tyyppi metalli puu lasi työ I II III metalli puu lasi työ
|
|
- Aila Haapasalo
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 MATRIISIALGEBRA Harjoitustehtäviä syksy 29 ( Olkoot, B = Määrää 2A, B 2A, A T, ( 2A) T, (A T ) T. ), C = ( 1 ) 4 4 ja E = Olkoot A, B, C ja E kuten edellisessä tehtävässä. Määrää A + A T, AC, CE, EC ja CB. 3. Olkoot a c e b d 2 3 7, B = ja C = f matriiseja, missä a, b, c, d, e ja f ovat reaalilukuja. Tarkastellaan matriisituloja (AB) T ja B T A T C ja C T AB. Määrää kunkin matriisitulon tulos, jos kyseinen matriisitulo on määritelty. Jos jokin matriisituloista ei ole määritelty, niin perustele miksi ei. 4. Keksi nollamatriisista poikkeavat 3 3-matriisit a) A ja B, joille AB = 3 3 (=nollamatriisi). b) A, B ja C, joille AC = BC, mutta A B. 5. Eräs yritys valmistaa kolmentyyppisiä ikkunoita ja eri tyypit vaativat ikkunaa kohti metalliosia, puuta, lasia ja työtä seuraavasti: tyyppi metalli puu lasi työ I II III Raaka-aineiden yksikköhinnat ovat euroissa lausuttuina metalli puu lasi työ Kuinka paljon kunkin ikkunatyypin raaka-aineet maksavat? Eräänä päivänä on toimitettava 5 kpl tyyppiä I, 7 kpl tyypiä II ja 9 kpl tyyppiä III olevia ikkunoita. Kuinka paljon näihin kuluu raaka-aineita? Kuinka paljon raaka-aineet maksavat? Suorita laskut matriisilaskennan merkinnöin! 6. Tiedetään, että putkijärjestelmä P toimii lineaarisesti, mikä merkitsee sitä, että herätettä (input) x ja vastetta (output) y sitoo toisiinsa yhtälö Ax = y. Olkoon kuvion putkisysteemi P allakuvatun mukainen. Määrää (siirto)matriisi A, kun tiedetään mittausten perusteella seuraavaa: kun heräte on x 1 = 1 yksikkö ja x 2 = yksikköä, niin vaste on y 1 = 1/7, y 2 = 3/7 ja y 3 = 3/7 (yksikköä) sekä kun heräte on x 1 = yksikköä ja x 2 = 1 yksikkö, niin vaste on y 1 = 2/5, y 2 = 1/5 ja y 3 = 2/5 (yksikköä). Mikä on herätettä x 1 = 2, x 2 = 1 vastaava vaste?
2 7. a) Onko kaava (A B)(A + B) = A 2 B 2 aina voimassa, kun A ja B ovat samaa lajia olevia neliömatriiseja? Perustelu! b) Poista sulut lausekkeesta (A + B) Eläintarhassa on lintuja (2-jalkaisia) ja elukoita (4-jalkaisia). a)jos siellä on 15 päätä ja 4 jalkaa, niin kuinka monta lintua ja kuinka monta elukkaa siellä on? b) Jos jalkoja on 4, niin mitkä ovat mahdolliset lintujen ja elukoiden lukumäärät? 9. Ratkaise seuraavat yhtälöparit a) { x + 7y = 4 2x 9y = 23 b) { x 3y = 4 3x + 9y = 8 c) { 2x + 4y = 8 x 2y = 4 1. Ratkaise Gaussin menetelmällä seuraavat yhtälöryhmät: a) 3x 1 + x 2 x 3 = 4 6x 1 + 2x 2 + 2x 3 = 2, x 1 x 2 + 2x 3 = 7 b) 2x 1 x 3 = x 2 2x x 2 x 3 + 2x 4 = 2x 1 x 3 + 2x 2 + x 1 + x 4 5 = = x 1 + 3x 2 x c) x 1 + 3x 2 + 5x 3 + 4x 4 = x 1 + 2x 2 + 6x 3 + 2x 4 = 1, 2x 1 + 8x 2 + 8x x 4 = 1 d) 3x 1 + 6x 2 + x 3 = 5 x 1 + 3x 2 x 3 = 3. x 1 + 2x 2 + 2x 3 = Ratkaise Gaussin menetelmällä yhtälöryhmä { x + 3y + 2w = 1 z 6y + 2x + 4z = 3 8w. 2z + 4w 1 = 12. Kalankasvatusaltaassa on kolmea eri lajia kaloja. Lajin 1 jokainen kala tarvitsee viikossa 1 yksikön ruokaa A, 1 yksikön ruokaa B ja 2 yksikköä ruokaa C. Vastaavat yksikkömäärät lajin 2 kaloille ovat 3,4, ja 5 sekä lajin 3 kaloille 2,1 ja 5. Joka viikko altaaseen sijoitetaan 25 yksikköä ruokaa A, 2 yksikköä ruokaa B ja 55 yksikköä ruokaa C. Kuinka monta kalaa kutakin lajia altaassa voi olla, jos oletetaan että kaikki ruoka tulee syödyksi ja jokainen kala syö täsmälleen tarvitsemansa yksikkömäärät? Ratkaise tehtävä sopivan yhtälöryhmän avulla käyttäen Gaussin menetelmää. 13. Totea, että yhtälöryhmän 2 3 x x x 3 3 = x x x 3 = x x 3 = 3 kerroinmatriisi on ortogonaalinen ja käytä tätä tietoa hyväksi yhtälöryhmän ratkaisemisessa..
