HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x < 1} R 2 L : B(0, 1) L(R 2 ; R 3 ), x L(x) on jatkuva, kun jokaiselle x B(0, 1) ja kaikille (u 1, u 2 ) R 2 on L(x)u = (x 2 2u 1 + 2x 1 x 2 u 2, x 2 u 1 sin x 1 + u 2 cos x 1, u 1 sin x 2 + x 1 u 2 cos x 2 ). Ratkaisu. Hyödynnetään isomorfismeja mat : L(R 2 ; R 3 ) = R 3 2 ja ϕ : R 3 2 = R 6, jossa a 11 a 12 ϕ a 21 a 22 = (a 11, a 12, a 21, a 22, a 31, a 32 ). a 31 a 32 Nyt [(ϕ mat)(l)](x) = (x 2 2, 2x 1 x 2, x 2 sin x 1, cos x 1, sin x 2, x 1 cos x 2 ) Tämä kuvaus on selvästi jatkuva, sillä jokainen sen komponenttikuvauksista on jatkuvia. Kuvaus L (ϕ mat)(l) määrittää normin avaruudessa L(R 2 ; R 3 ), ja L on siis jatkuva tämän normin topologiassa. Äärellisulotteisen vektoriavaruuden kaikki normit ovat ekvivalentteja, joten L on jatkuva myös operaattorinormin määrittämässä topologiassa. Tehtävä 2. Todista differentiaalilaskennan ketjusääntö (Lause 4.3). Ratkaisu. Olkoot U R n ja V R m avoimia. Olkoon f : U V differentioituva pisteessä x U ja g : V R k pistessä f(x). Osoitetaan, että g f on differentioituva pisteessä x. Riittävän pienillä h saadaan seuraavat differentiaalikehitelmät: f(x + h) = f(x) + Df(x)h + h η(h) g(f(x) + h) = g(f(x)) + Dg(f(x))h + h θ(h), 1
jossa η(h), θ(h) 0, kun h 0. Nyt g(f(x + h)) = g[f(x) + Df(x)h + h η(h)] = g(f(x)) + Dg(f(x))[Df(x)h + h η(h)] + Df(x)h + h η(h) θ(df(x)h + h η(h)) = g(f(x)) + [Dg(f(x)) Df(x)]h + h Dg(f(x))η(h) + Df(x)h + h η(h) θ(df(x)h + h η(h)) = g(f(x)) + [Dg(f(x)) Df(x)]h + h ε(h), jossa ε(h) = Dg(f(x))η(h) + Df(x)h h osoittaa, että ε(h) 0, kun h 0: + η(h) θ(df(x)h + h η(h)). Riittää lim ε(h) lim Dg(f(x))η(h) + lim ( ) Df(x)h + η(h) h θ(df(x)h + h η(h)) Dg(f(x)) lim η(h) ( ) Df(x) h + lim + η(h) lim θ(df(x)h + h η(h)) h = Df(x) θ(lim [Df(x)h + h η(h)]) = Df(x) θ(0) = 0 Siis g f on differentioituva, ja sen derivaatta on Dg(f(x)) Df(x). Tehtävä 3. Olkoot U ja V avaruuden R n avoimia ja yhtenäisiä joukkoja. Olkoon lisäksi f : U V diffeomorfismi joukolta U joukolle V. Osoita, että tällöin joko J f (x) > 0 kaikilla x U tai J f (x) < 0 kaikilla x U. Ratkaisu. Osoitetaan ensin, että J f (x) 0 kaikilla x U hyödyntäen edellisessä tehtävässä osoitettua ketjusääntöä: 1 = D(id)(x) = D(f 1 f)(x) = Df 1 (f(x))df(x) 2
Nyt 1 = det(1) = det(df 1 (f(x))) det(df(x)) = J f 1(f(x))J f (x), josta väite seuraa, sillä yllä oleva pätee mielivaltaiselle x U. Konstruoidaan sitten jatkuva kuvaus h : U 1, 1}. Funktio f on C 1, joten kuvaus x Df(x) on jatkuva. Lisäksi det : R n n R on jatkuva (tämä on helppo tarkistaa), joten myös kuvaus x J f (x) on jatkuva. Määritellään kuvaus sgn : R \0} 1, 1} kaavalla 1, kun t > 0 sgn(t) = 1, kun t < 0. Kuvaus sgn on lokaalisti vakio, ja siten jatkuva. Koska J f (x) 0 kaikilla x U, voimme määritellä kuvauksen h : U 1, 1}, x sgn(j f (x)). Nyt teemme vastaoletuksen, että J f saa sekä positiivisia että negatiivisia arvoja. Tällöin kuvaus h on jatkuva surjektio yhtenäiseltä joukolta kahden pisteen diskreetille avaruudelle, mikä on ristiriita. Tehtävä 4. Tarkastellaan kuvausta f : R 2 R 2 f(x) = x x (a) Hahmottele kuvan avulla kuvauksen f käyttäytymistä. (b) Osoita, että kuvaus f on jatkuvasti differentioituva injektio. Mikä on kuvauksen f derivaatta origossa? (c) Näytä, että jokaiselle x R 2 pätee (d) Onko kuvaus f diffeomorfismi? J f (x) = 2 x 2 3
