수치해석기초 (Elementary Numerical Analysis) II. Interpolation 담당교수 : 주한규 원자핵공학과 SNURPL

Samankaltaiset tiedostot
A DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

A DEA Game I Chapters

The CCR Model and Production Correspondence

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Capacity Utilization

The Viking Battle - Part Version: Finnish

800323A KUNTALAAJENNUKSET OSA II FIELD EXTENSIONS PART II

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28

Bounds on non-surjective cellular automata

Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät

Information on preparing Presentation

Introduction to Mathematical Economics, ORMS1030

Alternative DEA Models

Efficiency change over time

Network to Get Work. Tehtäviä opiskelijoille Assignments for students.

C++11 seminaari, kevät Johannes Koskinen

Topologies on pseudoinnite paths

Voice Over LTE (VoLTE) By Miikka Poikselkä;Harri Holma;Jukka Hongisto

Tarua vai totta: sähkön vähittäismarkkina ei toimi? Satu Viljainen Professori, sähkömarkkinat

PHYS-C0210 Kvanttimekaniikka Exercise 2, extra challenges, week 45

16. Allocation Models

Tuotealue Merkki Malli Vuosimallista Vuosimalliin Lisäinfo Snowmobile Tracks ARCTIC CAT 4-STROKE TRAIL (SINGLE SEATER) Snowmobile Tracks

2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x];

ELEMET- MOCASTRO. Effect of grain size on A 3 temperatures in C-Mn and low alloyed steels - Gleeble tests and predictions. Period

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

Gap-filling methods for CH 4 data

c) Vektorit ovat samat, jos ne ovat samansuuntaiset ja yhtä pitkät. Vektorin a kanssa sama vektori on vektori d.

Kvanttilaskenta - 1. tehtävät

TEOLOGIAN YLIOPPILAIDEN TIEDEKUNTAYHDISTYKSEN JULKAISU VUODESTA /2012

Käytön avoimuus ja datanhallintasuunnitelma. Open access and data policy. Teppo Häyrynen Tiedeasiantuntija / Science Adviser

IBM Iptorin pilven reunalla

Operatioanalyysi 2011, Harjoitus 2, viikko 38

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

LYTH-CONS CONSISTENCY TRANSMITTER

AYYE 9/ HOUSING POLICY

HARJOITUS- PAKETTI A

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

Miehittämätön meriliikenne

anna minun kertoa let me tell you

TM ETRS-TM35FIN-ETRS89 WTG

EUROOPAN PARLAMENTTI

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

Infrastruktuurin asemoituminen kansalliseen ja kansainväliseen kenttään Outi Ala-Honkola Tiedeasiantuntija

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets

Tutkimusdata ja julkaiseminen Suomen Akatemian ja EU:n H2020 projekteissa

Other approaches to restrict multipliers

Alternatives to the DFT

Peitelevy ja peitelaippa

TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo

Hankkeen toiminnot työsuunnitelman laatiminen

Valuation of Asian Quanto- Basket Options

TENTISSÄ KÄYTETTÄVÄ KAAVAKOKOELMA KURSSILLE Tilastollinen laadunvalvonta

The role of 3dr sector in rural -community based- tourism - potentials, challenges

Harjoitus 7 -- Ratkaisut

Kvanttilaskenta - 2. tehtävät

TM ETRS-TM35FIN-ETRS89 WTG

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

File: C:\tmp\tmp\mch.txt , 9:37:46. JUKKA LAAKKONEN, OH1NPK ORIKEDONKATU 16 FIN TURKU May 18, 1995

SELL Student Games kansainvälinen opiskelijaurheilutapahtuma

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Statistical design. Tuomas Selander

Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta)

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

ARKISTOLUETTELO A MERKINTÄKIRJAT. Aa Luokkien päiväkirjat. sis. 5 sidosta. 1 kansio. Aa: Päiväkirjoja. Päiväkirja. 4 sidosta.

f[x i ] = f i, f[x i,..., x j ] = f[x i+1,..., x j ] f[x i,..., x j 1 ] x j x i T n+1 (x) = 2xT n (x) T n 1 (x), T 0 (x) = 1, T 1 (x) = x.

