Rekursiiviset tyypit
|
|
- Veikko Palo
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Rekursiiviset tyypit TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 20. helmikuuta 2007
2 Hiloista Kiintopisteet (Ko)rekursio Rekursiiviset tyypit Lopuksi
3 Osittaisjärjestys Määritelmä Olkoon X joukko ja ( ) X X sen binäärinen relaatio. Jos kaikilla x, y, z X 1. x x, 2. x y y x x = y ja 3. x y y z x z pätevät, ( ) on osittaisjärjestys ja (X, ) on osittain järjestetty joukko (engl. poset, partially-ordered set).
4 Esimerkkejä
5 Esimerkkejä 1. Joukon S osajoukkojen joukkoa eli potenssijoukkoa merkitään P(S). Osajoukkorelaatio ( ) on sen osittaisjärjestys.
6 Esimerkkejä 1. Joukon S osajoukkojen joukkoa eli potenssijoukkoa merkitään P(S). Osajoukkorelaatio ( ) on sen osittaisjärjestys. 2. Nostettujen kokonaislukujen joukossa Z = { } Z on relaatio ( ): n ja n m kaikilla n, m Z, n m. Se on osittaisjärjestys.
7 Join Määritelmä Olkoon (X, ) osittain järjestetty joukko, olkoon S X epätyhjä ja olkoon j X. Jos 1. s S : s j ja 2. s S : y X : s y y j pätevät, j on S:n join (merkitään j = S). Jos X on olemassa ja on X :n alkio, se on X :n kansi (engl. top), merkitään.
8 Join Määritelmä Olkoon (X, ) osittain järjestetty joukko, olkoon S X epätyhjä ja olkoon j X. Jos 1. s S : s j ja 2. s S : y X : s y y j pätevät, j on S:n join (merkitään j = S). Jos X on olemassa ja on X :n alkio, se on X :n kansi (engl. top), merkitään. Huomautus Jos joukon S join kuuluu joukkoon itseensä ( S S), se on tuon joukon suurin alkio (osittaisjärjestyksen suhteen).
9 Esimerkkejä
10 Esimerkkejä 1. Osittain järjestetyssä joukossa (P(X ), ) join on yleistetty yhdiste.
11 Esimerkkejä 1. Osittain järjestetyssä joukossa (P(X ), ) join on yleistetty yhdiste. 2. Nostettujen kokonaislukujen osittain järjestetyssä joukossa (Z, ) on seuraavat joinit: {, n} = n kaikilla n ja {n} = n kaikilla n.
12 Meet Määritelmä Olkoon (X, ) osittain järjestetty joukko, olkoon S X epätyhjä ja olkoon m X. Jos 1. s S : m s ja 2. s S : y X : y s m y pätevät, m on S:n meet (merkitään m = S). Jos X on olemassa ja on X :n alkio, se on X :n pohja (engl. bottom), merkitään.
13 Meet Määritelmä Olkoon (X, ) osittain järjestetty joukko, olkoon S X epätyhjä ja olkoon m X. Jos 1. s S : m s ja 2. s S : y X : y s m y pätevät, m on S:n meet (merkitään m = S). Jos X on olemassa ja on X :n alkio, se on X :n pohja (engl. bottom), merkitään. Huomautus Jos joukon S meet kuuluu joukkoon itseensä ( S S), se on tuon joukon pienin alkio (osittaisjärjestyksen suhteen).
14 Esimerkkejä
15 Esimerkkejä 1. Osittain järjestetyssä joukossa (P(X ), ) meet on yleistetty leikkaus.
16 Esimerkkejä 1. Osittain järjestetyssä joukossa (P(X ), ) meet on yleistetty leikkaus. 2. Nostettujen kokonaislukujen osittain järjestetyssä joukossa (Z, ) on aina meet: {n} = n kaikilla n Z, ja jos n, m Z ja n m, niin {n, m} =.