3 14. Määrää A:n käänteismatriisi vaakarivimuunnoksin matriisista (A I), kun a) b) c) 15. Olkoon D diagonaalimatriisi, D = diag(x 1, 2x 1, 3x 1, 4x 1,..., 14x 1). Määrää D:n käänteismatriisi, kun x =. Millä x:n arvoilla D:lla ei ole käänteismatriisia? 16. Määrää matriisin LU-hajotelma. 17. Olkoon a) Määrää matriisin A LU-hajotelma. b) Ratkaise yhtälöryhmä x 1 + 4x 2 + 5x 3 = 6 4x x x 3 = 3x x 2 + 3x 3 = 6 kerroinmatriisin LU-hajotelman avulla. c) Ratkaise A:n LU hajotelman avulla yhtälöryhmä Ax = b, kun 18. Olkoot b = ja b = Muodosta matriisin A QR-hajoitelma ja laske x = (A T A) 1 A T b sekä x = R 1 Q T b. 19. Matriisit B ja C ovat sarakeortogonaalisia. Laske A T A, kun BC. 2. Mitkä seuraavista joukoista ovat vektoriavaruuden R 3 aliavaruuksia: a) {(x 1, x 2, x 3 ) R 3 4x 1 + 5x 2 + 2x 3 = 2} b) {(x 1, x 2, x 3 ) R 3 x 1 =, x 3 = 2x 2 } 21. Selvitä onko vektorijoukko {(1, 1, 2, 2), (3, 2, 4, 5), (, 2, 3, 2), (1, 1,, 3)} R 4 :n vapaa (=lineaarisesti riippumaton) vektorijoukko
4 22. Tutki, muodostavatko vektorit (, 1,, 1), (,, 2, ), (1,, 1, ) ja (, 1,, 2) R 4 :n kannan. Jos muodostavat, niin etsi vektorin (1, 2, 5, 5) koordinaatit tämän kannan suhteen. 23. Määrää reaalisten 2 2 matriisien muodostaman vektoriavaruuden jokin kanta ja määrää matriisin koordinaatit tämän kannan suhteen. 24. Vektorijoukot S 1 = {(, 1, ), (1, 1, ), (1, 2, 3)} ja S 2 = {(1, 1, ), (1, 1, 1), (1, 2, 1)} ovat R 3 :n kantoja. a) Vektorin u koordinaatit kannassa S 2 ovat 4, 3 ja 2. Määritä tarvittava kannanvaihtomatriisi ja laske sen avulla u:n koordinaatit kannassa S 1. b) Vektorin v koordinaatit kannassa S 1 ovat 3, 2 ja 1. Määritä tarvittava kannanvaihtomatriisi ja laske sen avulla v:n koordinaatit kannassa S Kuvankäsittelyssä kuvia muokataan käyttämällä lineaarisia muunnoksia kuten esimerkiksi venytystä, kiertoa ja peilausta. a) Muodosta muunnoksen (kannalta E = {i, j, k} kannalle E) matriisi, kun kuvaa aluksi venytetään j-akselin suunnassa 3-kertaiseksi ja k-akselin suunnassa 2-kertaiseksi ja sitten kierretään kulman π 2 verran k-akselin ympäri vastapäivään (katsottuna k-akselin positiiviselta puoliakselilta origoon päin). b) Mikä on muunnosmatriisi, jos edellisten muunnosten kuva vielä peilataan xz-tason (=ik-tason) suhteen ja sitten kierretään kulman 3 2π verran j-akselin ympäri myötäpäivään (katsottuna j- akselin positiiviselta puoliakselilta origoon päin)? 26. Kun kuvankäsittelyssä tehdään peräkkäin kaksi venytystä (esim. venytys z-akselin suunnassa ja sitten venytys x-akselin suunnassa), niin voidaanko venytysten järjestystä vaihtaa ja jos voidaan, niin miksi? Voidaanko kahden kierron (esim. kierto π 2 :n verran myötäpäivään x-akselin ympäri ja sitten π 2 :n verran myötäpäivään y-akselin ympäri) järjestystä vaihtaa ja jos voidaan niin miksi? Edelleen voidaanko kierron ja venytyksen järjestystä vaihtaa? Perustelut! 