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

Returns to Scale Chapters

ALOITUSKESKUSTELU / FIRST CONVERSATION

Portugalin tasavallan aloite neuvoston päätökseksi Schengenin konsultointiverkoston (tekniset eritelmät) osan 1 muuttamisesta

Metsälamminkankaan tuulivoimapuiston osayleiskaava

Analyysi I (mat & til) Demonstraatio IX

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

ECVETin soveltuvuus suomalaisiin tutkinnon perusteisiin. Case:Yrittäjyyskurssi matkailualan opiskelijoille englantilaisen opettajan toteuttamana

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

Tuote LVI-numero Pikakoodi KAULUS PURISTETTU HST DN 100/114,3/3,0 EN Puristettu putkikaulus;en ;Todistukset EN 10204:2004/3.

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

MRI-sovellukset. Ryhmän 6 LH:t (8.22 & 9.25)

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

RANTALA SARI: Sairaanhoitajan eettisten ohjeiden tunnettavuus ja niiden käyttö hoitotyön tukena sisätautien vuodeosastolla

Väite Argument "Yhteiskunnan velvollisuus on tarjota virkistysalueita ja -palveluita." "Recreation sites and service

FIS IMATRAN KYLPYLÄHIIHDOT Team captains meeting

802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

( ,5 1 1,5 2 km

ETELÄESPLANADI HELSINKI

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

802320A LINEAARIALGEBRA OSA III

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

802320A LINEAARIALGEBRA OSA III

TM ETRS-TM35FIN-ETRS89 WTG

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)

TM ETRS-TM35FIN-ETRS89 WTG


Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat

TM ETRS-TM35FIN-ETRS89 WTG

Transkriptio:

수치해석기초 (Elemetary Numercal Aalyss II. Iterpolato 8. 9 담당교수 : 주한규 ooha@su.ac.r, x94, Rm 3-5 5 원자핵공학과

Iterpolato Itroducto to Iterpolato Approxmato of Fucto Iterpolato ad Polyomal Approxmato Polyomal Iterpolato Lagrage Iterpolato t Newto Iterpolato Hermte Iterpolato Pecewse Polyomal Iterpolato Pecewse Lear Iterpolato Cubc Sple Iterpolato

Approxmato of Fucto What s approxmato of a fucto? Approxmate a true fucto f(x by a easly mapulated, lower order fuc. P(x f f(x P(x x Two Forms of Approxmate Fucto P(x Lear Combato Ratoal Form Px ( = ag( x ag( x L ag( x Px ( = bg ( x bg ( x L bg ( x ag ( x ag ( x L a g ( x Types of Approxmato Problems Iterpolato of tabulated data, passg through all data pots gve Curve Fttg of expermetal or ucerta data wth least squared error Mmze the maxmum error of approxmato (mmax m m 3

Polyomal Iterpolato What s polyomal terpolato? Gve base pots x x x x f f f f Fd a fucto passg through all gve pots by a polyomal = = f ( x P ( x a x Needs Replace f(x, whch would be dffcult to evaluate ad mapulate, by a smpler, more ameable fucto P(x Estmate the fuctoal values, dervatves or tegrals of f(x whch s ow quattatvely for a fte umber of argumets called base pots Forms of Polyomal Power Form P( x = a ax ax L ax Shfted Power FormP( x = a a( x c a( x c L a ( xc Newto Form L L P( ( x = a a ( x c a ( xc ( x c a ( xc ( xc 4

Lagrage Iterpolato Lagrage Polyomal Theorem If f(x s a real-valued fucto whose values are gve at the dstct pots, x, x,, x, the there exsts a uque polyomal P(x of degree at most such that f ( x = P( x =,, L, where P ( x = f ( x L ( x = ad Lagrage Kerel L ( x = ( x x ( x x ( x x ( x x L( x x ( x x L( x x ( ( ( ( ( = = x x x x L x x x x L x x 5

Dervato of Lagrage Iterpolato Formula Let ( ( f x P x = a ax ax L ax At pots gve, requre f = f( x = P( x, f = a a x a x L a x M f = a a x a x L a x T } l T T T P( x = p α = pg f= lf= L( x f = Costrat: f = P( x = L( x f L( x = δ = Let L( x = C ( x x = T p α T p = xx f f = M f f=gα α = G f Lx [ L x L L x ] T pg = l= a α = M a L ( x ( (, M, L ( x x xl x x G = M O M x x x x L C = ( x x L ( x = ( x x ( x x = = 6