17 Hilat Määritelmä Olkoon (X, ) osittain järjestetty joukko ja X epätyhjä. Tällöin
18 Hilat Määritelmä Olkoon (X, ) osittain järjestetty joukko ja X epätyhjä. Tällöin 1. jos X :n jokaisella äärellisellä osajoukolla on join, (X, ) on join-puolihila (engl. join-semilattice);
19 Hilat Määritelmä Olkoon (X, ) osittain järjestetty joukko ja X epätyhjä. Tällöin 1. jos X :n jokaisella äärellisellä osajoukolla on join, (X, ) on join-puolihila (engl. join-semilattice); 2. jos X :n jokaisella äärellisellä osajoukolla on meet, (X, ) on meet-puolihila;
20 Hilat Määritelmä Olkoon (X, ) osittain järjestetty joukko ja X epätyhjä. Tällöin 1. jos X :n jokaisella äärellisellä osajoukolla on join, (X, ) on join-puolihila (engl. join-semilattice); 2. jos X :n jokaisella äärellisellä osajoukolla on meet, (X, ) on meet-puolihila; 3. jos (X, ) on sekä join-puolihila että meet-puolihila, se on hila (engl. lattice); ja
21 Hilat Määritelmä Olkoon (X, ) osittain järjestetty joukko ja X epätyhjä. Tällöin 1. jos X :n jokaisella äärellisellä osajoukolla on join, (X, ) on join-puolihila (engl. join-semilattice); 2. jos X :n jokaisella äärellisellä osajoukolla on meet, (X, ) on meet-puolihila; 3. jos (X, ) on sekä join-puolihila että meet-puolihila, se on hila (engl. lattice); ja 4. jos join ja meet on X :n jokaisella osajoukolla, (X, ) on täydellinen hila (engl. complete lattice).
22 Esimerkkejä
23 Esimerkkejä 1. (P(X ), ) on täydellinen hila.
24 Esimerkkejä 1. (P(X ), ) on täydellinen hila. 2. (Z, ) on meet-puolihila.
25 Esimerkkejä 1. (P(X ), ) on täydellinen hila. 2. (Z, ) on meet-puolihila. 3. (Z Z, ) on meet-puolihila.
26 Monotoniset funktiot Määritelmä Olkoon (X, ) osittain järjestetty joukko ja olkoon f : X X. Jos kaikilla x X pätee x f (x), on f järjestyksen säilyttävä eli monotoninen.
27 Monotoniset funktiot Määritelmä Olkoon (X, ) osittain järjestetty joukko ja olkoon f : X X. Jos kaikilla x X pätee x f (x), on f järjestyksen säilyttävä eli monotoninen. Huomautus Monotoninen funktio ei voi olla tässä yhteydessä vähenevä toisin kuin analyysissä on tapana sanoa. Vähenevää funktiota sanotaan antitoniseksi eli järjestyksen kääntäväksi funktioksi.
28 Kiintopiste Määritelmä Olkoon (X, ) osittain järjestetty joukko, olkoon f : X X ja olkoon x X. Tällöin
29 Kiintopiste Määritelmä Olkoon (X, ) osittain järjestetty joukko, olkoon f : X X ja olkoon x X. Tällöin 1. x on f -suljettu, jos f (x) x,
30 Kiintopiste Määritelmä Olkoon (X, ) osittain järjestetty joukko, olkoon f : X X ja olkoon x X. Tällöin 1. x on f -suljettu, jos f (x) x, 2. x on f -konsistentti, jos x f (x) ja
31 Kiintopiste Määritelmä Olkoon (X, ) osittain järjestetty joukko, olkoon f : X X ja olkoon x X. Tällöin 1. x on f -suljettu, jos f (x) x, 2. x on f -konsistentti, jos x f (x) ja 3. x on f :n kiintopiste (engl. fixed point), jos se on sekä f -suljettu että f -konsistentti eli jos x = f (x).
32 Knasterin ja Tarskin lause Lause (Knasterin ja Tarskin hilateoreettinen kiintopistelause) Olkoon (X, ) täydellinen hila ja olkoon f : X X monotoninen. Tällöin f :llä on ainakin yksi kiintopiste, ja sen kiintopisteiden joukko P on itse täydellinen hila. Erityisesti P = { x x f (x) } ja P = { x f (x) x } pätevät ja ovat itse f :n kiintopisteitä. Todistus. Theorem 1 Alfred Tarskin artikkelissa A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Mathematics, vol. 5 no. 2 (1955). Todistus löytyy myös lukemattomista hilateorian ja sen sovellusalueiden oppikirjoista.
33 Pienin ja suurin kiintopiste Määritelmä Olkoon (X, ) täydellinen hila, olkoon f : X X monotoninen ja olkoon f :n kiintopisteiden joukko P. Tällöin merkitään µf = P (f :n pienin kiintopiste) ja νf = P (f :n suurin kiintopiste).