27. Määrää lineaarikuvauksen F : R 2 R 4, F (x 1, x 2 ) = (x 1 + 2x 2, x 2, x 1 x 2, 2x 1 + 3x 2 ) matriisi a) luonnollisten kantojen suhteen b) kantojen S 1 = {(1, 2), (1, )} ja S 2 = {(1, 1, 1, ), (1,, 1, 1), ( 1, 1, 1, ), (,, 1, )} suhteen. 28. Määritä lineaarikuvauksen F : R 3 R 2, F (x 1, x 2, x 3 ) = (2x 1 + x 2 3x 3, x 1 2x 2 + x 3 ) matriisi kantojen S 1 = {(1,, 1), (, 1, ), (, 1, 1)} ja S 2 = {(, 1), ( 1, 1)} suhteen ja laske sen avulla vektorin F (u) koordinaatit kannassa S 2, kun vektori u = 2i + 3j k, missä i = (1,, ), j = (, 1, ) ja k = (,, 1). 29. a) Määritä lineaarikuvauksen F : P 3 (R) P 4 (R), F (p(t)) = tp(t 2) matriisi kantojen {1, t, t 2, t 3 } ja {1, t, t 2, t 3, t 4 } suhteen. b) Olkoon F sellainen lineaarikuvaus reaalisten 2 2 matriisien joukossa, että 1 2 F (B) = B. 3 4 Määrää lineaarikuvauksen F matriisi kannan 1 {,, 1 2 suhteen. 1, 1 1 } 2
5 3. Määrää seuraavien matriisien aste, nulliteetti, ydin ja ytimen kanta (jokin niistä, jos mahdollista): a) , 1 1 b) , c) 31. Määrää matriisien ja B = aste, nulliteetti, ydin, ytimen kanta ja kuva-avaruuden kanta. 32. a) Tutki onko allaolevilla yhtälöryhmillä ratkaisuja. x 1 + x 2 x 3 = 7 4x 1 x 2 + 5x 3 = 4 6x 1 + x 2 + 3x 3 = 2 x 1 2x 2 + x 3 + x 4 = 2 3x 1 + 2x 3 2x 4 = 8 4x 2 x 3 x 4 = 1 5x 1 + 3x 3 x 4 = 3 b) Olkoon A 5 7 matriisi, jonka aste on 5. Osoita, että yhtälöryhmällä Ax = b on ainakin yksi ratkaisu jokaisella 5 1 sarakevektorilla b. 33. Jokaiselle matriisille B vektoriavaruus row(b) on matriisin B rivien (eli rivivektoreiden) virittämä vektoriavaruus ja R(B) on B:n kuva-avaruus. Olkoon A säännöllinen n n matriisi ja olkoon a) Selvitä onko row((a ) 1 ) = R(A). b) Määrää matriisin A nulliteetti. 34. Määrää seuraavien matriisien determinantit: a) b) A = (A 1 ) T , B = ,
6 c) C = 1 1 j 1 j j 1 j 35. Tarkastellaan edellisen tehtävän matriiseja. a) Mitkä matriiseista A, B, C ovat säännöllisiä? b) Mitä voit sanoa matriisin B asteesta? Mikä on matriisin C ydin? c) Sisältääkö matriisin A ydin nollasta eroavan vektorin? 36. Määrää determinantin avulla a) pisteiden (2,3,1), (2, 1, 1) ja (1,2,1) kautta kulkevan tason yhtälö, b) pisteiden (2,6), (2,) ja (5,3) kautta kulkevan ympyrän yhtälö. 37. Sievennä pisteiden (,, 1), (1,, 1), (1, 1, 1) ja (2, 2, 2) kautta kulkevan pallopinnan yhtälö x 2 + y 2 + z 2 x y z = muotoon c 1 (x 2 + y 2 + z 2 ) + c 2 x + c 3 y + c 4 z + c 5 = laskemalla yhtälön vasemmalla puolella olevan determinantin arvo. 38. Etsi seuraavien matriisien ominaisarvot ja -vektorit a) b) c) d) Laske matriisin ominaisarvot ja ominaisvektorit Olkoon A tehtävän 38b matriisi. Määrää matriisien A 2, A 1 ja A + 6I ominaisarvot ja ominaisvektorit. 41. Olkoon a) b) Onko matriisi A diagonalisoituva? Jos on, niin määrää matriisi D = T 1 AT ja siihen liittyvä matriisi T..
