Simulointi. Simulointi. Esimerkkejä. Mallit. Kurssirunko. Esimerkkejä
|
|
- Auvo Palo
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Simulointi Simulointi Johdanto Simulointi ~ jäljittely Pyrkii kuvaamaan tutkittavan ilmiön tai systeemin oleellisia piirteitä mallin avulla. Systeemin rajaus ja tarkasteltavat piirteet määriteltävä ennen mallin kiinnittämistä ja simulointia. Malli sisältää kolme mallia: Systeemin tuloksen tarkasteltavat ominaisuudet Systeemin (mallinnettu) syöte Systeemin toiminnallinen malli Mallit Malleja voidaan luokitella eri tavoin Konkreetti/abstrakti pienoismalli vs tietokonemalli Deterministinen/stokastinen Tunnettu vs. satunnainen data Analyyttinen/numeerinen Ratkaisulle kaava vs likimääräisratkaisu Jatkuva/diskreetti Ääretön vs äärellinen määrä tiloja ja muutoksia Esimerkkejä Vino heittoliike Yhtälöt ja alkuarvot tunnetaan, ratkaisulle esitys kaavana (deterministinen/analyyttinen) Tykin ammus Yhtälöt monimutkaisemmat (ilmanvastuksen ja tuulen osuus), lähtönopeus ja tuuli epätarkkoja Edellyttää numeerista ratkaisua, epävarmuuden arviointi tärkeää (stokastisuus) Esimerkkejä Game of life Deterministiset säännöt, äärellinen määrä sääntöjä ja solujen tiloja (deterministinen, diskreettiaikainen) Kassajono Diskreetti (äärellinen määrä tiloja/tapahtumia), Stokastinen (ajoista vain tilastollista dataa) Joskus analyyttinen (lauseke halutulle ominaisuudelle) Kurssirunko Kurssi painottuu äärellisiin, stokastisiin malleihin (ns. discrete event) ja niiden numeerisiin simulointeihin. Esitietoina todennäköisyyslaskennan ja tilastotieteen perusteita sekä olioohjelmointia.
2 Luentorunko Esimerkki Johdanto Simulointiparadigmat Tapahtumapohjainen simulointi Oliopohjainen simulointi Satunnaisluvut Monte Carlo Tasapainotilan simulointi Varianssin hallinta Kokeensuunnittelu ja Metamallinnus (Auton) pesuautomaatti Tarjolla kaksi erilaista mallia (hinta, operointikustannus ja kapasiteetti poikkeavat). Tiedossa potentiaalinen asiakasvirta. Kumpi malli on kannattavampi (ja onko kumpikaan kannattava). Arvioitava tuotto/aikayksikkö Esimerkki Tuotto/aikayksikkö P= au b b = kiinteät kulut/aikayksikkö a = tuotto/aikayksikkö pesun aikana U = käyttöaste a ja b tunnetaan tai ovat arvioitavissa U määrättävä simuloinnin avulla Esimerkki Tilanteesta tunnetaan Potentiaalisten asiakkaiden käyttäytyminen (tuloaikojen jakauma) Maksimaalinen jonon pituus Palvelutapahtuman kesto(n jakauma) Haluttu tulos Käyttöaste U =T_busy/T_total Tai 1 T_idle/T_total Tai eri varianttien käyttöasteiden erotus Esimerkki Tila kuvattavissa yhdellä muuttujalla N(t)= asiakkaiden määrä hetkellä t Systeemin tilaan kohdistuu kahden tyyppisiä tapahtumia Tulo: uusi asiakas (i) saapuu hetkellä t= t_a(i) Lähtö: asiakas (j) poistuu hetkellä t= t_d(j) Jos N=0, systeemi on tyhjä (asema ei käytössä). = > Simuloinnissa selvitettävä ajat, jolloin N=0 (tai N>0). Esimerkki Jos N(0) ja t_a:t ja t_d:t tunnetaan, N(t) on yksikäsitteisesti määrätty ja laskettavissa. Tulo- ja lähtöaikojen määrääminen edellyttää systeemin simulointia. Neljä muuttujaa + laskurit AT, DT (seuraavat tulo- ja lähtöajat) N (asiakkaiden määrä) t (nykyinen aika) E, T_idle (laskurit tyhjäajalle)
