1 i i FS FS" i FS FS" 1 j k Huom! Modarres FS j 1 3.4 väärin! k Kerrointermi pienempi kuin 1 joss k < j Ts. jos FS:n tn on alle kynnysarvon, sama pätee näin tehdyn vaihdon kautta saadulle vikajoukolle vikajoukkojen määrää voidaan rajata i 18
nfluenssarokotus 1/3 Rokotuskampanja nfluenssaepidemian vakavuus vaihtelee vuosittain Sairastumistodennäköisyys riippuu epidemian vakavuudesta Erityisesti nuoret lapset, iäkkäät ja kroonisesti sairaat saattavat kärsiä influenssasta Kannattaako koko väestöä tai sen osia rokottaa, jos rokotus alentaa sairastumisnäköisyyden 8%:iin verrattuna tapaukseen, jossa rokotusta ei annettu? 19
0
nfluenssarokotus /3 Rokotuksen vaikutus altistumiseen 1
0.85 0.15
nfluenssarokotus 3/3 Tuloksiksi saadaan Voidaan siis argumentoida, että lapset sekä iäkkäät ja kroonisesti sairaat kannatta rokottaa, mutta ei välttämättä koko väestöä Huomioita Vaikuttaako rokotus altistumistodennäköisyyksiin?» Ts. pieneneekö tämä siksi, että osa väestöstä on rokotettu? so. takaisinkytkentä Ovatko FLU-menetysyksiköt perusteltuja?» Nyt kuolema mielusampi kuin yli 100 kunnon flunssaa tai yli 00 lievää sairastumista. 3