7 42. Olkoon Tutki, onko A diagonalisoituva. Perustelu! Matriisin A ominaisarvot ovat 1, 1 ja 2 sekä vastaavat ominaisvektorit ( 1, 1, 1), ( 1, 4, 1) ja (1,2,1). Määrää A. 44. Määrää kaksi 2 2 matriisia A ja B, joilla on samat ominaisarvot ja joiden jokaista ominaisarvoa vastaavat ominaisvektorit ovat myös samat. 45. Ratkaise matriisiyhtälö AX + I = A 11, missä Ratkaise dierentiaaliyhtälöryhmä { x 1 (t) + 2x 1 (t) 6x 2 (t) = x 2(t) + 3x 1 (t) 7x 2 (t) = alkuehdoilla x 1 () = 5 ja x 2 () = 3 käyttämällä hyväksi kerroinmatriisin diagonalisointia. 47. Ratkaise dierentiaaliyhtälöryhmä x 2(t) = x 1 (t) + 2x 2 (t) + x 3 (t) x 1(t) = x 1 (t) + x 2 (t) 2x 3 (t) x 3(t) = x 2 (t) x 3 (t) alkuehdolla x 1 () = 3, x 2 () = 2, x 3 () = 1 käyttämällä hyväksi kerroinmatriisin diagonalisointia. 48. Kahden kilpailevan populaation S 1 ja S 2 yksilöiden lukumäärät x 1 (t) ja x 2 (t) hetkellä t (t mitattu vuosina) toteuttavat dierentiaaliyhtälöryhmän { x 1 (t) = 3x 1 (t) x 2 (t) x 2(t) = 2x 1 (t) + 2x 2 (t) Ratkaise x 1 (t) ja x 2 (t) (käyttämällä hyväksi kerroinmatriisin diagonalisointia), kun alkuhetkellä t = ensimmäisen populaation koko on 15 ja toisen 6. Millä ajan t hetkellä populaatio S 2 häviää? 49. Arvioi Gershgorinin ympyröiden avulla matriisin j j ominaisarvojen sijaintia. Piirrä kuva ja määrää kuvan perusteella väli, johon A:n jokaisen ominaisarvon reaaliosa kuuluu sekä väli, johon A:n jokaisen ominaisarvon imaginaariosa kuuluu. 5. Laske matriisin itseisarvoltaan suurimmalle ominaisarvolle likiarvo iteratiivisesti lähtien vektorista y = (1, 1, 1). Likiarvo λ (3) riittää. Mikä on vastaava ominaisvektori? 51. Laske 1-, - ja Frobenius normi matriisille
8 52. Laske e A, kun a) , b) Kahden symbioosissa elävän populaation S 1 ja S 2 yksilöiden lukumäärät x 1 (t) ja x 2 (t) toteuttavat dierentiaaliyhtälöryhmän { x 1 (t) = 1 2 x 1(t) x 2(t) x 2(t) = x 1 (t) 1 2 x 2(t). Laske populaatioiden koot hetkellä t, kun x 1 () = 1 ja x 2 () = 4. Käytä ratkaisukaavaa missä siirtomatriisi e At lasketaan kaavalla x(t) = e At x(), e At = T e Dt T 1, e Dt = diag (e λ 1t, e λ 2t ). 54. Ratkaise alkuarvotehtävä y + y 2y =, y() = 1, y () = palauttamalla se 1. kertaluvun dierentiaaliyhtälöryhmäksi ja käyttämällä hyväksi joko siirtomatriisia tai kerroinmatriisin diagonalisointia. 55. Ratkaise yhtälöryhmä x 1 5x 2 + x 3 = 16 8x 1 + x 2 + x 3 = 1 x 1 + x 2 4x 3 = 7 a) Jacobin menetelmällä b) Gauÿ - Seidelin menetelmällä (3 iteraatiokierrosta). Määrää a)-kohdan iteraatiomatriisi G ja tutki, onko sen jokin normi < 1. Opastus: Vaihda ensin yhtälöryhmän yhtälöiden järjestystä, jotta saat lävistäjävaltaisen kerroinmatriisin. 