Rolle s Theorem Ex. for = 6, 7 zeros for g(t zeros f (x f ( x a b a η b There exsts ξ (, for whch f ( ξ = ạb f ( x zeros If there are zerosof f ( x, x, L, x, the there s a pot wth [ x, x ] ( such that f ( ξ = ( f ( x ( f ( x ξ zeros zero 7

Error of Lagrage Iterpolato Let f( x = P ( x E( x Ex ( = f( x P( x Ex ( =, =,,..., Ex ( = Sx ( ( x x = f(x E(x f(x Df Defe gt ( = f ( t P( t S ( x ( tx t [ a, b] gx ( = =,,..., gx= ( = [ x, x ] [ a, b] zeros [ a, b] P(x x ( ( Rolle's Theorem: g ( ξ = = f ( ξ (! S( x for some ξ = ξ( x ( ( f ( ξ ( x f ( ξ Sx ( = ξ ( ab, Ex ( = ( xx at least order of o x (! (! = 8

Newto Iterpolato Drawbacs of Lagrage Iterpolato Excessve amout of calculato s requred whe may terpolatos are to be doe usg the same data set. No estmated error ca be made, uless the hgh order dervatves ca be evaluated. The addto of a ew term requres complete recomputato. These are avoded by Dvded Dfferece scheme. Dvded Dfferece ( 차분상 Defto. f[ x ] = f( x. 3. 4... f[ x, x ] = f [ x, x, x ] = f [ x ] f [ x ] f ( x f ( x = x x x x x x f[ x, x ] f[ x, x ] x x The order of x ' s [... ] does ot matter. f( x f( x f( x = ( x x ( x x ( x x ( x x ( x x ( x x 9

Newto Iterpolato Let f ( x = P ( x E( x = a a ( x x a ( xx ( x x L a ( x x E( x = f ( x = P( x = a E( x Requre Ex ( = a = fx [ ] f [ x] = f[ x ] a ( x x a ( xx ( x x L a ( xx ( xx L( x x E( x Dvde by x x after movg f[ x ] to LHS f[ x] f[ x ] Ex ( f [ x, x ] = a a ( x x L a ( x x L ( x x Isert x = x a = f[ x, x ] = f[ x, x ] x x x x Ex ( f[ x, x] = f[ x, x] a( x x L a( xx L( x x ( x x f [ xx, ] f[ x, x] Ex ( = f[ x, x, x ] = a L a ( xx L( x x x = x a = f[ x, x, x] = f[ x, x, x] ( ( x x xx xx Ex ( f[ x, x, x] = f[ x, x, x] a3( x x3 L a( x x L( x x ( x x ( x x I geeral, a = f[ x, x, Lx, x ] Ex ( L L f[ x, x, L, x ] = f[ x, x, L, x] f[ x, x,, x ] f[ x, x,, x] Ex ( = ( xx = f [ xx,, L, x] ( x x ( x x x x = = = P ( x = f [ x ] f [ x, x ]( x x L f [ x, x, L, x ] ( xx =

f [ x ] = f( x = f f[ x, x ] = M f x x x More About Dvded Dfferece f [ x ] f[ x ] x x -th order D.D ( 계차분상 f[ x, x, L, x ] f[ x, x, L, x ] [,, L, ] = : Defto x x = f = = x x Proof f f f f f[ x, x] = = x x x x x x x x Let f[ x, L, x ] = f = = x x

By Defto f [ x, L, x, x ] More About Dvded Dfferece f [ x, L, x ] f[ x, L, x] = x x = x x x x x x f f = = = = = f f f f x x = x x = = x x = = x x = x x = f f x x f x x x x x x x x = = = = x x = x x = f f f = x x = = x x x x x x x x = x x

More About Dvded Dfferece x x = f f f ( ( = x x = = x x x x x x x x = x x = f f f = x x = = x x = x x = f = = x x QED... s uchaged f x values are gve regardless of the order of x 's. x : y = [ y ] [ y, y ] x y y y y y [, ] [,,, ] x y y y y y : = [ ] [,, ] y y y y y y3 : = [ ] [,, 3] [ y, y3] 3: 3 = [ 3] x y y 3