34 Pienin ja suurin kiintopiste Määritelmä Olkoon (X, ) täydellinen hila, olkoon f : X X monotoninen ja olkoon f :n kiintopisteiden joukko P. Tällöin merkitään µf = P (f :n pienin kiintopiste) ja νf = P (f :n suurin kiintopiste). Huomautus Toinen yleinen merkintäkäytäntö on fix f = µf ja FIX f = νf.
35 Pienin ja suurin kiintopiste Määritelmä Olkoon (X, ) täydellinen hila, olkoon f : X X monotoninen ja olkoon f :n kiintopisteiden joukko P. Tällöin merkitään µf = P (f :n pienin kiintopiste) ja νf = P (f :n suurin kiintopiste). Huomautus Toinen yleinen merkintäkäytäntö on fix f = µf ja FIX f = νf. Huomautus Sekä µf että νf ovat yhtälön x = f (x) ratkaisuja x:n suhteen.
36 Rekursio ja korekursio Määritelmä Olkoon (X, ) täydellinen hila ja olkoon f : X X monotoninen. Yhtälö x = f (x) määrittelee rekursiivisesti x = µf :n ja korekursiivisesti x = νf :n.
37 Esimerkki
38 Esimerkki Kakkosen potenssien joukko voidaan määritellä rekursiivisesti seuraavien sääntöjen avulla: 1. 1 kuuluu joukkoon. 2. Jos n kuuluu joukkoon, niin 2 n kuuluu joukkoon.
39 Esimerkki Kakkosen potenssien joukko voidaan määritellä rekursiivisesti seuraavien sääntöjen avulla: 1. 1 kuuluu joukkoon. 2. Jos n kuuluu joukkoon, niin 2 n kuuluu joukkoon. Nämä säännöt määrittelevät oikeastaan seuraavan joukkofunktion: f : P(N) P(N) f (S) = {1} { 2 n n S } Funktion parametrijoukossa on alkiot, joiden jo tiedetään kuuluvan kakkosen potenssien joukkoon.
40 Esimerkki Kakkosen potenssien joukko voidaan määritellä rekursiivisesti seuraavien sääntöjen avulla: 1. 1 kuuluu joukkoon. 2. Jos n kuuluu joukkoon, niin 2 n kuuluu joukkoon. Nämä säännöt määrittelevät oikeastaan seuraavan joukkofunktion: f : P(N) P(N) f (S) = {1} { 2 n n S } Funktion parametrijoukossa on alkiot, joiden jo tiedetään kuuluvan kakkosen potenssien joukkoon. Se, että kakkosen potenssien joukko on noiden sääntöjen rekursion tulos, tarkoittaa oikeastaan, että ko. joukko on µf!
41 Esimerkki
42 Esimerkki Puhtaan, tyypittömän λ-laskennon abstrakti syntaksi on E ::= I E 1 E 2 λi.e.
43 Esimerkki Puhtaan, tyypittömän λ-laskennon abstrakti syntaksi on E ::= I E 1 E 2 λi.e. Oikeastaan tuo puukielioppi määrittelee funktion rakennepuiden joukolta rakennepuiden joukolle seuraavasti: f (E) = { t t I } { t 1 t 2 t 1 E t 2 E } { λt 1.t 2 t 1 I t 2 E }
44 Esimerkki Puhtaan, tyypittömän λ-laskennon abstrakti syntaksi on E ::= I E 1 E 2 λi.e. Oikeastaan tuo puukielioppi määrittelee funktion rakennepuiden joukolta rakennepuiden joukolle seuraavasti: f (E) = { t t I } { t 1 t 2 t 1 E t 2 E } { λt 1.t 2 t 1 I t 2 E } Abstrakti syntaksi on oikeastaan rakennepuiden joukko µf!
45 Tehtävä Tarkastellaan puhtaan, tyypittömän λ-laskennon β-muunnossääntöjä: E 1 E 1 E 1 E 2 E 1 E 2 E 2 E 2 E 1 E 2 E 1 E 2 E E λi.e λi.e (λi.e 1) E 2 E 1[I := E 2] Minkälainen funktio f :n tulee olla, jotta ( ) = µf?