56. Yhtälöryhmän { 2x + y + z = 4 x + 2y + z = 4 x + y + 2z = 4. kerroinmatriisi ei ole lävistäjävaltainen. Sovella yhtälöryhmään Jacobin menetelmää laskemalla iteraatio x (3) lähtien vektorista x () =. Määrää Jacobin iteraatioiden iteraatiomatriisi G sekä tutki matriisin G avulla iteraatioiden suppenemista/hajaantumista. 57. Ratkaise yhtälöryhmä { 3x1 + x 3 = 4 x 1 x 2 + 3x 3 = 1 x 1 + 2x 2 = 3 järkevästi Gauss - Seidelin menetelmällä. Valitse x () = ja lopeta iterointi, kun x (k) x (k 1) < Ratkaise yhtälöryhmä x 1 3x x 3 = 31 4x 1 + x 2 x 3 = 3 2x 1 + 7x 2 + x 3 = 19 järkevästi Jacobin menetelmällä lähtien vektorista x () =. Laske kolmas iteraatio x (3). Määrää Jacobin iteraatioiden iteraatiomatriisi G ja laske G Määrää ylideterminoidun systeemin x 1 x 3 = 5 x 1 3x 3 = 7 x 2 + x 3 = 2 x 2 + x 3 = 1 pienimmän neliösumman ratkaisu.
9 6. Määrää ylideterminoidun systeemin x 6y + 1 = x 2y 2 = x + y 1 = x + 7y 6 = pienimmän neliösumman ratkaisu. Laske jäännösvektorin (=residuaalivektorin) r normi r Laske Cayley-Hamiltonin lauseen avulla A 5, kun Olkoon Laske Cayley-Hamiltonin lauseen avulla A Laske e A Cayley - Hamiltonin lauseen perusteella, kun Laske Cayley-Hamiltonin lauseen avulla cos (πa), kun Olkoon A 3 3 matriisi, jonka karakteristinen polynomi p(λ) = (λ 1)(λ 2 3λ+2). Lausu matriisi sin ( π 2 A) matriisien I, A ja A2 avulla. 66. Olkoon Laske Cayley-Hamiltonin lauseen avulla sin( π 2 A) matriisin A ominaisarvot ovat 2, 1 ja 2 sekä A Laske A:n käänteismatriisi ja determinantti sekä tan( π 4 A 1 ).
MATRIISIALGEBRA. Harjoitustehtäviä syksy Olkoot A =, B =
MATRIISIALGEBRA Harjoitustehtäviä syksy 2008 0 3 2 3. Olkoot, B =, C =. 3 2 3 2 4 0 Määrättävä A + B, 4A 2B, A T, C T, (A T ) T. 2. Jos A, B ja C ovat kuten edellisessä tehtävässä, onko a) C + C T määritelty,
2, E = Määrää 3A, B 2A ja E + F. 2. Laske (mikäli mahdollista) AB, BA, A 2, BC, CB ja F = 1 0 0
MATRIISIALGEBRA Harjoitustehtäviä syksy 2012 Tehtävissä 1-2 käytetään seuraavia matriiseja: A = 1 2 ( ) 0 5 1 2 4, B =, C = 1 2, E = 1 0 0 0 1 0 ja F = 1 0 0 0 1 0. 3 7 2 4 3 3 1 3 4 2 2 3 0 1. Määrää
ja F =
MATRIISIALGEBRA Harjoitustehtäviä syksy 2016 Tehtävissä 1 ja 2a käytetään seuraavia matriiseja: ( ) 6 2 3 A =,B = 7 1 2 2 3,C = 4 4 2 5 3,E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1.
Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5
MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää
Matriisialgebra harjoitukset, syksy 2016
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin
Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c
2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
Matriisialgebra harjoitukset, syksy 2016
Matriisialgebra harjoitukset, syksy 6 MATRIISIALGEBRA, s. 6, Ratkaisuja/ M.Hamina & M. Peltola 8. Olkoon 4 A 6. 4 Tutki, onko A diagonalisoituva. Jos on, niin määrää matriisi D T AT ja siihen liittyvä
Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.
Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
6 MATRIISIN DIAGONALISOINTI
6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,
Kanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
(1.1) Ae j = a k,j e k.
Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim
Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
Lineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
Ominaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ominaisarvot Kertaus: ominaisarvot Määritelmä
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
Ominaisarvo ja ominaisvektori
Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
Esimerkki 4.4. Esimerkki jatkoa. Määrää matriisin ominaisarvot ja -vektorit. Ratk. Nyt
Esimerkki 4.4. Määrää matriisin 2 2 1 A = 1 3 1 2 4 3 ominaisarvot ja -vektorit. Ratk. Nyt det(a λi ) = 1 + 2 λ 2 1 + 1 λ 1 λ 1 3 λ 1 = 1 3 λ 1 2 4 3 λ 2 4 3 λ 1 λ = 1 4 λ 1 = (1 λ)( 1)1+1 4 λ 1 2 6 3
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Matemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
Matematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
Matematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Kuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
ominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
MS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa Kertaus: ominaisarvot
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
Insinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
2.8. Kannanvaihto R n :ssä
28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
5.1. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [0, ) jolla on ominaisuudet:
5.. Normi ja suppeneminen Vektoriavaruus V on normiavaruus, jos siinä on määritelty normi : V R + = [, ) jolla on ominaisuudet: x = x = x + y x + y, x, y V a x = a x, x V, a K (= R tai C) Esimerkki 5..
3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
Lineaarialgebra, kertausta aiheita
Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi
3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset
32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta
Ortogonaaliset matriisit, määritelmä 1
, määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät
Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa
110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
Matriisialgebra harjoitukset, syksy 2015
Matriisialgebra harjoitukset, syksy 25 MATRIISIALGEBRA, s. 25, Ratkaisuja/ M.Hamina 2. Virittääkö vektorijoukko S vektoriavaruuden V seuraavissa tapauksissa. a V = R 3 ja S = {(, 4,3,(,3,,(3, 5,,(,2, 2}.
Käänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
Ratkaisuehdotukset LH 7 / vko 47
MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [
Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin
Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 06 laskuharjoituksien esimerkkiratkaisut Alla olevat esimerkkiratkaisut ovat melko ksitiskohtaisia Tenttivastauksissa ei leensä tarvitse muistaa lauseiden, määritelmien, esimerkkien
Similaarisuus. Määritelmä. Huom.
Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP
Determinantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
Oppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
MS-A0003/A Matriisilaskenta Laskuharjoitus 6
MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
5 Differentiaaliyhtälöryhmät
5 Differentiaaliyhtälöryhmät 5.1 Taustaa ja teoriaa Differentiaaliyhtälöryhmiä tarvitaan useissa sovelluksissa. Toinen motivaatio yhtälöryhmien käytölle: Korkeamman asteen differentiaaliyhtälöt y (n) =
JAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu
6. OMINAISARVOT JA DIAGONALISOINTI
0 6 OMINAISARVOT JA DIAGONALISOINTI 6 Ominaisarvot ja ominaisvektorit Olkoon V äärellisulotteinen vektoriavaruus, dim(v ) = n ja L : V V lineaarikuvaus Määritelmä 6 Skalaari λ R on L:n ominaisarvo, jos
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
Ominaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
Ominaisarvo-hajoitelma ja diagonalisointi
Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat
Oppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit
Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä
Ennakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
Ortogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
Demorastitiedot saat demonstraattori Markus Niskaselta Lineaarialgebra (muut ko) p. 1/104
Lineaarialgebra (muut ko) p. 1/104 Ensi viikolla luennot salissa X Torstaina 7.12. viimeiset demot (12.12. ja 13.12. viimeiset luennot). Torstaina 14.12 on välikoe 2, muista ilmoittautua! Demorastitiedot
Käänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
BM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.
Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
Lineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. Olkoot A 2 := AA =
3 3 Olkoot 9 8 B 7 6 ja A 5 4 [ 3 4 Nyt A + B, AB ja BB eivät ole mielekkäitä (vastaavilla lineaarikuvauksilla menisivät dimensiot solmuun tällaisista yhdistelmistä) Kuitenkin voidaan laskea BA ja 9( )
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa
9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
Alkeismuunnokset matriisille, sivu 57
Lineaarialgebra (muut ko) p. 1/88 Alkeismuunnokset matriisille, sivu 57 AM1: Kahden vaakarivin vaihto AM2: Vaakarivin kertominen skalaarilla c 0 AM3: Vaakarivin lisääminen toiseen skalaarilla c kerrottuna
Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)