Polyomal Propertes of Dvded Dfferece ( f ( ξ( x f( x = P ( x ( x x (! = ( f ( ξ = a a( x x L a( x x ( x x = (! = a f( x f( x = = f[ x, x ] x x Dvde oce by ( x x Dvde (-tmes ( f ( ξ = (! = f [ xx, ] = a a( x x L a ( x x ( xx = f[ x, x ] a ( x x L ( f ( ξ f [ x, x, L, x] = f[ x, x, L, x ] a( x x ( xx ( xx (! f xx x f x x x f ξ ( [,, L, ] [,, L, ] ( ξ = a ( xx x x (! ( f ( f [ x, x L = L ξ,, x ] [,,,, ] ( f x x x x x x (! a = f [ x, x, L, x ] ( f ( ξ (! = f[ x, x, L, x, x ] Exact Error at x 4

Hermte Polyomal Obectve: Fd a polyomal satsfyg the dervatve as well as fucto value x x x x f f f f costrats f f f f Defe a (-th order polyomal as:, 3 Codtos, (=,, L, H( x = δ Hˆ ( x = 3 Hˆ ( x = δ 4 H ( x = Px ( = fh( x fh ˆ ( x = = Hˆ ( x = c ( xx ( xx L ( xx ( x x ( xx L ( xx ˆ ( ( ( ( H x = c x x c xx xx = = ull after dfferetato except = c( x x ( xx = 5

Hermte Polyomal H x c x x c x x x x ˆ ( ( = ( ( = = = ˆ H ( x = ( xx ( xx = ( x x = c = = ( x x = ( xx = ( x x ( x x = ( x x L( x Note : L ( x = δ Let H ( x = ( ax b L ( x H ( x = ( ax b δ = : ax b= H x = al x ax b L x L x H ( x = aδ ( ax b δ L ( x ( ( ( ( ( = a ( ax b L ( x = a= L ( x b= ax ( H ( x = L( x ( xx L ( x ( f ( ξ Error E( x = ( xx (! = 6

Pecewse Polyomal Iterpolato Why pecewse polyomal pterpolato? The oscllatory ature of hgh-degree polyomals ad the property that a fluctuato over a small porto of terval ca duce large fluctuatos over the etre rage restrcts ther use. Ths form s more useful for seeg the umercal approxmato for the soluto of the system equatos. What s pecewse terpolato polyomal? Let P( x x [ x, x ] P ( x x [ x, x] f ( x pp( x = pp( x = P( x x [ x, x] M P( x x [ x, x] -polyomal l order depeds d o cotuty t f ( x (,,,, requremets = pp x = L f ( x = pp ( x f ( x = pp ( x f x P (x P (x P (x x x x x x 7

Cubc Sple Let P( x = a b( x x c ( x x d ( xx 3 P( x = a = y P( x = y bh ch dh = y ( =, L, 3 (fucto value o the rght ed 3 hb hc hd y y P ( x = = L( b c ( x x 3 d ( x x Cotuty of slope P ( x = P ( x : b ch 3dh = b b ch dh b 3 = L( P ( x = c 6 d( x x Cotuty of secod dervatve P ( x = P ( x = c 6dh = c c 3 hd c = L(3 8

Cubc Sple uows 4 Fucto values cotuty 3(- costrats mssg 4- Use two slopes at the eds ( x x ( x x ( x x ( xx ( xx ( xx f( x = yo y y ( x x ( x x ( x x ( x x ( x x ( x x ( xx ( xx ( x x ( xx ( xx ( xx = yo y y h h h hh h h h ( ( x x xx x x xx x x xx f ( x = yo y y h h h hh h h h ( ( ( h h h h h h f ( x = y y y ( ( o h h h hh h h h = yo y y h h h h h h h h = y( γ y( γ y γ = h h γ γ h h 9

Cubc Sple f ( x = y( γ y( γ y h h γ γ f h = h = h γ = 3 y = f ( x = y y y h 3 = ( y y ( y y extrapolato of slopes h =b At the rght ed h h h h h h f ( x = y y y h( h h hh h( h h = ( y ( γ y y( γ h h γ γ h γ = h 3 y = f ( x = y y y h 3 = ( y y ( y y = b c h 3d h h

Lear System for Cubc Sple 3 hb hc hd y y b ch dh b = L( 3 = L( c 3hd c = L(3 3 h h h b y y c y O d y y M 3 h b h h y y h 3h c = 3h d M M O b 3 h h h c y y h 3h d y f gve fucto values at the rght ed (- f, f cotuty at the termedate pots (3- costrats slopes at both eds for 3 uows (except a