46 Esimerkki
47 Esimerkki Abstrakti syntaksi T ::= T T määrittelee funktion f (T ) = { t 1 t 2 t 1 T t 2 T }.
48 Esimerkki Abstrakti syntaksi T ::= T T määrittelee funktion f (T ) = { t 1 t 2 t 1 T t 2 T }. Jos tämä tulkitaan rekursiiviseksi määritelmäksi, T on tyhjä joukko, sillä µf =.
49 Esimerkki Abstrakti syntaksi T ::= T T määrittelee funktion f (T ) = { t 1 t 2 t 1 T t 2 T }. Jos tämä tulkitaan rekursiiviseksi määritelmäksi, T on tyhjä joukko, sillä µf =. Kuitenkin tuolla abstraktilla syntaksilla on luonnollinen tulkinta: T sisältää yhden äärettömän rakennepuun.
50 Esimerkki Abstrakti syntaksi T ::= T T määrittelee funktion f (T ) = { t 1 t 2 t 1 T t 2 T }. Jos tämä tulkitaan rekursiiviseksi määritelmäksi, T on tyhjä joukko, sillä µf =. Kuitenkin tuolla abstraktilla syntaksilla on luonnollinen tulkinta: T sisältää yhden äärettömän rakennepuun. Tarvitaan korekursiota: T = νf.
51 Äärettömät tyypit tavallisesti abstraktit kieliopit ovat rekursiivisia määritelmiä kun sallitaan äärettömät tyypit, tyyppien joukko määritelläänkin korekursiivisesti eikä rekursiivisesti periaatteessa edelleen samat tyypityssäännöt, niiden tulkinta vain muuttuu
52 µ-tyypit äärettömien puiden kanssa on käytännössä mahdotonta työskennellä siksi lyhennysmerkintä: T ::= I T T µi.t µi.t sitoo tyyppimuuttujan I samalla tavalla kuin λi.e sitoo muuttujan I µi.t tarkoittaa sitä ääretöntä tyyppiä, joka on yhtälön I = T korekursiiviseksi ratkaisuksi asetetaan lisäksi kaksi hyvinmuodostussääntöä: 1. Jos tyyppi sisältää ali-ilmaisun µi.µi µI n.t, niin T ei saa olla I. 2. Kokonaisessa tyypissä ei saa olla vapaita (tyyppi)muuttujia.
53 Miksi µ eikä ν?
54 Miksi µ eikä ν? µi.t on yhtälön I = T korekursiivinen ratkaisu
55 Miksi µ eikä ν? µi.t on yhtälön I = T korekursiivinen ratkaisu korekursiivinen? miksi se ei sitten ole νi.t?
56 Miksi µ eikä ν? µi.t on yhtälön I = T korekursiivinen ratkaisu korekursiivinen? miksi se ei sitten ole νi.t? joukkotulkinta: tyyppi T on sentyyppisten arvojen joukko
57 Miksi µ eikä ν? µi.t on yhtälön I = T korekursiivinen ratkaisu korekursiivinen? miksi se ei sitten ole νi.t? joukkotulkinta: tyyppi T on sentyyppisten arvojen joukko µi.t on rekursiivisesti määriteltävien (eli äärellisten) arvojen joukko
58 Miksi µ eikä ν? µi.t on yhtälön I = T korekursiivinen ratkaisu korekursiivinen? miksi se ei sitten ole νi.t? joukkotulkinta: tyyppi T on sentyyppisten arvojen joukko µi.t on rekursiivisesti määriteltävien (eli äärellisten) arvojen joukko µi.t :tä (jossa I esiintyy vapaana T :ssä) sanotaan siksi rekursiiviseksi tyypiksi
59 Miksi µ eikä ν? µi.t on yhtälön I = T korekursiivinen ratkaisu korekursiivinen? miksi se ei sitten ole νi.t? joukkotulkinta: tyyppi T on sentyyppisten arvojen joukko µi.t on rekursiivisesti määriteltävien (eli äärellisten) arvojen joukko µi.t :tä (jossa I esiintyy vapaana T :ssä) sanotaan siksi rekursiiviseksi tyypiksi νi.t olisi korekursiivisten eli äärettömien arvojen joukko!