Kuva 1: komponenttikuvauksen f 1 graafi Ratkaisu. ( ) xj f i (x) = xj x i x 2 1 + x 2 2 = δ ij x 2 1 + x 2 2 + x ix j, x 2 1 + x 2 2 kun x 0 ja Lisäksi xj f(0) = lim he j h h xj f i (x) x + x i x j x = lim e j h = 0. 2 x 0, kun x 0. Funktion f osittaisderivaatat ovat siis jatkuvia, joten f C 1. Osoitetaat sitten, että f on injektio. Olkoon x, y R 2 s.e. f(x) = f(y). Voidaan olettaa x 0 y. x x = y y x 2 = y 2 x = y x x = y x x = y 4
Yllä jo huomattiin, että funktion f derivaatta origossa on nolla, joten J f (0) = 0 = 2 0 2. Olkoon x R 2 \0}. Tällöin ( ) ( ) J f (x) = x + x2 1 x + x2 2 x2 1x 2 2 x x x 2 = x 2 + x 2 1 + x 2 2 = 2 x 2 Funktio f ei ole diffeomorfismi, sillä J f (0) = 0. Tehtävä 5. Tarkastellaan pisteille (x, y, z) R 3 määriteltyä yhtälöparia x 2 y 2 = 1 Osoita x 2 + y 2 z = 4 (a) suoralla ratkaisulla (eli ratkaisemalla yhtälöpari tavalliseen tapaan) ja (b) implisiittifunktiolausetta käyttäen, että yllä olevalla yhtälöparilla on pisteen x 0 = ( 2, 1, 1) sopivassa ympäristössä muotoa (x, g(x)) oleva C 1 -ratkaisu ja Dg( 2) = ( 2, 4 2). Ratkaisu. (a) x 2 y 2 = 1 x 2 + y 2 z = 4 y 2 = x 2 1 z = 2x 2 5 y = ± x 2 1 z = 2x 2 5, x 1 Määritellään g : (1, ) R 2 g(x) = ( x 2 1, 2x 2 5) 5
Nyt g( 2) = ( 1, 1) ja ( ) x Dg(x) = x2 1, 4x siis Dg( 2) = ( 2, 4 2), joten g antaa pyydettyä muotoa olevan ratkaisun. (b) Määritellään f : R 3 R 2 f(x, y 1, y 2 ) = ( ) x 2 y1 2 1 x 2 + y1 2 y 2 4 Nyt f( 2, 1, 1) = 0. Lisäksi ( ) 2y1 0 D y f(x, y) =, 2y 1 1 joten det D y f( 2, 1, 1) = 2 0. Nyt implisiittifunktiolauseen nojalla on olemassa muotoa U V oleva pisteen ( 2, ( 1, 1)) ympäristö ja C 1 kuvaus g : U V s.e. (x, g(x)) on annetun yhtälöparin ratkaisu kun x U. Funktion g derivaatta saadaan implisiittisella derivoinnilla. Määritetään ensin seuraavat: ( ) 2x D x f(x, y) = 2x ( ) 11 0 D y f(x, y) 1 = 1 2 2y 1 2y 1 Nyt Dg( 2) = D y f( 2, 1, 1) 1 D x f( 2, 1, 1) ( ) ( ) 1 0 = 2 2 2 2 ( ) 2 = 4 2 Funktio g on siis haluttua muotoa. 6
Tehtävä 6. Osoita, että yhtälöllä xy 2 + y 3 z 4 + z 5 x 6 = 1 on pistenn x 0 = (0, 1, 1) avoimessa ympäristössä muotoa (x, g(x, z), z) oleva C 1 -ratkaisu. Osoita lisäksi, että ( g(0, 1) = 1 3, 4 ) 3 Ratkaisu. Merkitään Nyt f(0, 1, 1) = 0. Lisäksi f(x 1, x 2, y) = x 1 y 2 + y 3 x 4 2 + x 5 2x 6 1 1 D y f(x, y) = 2x 1 y + 3x 4 2y 2 ja D y f(0, 1, 1) = 3 0, joten on olemassa pisteen ((0, 1), 1) ympäristö U V ja kuvaus g C 1 (U; V ) s.e. (x, g(x, z), z) on ratkaisu annettu yhtälöön, kun (x, z) U. Määritetään vielä derivaatta: joten D x f(x, y) = (y 2 + 6x 5 1x 5 2, 4x 3 2y 3 + 5x 6 1x 4 2), g(0, 1) = D xf(0, 1, 1) D y f(0, 1, 1) = 1 ( 1, 4) 3 7