60 Miksi µ eikä ν? µi.t on yhtälön I = T korekursiivinen ratkaisu korekursiivinen? miksi se ei sitten ole νi.t? joukkotulkinta: tyyppi T on sentyyppisten arvojen joukko µi.t on rekursiivisesti määriteltävien (eli äärellisten) arvojen joukko µi.t :tä (jossa I esiintyy vapaana T :ssä) sanotaan siksi rekursiiviseksi tyypiksi νi.t olisi korekursiivisten eli äärettömien arvojen joukko! νi.t :tä sanotaan korekursiiviseksi tyypiksi
61 Esimerkkejä
62 Esimerkkejä 1. Äärellisten kokonaislukulistojen tyyppi on µt. nil : {}, cons : {car : Int, cdr : t}.
63 Esimerkkejä 1. Äärellisten kokonaislukulistojen tyyppi on µt. nil : {}, cons : {car : Int, cdr : t}. 2. Nälkäiset funktiot: µt.int t
64 Esimerkkejä 1. Äärellisten kokonaislukulistojen tyyppi on µt. nil : {}, cons : {car : Int, cdr : t}. 2. Nälkäiset funktiot: µt.int t 3. Kokonaislukuvirrat (engl. streams): µt.{} {car : Nat, cdr : t} tai νt.{car : Nat, cdr : t}
65 Huomautus Rekursiivisilla tyypeillä laajennettu yksinkertaisesti tyypitetty λ-laskento onkin Turing-täydellinen, sillä λf : T T.(λx : (µt.t T ).f (x x))(λx : (µt.t T ).f (x x)) on hyvin tyypitetty kiintopisteoperaattori!
66 Ensi maanantaina ei ole luentoa. Ensi tiistaina jatketaan rekursiivisten tyyppien kanssa.
Geneeriset tyypit. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos
Geneeriset tyypit TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 6. maaliskuuta 2007 Kysymys Mitä yhteistä on seuraavilla funktioilla?
LisätiedotYksinkertaiset tyypit
Yksinkertaiset tyypit TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 13. helmikuuta 2007 Tyypitön puhdas λ-laskento E ::= I E 1 E 2
LisätiedotTIES542 kevät 2009 Denotaatio
TIES542 kevät 2009 Denotaatio Antti-Juhani Kaijanaho 27.1.2009 (korjauksia 28.1.2009) Denotationaalisessa merkitysopissa kukin (ohjelmointi)kielen konstrktiolle määritellään matemaattinen otus, jota sanotaan
LisätiedotRekursiiviset tyypit - teoria
Rekursiiviset tyypit - teoria Samppa Saarela Helsinki 1999/04/14 Tyyppiteoria ja ohjelmointikielet - seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö i 1 Johdanto 1 2 Esimerkkkejä
LisätiedotEloisuusanalyysi. TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2009 TIETOTEKNIIKAN LAITOS. Eloisuusanalyysi.
TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. marraskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe E tiistai 1.12. klo 10 koodigenerointi (ilman rekisteriallokaatiota)
LisätiedotAlityypitys. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos
Alityypitys TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 5. maaliskuuta 2007 Muistatko tietueet? {I 1 = E 1,..., I n = E n } : {I
LisätiedotTIEA341 Funktio-ohjelmointi 1, kevät 2008
TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 10 Todistamisesta Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Samuuden todistaminen usein onnistuu ihan laskemalla
LisätiedotTietojenkäsittelyteorian alkeet, osa 2
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen
LisätiedotOliot ja tyypit. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos
Oliot ja tyypit TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 19. maaliskuuta 2007 Olion tyyppi? attribuutti on oikeastaan metodi,
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. maaliskuuta 2012 Sisällys Ongelma-analyysiä Sisällys Ongelma-analyysiä Hypoteettinen ongelma The Elite Bugbusters
LisätiedotTIES542 kevät 2009 Rekursiiviset tyypit
TIES542 kevät 2009 Rekursiiviset tyypit Antti-Juhani Kaijanaho 17. helmikuuta 2009 Edellisessä monisteessa esitetyt tietue- ja varianttityypit eivät yksinään riitä kovin mielenkiintoisten tietorakenteiden
Lisätiedot2. Minkä joukon määrittelee kaava P 0 (x 0 ) P 1 (x 0 ) mallissa M = ({0, 1, 2, 3}, P M 0, P M 1 ), kun P M 0 = {0, 1} ja P M 1 = {1, 2}?
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan II, syksy 2018 Harjoitus 4 Ratkaisuehdotukset 1. Mitkä muuttujat esiintyvät vapaina kaavassa x 2 ( x 0 R 0 (x 1, x 2 ) ( x 3 R 0 (x 3, x 0
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
LisätiedotLogiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.
TIE303 Formaalit menetelmät, kevät 2005 Logiikan kertausta Antti-Juhani Kaijanaho antkaij@mit.jyu.fi Jyväskylän yliopisto Tietotekniikan laitos TIE303 Formaalit mentetelmät, 2005-01-27 p. 1/17 Luento2Luentomoniste
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 26. kesäkuuta 2013
ja ja TIEA241 Automaatit ja kieliopit, kesä 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. kesäkuuta 2013 Sisällys ja ja on yksi vanhimmista tavoista yrittää mallittaa mekaanista laskentaa. Kurt
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
LisätiedotRatkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).
Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)
LisätiedotLuonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
LisätiedotKuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i
LisätiedotKuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,
LisätiedotTIEA341 Funktio-ohjelmointi 1, kevät 2008
TIEA34 Funktio-ohjelmointi, kevät 2008 Luento 3 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 2. tammikuuta 2008 Ydin-Haskell: Syntaksi Lausekkeita (e) ovat: nimettömät funktiot: \x
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,
LisätiedotVieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.
Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z
LisätiedotLaskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.
LisätiedotSamanaikaisuuden hallinta
Samanaikaisuuden hallinta TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 20. maaliskuuta 2007 Samanaikaisuus engl. concurrency useampaa
LisätiedotIlkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi
Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot
LisätiedotTuringin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton kontekstinen
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
Lisätiedot14.1 Rekursio tyypitetyssä lambda-kielessä
Luku 14 Rekursiiviset tyypit Edellisessä luvussa esitetyt tietue- ja varianttityypit eivät yksinään riitä kovin mielenkiintoisten tietorakenteiden toteuttamiseen. Useimmissa ohjelmissa tarvitaan erilaisia
LisätiedotJoukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet
TKK () Ilkka Mellin (2004) 1 Joukko-oppi Liite: Joukko-oppi TKK () Ilkka Mellin (2004) 2 Joukko-oppi: Mitä opimme? Tämän liitteen tavoitteena on esitellä joukko-opin peruskäsitteet ja - operaatiot laajuudessa,
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4
LisätiedotTehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.
Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
LisätiedotLause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat
jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015
ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotTäydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista
Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.
LisätiedotDiofantoksen yhtälön ratkaisut
Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön
LisätiedotJoukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,
Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, (s) symmetrinen, jos xry yrx, (as) antisymmetrinen, jos xry yrx x =
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016
ja ja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys ja ja Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/
Lisätiedotjonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä
4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,
LisätiedotRelaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,
Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan
LisätiedotEkvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa
Määritelmä 1 Olkoot x ja y joukon A alkioita. Jos R on jokin ominaisuus/ehto, joka määritellään yksikäsitteisesti joukon A kaikkien alkioiden välille siten, että se joko toteutuu tai ei toteudu alkioiden
LisätiedotMS-A0401 Diskreetin matematiikan perusteet
MS-A0401 Diskreetin matematiikan perusteet Osa 2: Relaatiot ja funktiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta
Lisätiedotx > y : y < x x y : x < y tai x = y x y : x > y tai x = y.
ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en
Lisätiedot1 Määrittelyjä ja aputuloksia
1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia
LisätiedotTäydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
LisätiedotYdin-Haskell Tiivismoniste
Ydin-Haskell Tiivismoniste Antti-Juhani Kaijanaho 8. joulukuuta 2005 1 Abstrakti syntaksi Päätesymbolit: Muuttujat a, b, c,..., x, y, z,... Tyyppimuuttujat α, β, γ,... Koostimet (data- ja tyyppi-) C, D,...,
LisätiedotPinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
LisätiedotMatematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
LisätiedotMAT Algebra 1(s)
8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
LisätiedotJarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori
Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. toukokuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. toukokuuta 2011 Sisällys engl. random-access machines, RAM yksinkertaistettu nykyaikaisen (ei-rinnakkaisen)
LisätiedotKOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain
LisätiedotValitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.
Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä
Lisätiedot2.4 Normaalimuoto, pohja ja laskentajärjestys 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13
2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13 Toisinaan voi olla syytä kirjoittaa α- tai β-kirjain yhtäsuuruusmerkin yläpuolelle kertomaan, mitä muunnosta käytetään. Esimerkki 4 1. (λx.x)y β = y 2.
LisätiedotKuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
LisätiedotDFA:n käyttäytyminen ja säännölliset kielet
säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen
LisätiedotApprobatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
Lisätiedotjäsennyksestä TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 29. syyskuuta 2016 TIETOTEKNIIKAN LAITOS Kontekstittomien kielioppien
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 29.9.2016 klo 8:41 (lähes kaikki kommentoitu) passed
Lisätiedotjäsentämisestä TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 27. marraskuuta 2015 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 27. marraskuuta 2015 Sisällys Rekursiivisesti etenevä engl. recursive descent parsing Tehdään kustakin välikesymbolista
Lisätiedot6 Relaatiot. 6.1 Relaation määritelmä
6 Relaatiot 6. Relaation määritelmä Määritelmä 6... Oletetaan, että X ja Y ovat joukkoja. Jos R µ X Y, sanotaan, että R on joukkojen X ja Y välinen relaatio. Jos R µ X X, sanotaan, että R on joukon X relaatio.
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotLaskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. kesäkuuta 2013 Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on muotoa Onko
Lisätiedot1 Reaaliset lukujonot
Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot
LisätiedotJoukot. Georg Cantor ( )
Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista
LisätiedotSäännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]
LisätiedotJohdatus todennäköisyyslaskentaan Joukko-oppi. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Joukko-oppi TKK (c) Ilkka Mellin (2005) 1 Joukko-oppi Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot ja funktioiden
LisätiedotInsinöörimatematiikka A
Insinöörimatematiikka A Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2018 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 3 1 of 23 Kertausta Määritelmä Predikaattilogiikan
LisätiedotJohdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus syksy 008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä Todista ketjumurtoluvun peräkkäisille konvergenteille kaava ( ) n induktiolla käyttämällä jonojen ( ) ja ( ) rekursiokaavaa.
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 etenevä Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. kesäkuuta 2013 Sisällys etenevä etenevä Chomskyn hierarkia (ja muutakin) kieli säännöllinen LL(k) LR(1)
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio
LisätiedotFORMAALI SYSTEEMI (in Nutshell): aakkosto: alkeismerkkien joukko kieliopin määräämä syntaksi: sallittujen merkkijonojen rakenne, formaali kuvaus
FORMAALI SYSTEEMI (in Nutshell): Formaali kieli: aakkosto: alkeismerkkien joukko kieliopin määräämä syntaksi: sallittujen merkkijonojen rakenne, formaali kuvaus esim. SSM:n tai EBNF:n avulla Semantiikka:
LisätiedotLuonnollisten lukujen induktio-ominaisuudesta
Solmu 1/2019 19 Luonnollisten lukujen induktio-ominaisuudesta Tuomas Korppi Johdanto Kuten lukija varmaan tietääkin, luonnollisille luvuille voidaan tehdä induktiotodistuksia. Tämä mahdollisuus on ominainen
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
LisätiedotT Syksy 2005 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet )
T-79.144 Syksy 2005 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 2 5.11.2005 1. Olkoon R kaksipaikkainen predikaattisymboli, jonka tulkintana on relaatio R A
LisätiedotEsko Turunen Luku 9. Logiikan algebralisointi
Logiikan algebralisointi Tässä viimeisessä luvussa osoitamme, miten algebran peruskäsitteitä käytetään logiikan tutkimuksessa. Käsittelemme vain klassista lauselogiikkaa ja sen suhdetta Boolen algebraan,
LisätiedotPinoautomaatit. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 6. lokakuuta 2016 TIETOTEKNIIKAN LAITOS
.. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. lokakuuta 2016 Sisällys. Harjoitustehtävätilastoja Tilanne 6.10.2016 klo 8:28 passed potential redo submitters
LisätiedotKompaktisuus ja filtterit
Kompaktisuus ja filtterit Joukkoperheellä L on äärellinen leikkausominaisuus, mikäli jokaisella äärellisellä L L on voimassa L. Nähdään helposti, että perheellä L on äärellinen leikkausominaisuus ja L
LisätiedotOlkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on. yr 1 x xry.
Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on yr 1 x xry. Siis R 1 = { (y, x) Y X (x, y) R }. Esimerkki. Olkoon R = {(1, 1), (1, 2), (2, 1), (3, 1)}.
LisätiedotOlkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on. yr 1 x xry.
Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on yr 1 x xry. Siis R 1 = { (y, x) Y X (x, y) R }. Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012
TIEA241 Automaatit ja, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 2. helmikuuta 2012 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti lueteltava
Lisätiedot