3 Esimerkki Esimerkki Alusta simuloinnin kesto (T), jonon pituus M. t=0, laskurit (T0=0, E=0), N=0 (tyhjä systeemi), DT=maxint AT= t+ tuloaika Toista kunnes t>t Jos AT<DT tapahtuma AT, muuten DT Raportoi tulokset AT t=at; Jos N<= M, N=N+1; Jos N=1 DT=t+ palveluaika T0=T0+t-E; AT=t+ tuloaika ; DT t=dt; N=N-1; Jos N>0 DT=t+ palveluaika Muuten DT=maxint; E=t; Esimerkki Esimerkki oli brute force lähestyminen hyvin yksinkertaiseen tapaukseen. Yleistettävyys monimutkaisempiin tilanteisiin on huono useampia tapahtumatyyppejä, monimutkaisempi tila, asiakkaiden seuraaminen. Kaikki tehdään itse Tietojen keruu, kirjanpito tapahtumista ja systeemin tilasta, jne. Simuloinnin vaiheet 1 Systeemin/ongelman tunnistaminen Miten rajata tarkastelu, mihin kysymyksiin haetaan vastausta. Mallin suunnittelu Systeemin osat ja niiden väliset vuorovaikutukset Tiedon keruu ja parametrien arviointi Mistä saadaan realistiset syöttötiedot (paljon kovaa työtä ja mittausta) Simuloinnin vaiheet 2 Ohjelman suunnittelu Mallin logiikan ja tarvittavien käsitteiden kuvaaminen Ohjelman toteutus Simulaattorin koodaus Ohjelman testaus Koodin debuggaus Simuloinnin vaiheet 3 Mallin validointi Mallin laadullinen analyysi (vertailut havaittuun, intuitiivisiin odotuksiin, yksinkertaistetut tilanteet, tulosten riippuvuus epävarmoista parametreista) Mallin kokeilu Ensimmäiset tuotantoajot, tulosten tarkkuus/luotettavuus, tuotantokokeiden suunnittelu. Tulosten analyysi Johtopäätökset, riski/herkkyysanalyysi, päätöksenteko ja mallipohjainen optimointi
4 Simuloinnin periaatteita Älä simuloi, jos ei ole pakko Analyyttiset ja deterministiset ratkaisut ensisijaisia Älä simuloi, jos et ymmärrä mikä on kysymys Tavoitteen vaihto kesken mallin rakennuksen voi olla todella vaikeaa When computing starts, thinking stops! Simulointi Tapahtumapohjainen Diskreettiaikainen simulointi 1 Tarkastellaan systeemejä, joissa on äärellisen monta komponenttia. Jokaisella komponentilla äärellisen monta tilaa. Komponentit vaikuttavat toistensa tiloihin tapahtumien välityksellä. Tapahtuma on aina sidottu tiettyyn ajan hetkeen (ts. sillä ei ole kestoa). Diskreettiaikainen simulointi 2 Tapahtuma voi muuttaa tiloja, generoida muita tapahtumia (samalle ajanhetkelle tai tulevaisuuteen). Tyypillisiä rakennekomponentteja laiteresurssit (vapaa/varattu) työntekijät (vapaa/varattu) raaka-aineet (saatavuus/määrä) tuotteet (aihion saatavuus/valmistumisvaihe) Tapahtumia toimenpiteiden alut/loput Pesu-esimerkki Autopesulassa rakenneosia Pesuasema (vapaa/varattu) Jonotustila (M käytettävissä olevaa tilayksikköä) Asiakkaat (pesemätön/pesty auto) Tapahtumia Asiakkaan saapuminen/lähteminen Pesun alku/loppu Jonoon liittyminen/poistuminen Osa tapahtumista esiintyy aina yhdessä Simuloinnin osatoiminnot 1 Simulointiohjelmiston hallittava 5 toimintoa Mallin rakenteen määrittely Systeemin osat -> tilamuuttujat Osien looginen riippuvuus -> vuokaavio Tapahtumien logiikka -> koodi Satunnaisprosessit Halutun jakauman mukaiset satunnaisluvut Tilastollinen tietojenkeruu ja raportointi Luottamusvälit, visualisointi, analyysi
5 Simuloinnin osatoiminnot 2 Ajan hallinta kellon edistäminen Simuloinnin kokonaishallinta Simuloinnin aloitus/lopetus Tapahtumien lisäys/poisto Oikean tapahtuman aktivointi Kokeiden hallittu toisto Simuloinnin osatoiminnot 3 Osa simuloinnin toiminnoista on yhteisiä kaikille malleille ja tapauksille Ajan hallinta Satunnaisprosessit Tietojen keruu ja raportointi Osa sisältää malli- ja koeriippuvia osia Mallin rakenne ja logiikka Simulointikokeen kulku ja toisto Simuloinnin paradigmat Kolme tarkastelukulmaa simulointiin Tapahtumapohjainen Lähtökohtana samaan aikaan sidotut tilan muutokset Prosessipohjainen Samaan osasysteemiin liittyvien tapahtumien elinkaari. Aktiviteettipohjainen Osasysteemin resursseja sitovat aikaa vievät toiminnot Johtavat erilaisiin malli- ja ohjelmarakenteisiin Sopivat erilaisiin mallitustilanteisiin Tapahtumalähtöinen simulointi Keskeisinä tapahtumarutiinit Yksi rutiini per tapahtumatyyppi Sisältävät mallin logiikan Tapahtumarutiini voi muuttaa tilasuureita ja luoda uusia tapahtumailmoituksia. Tapahtumien järjestelijä kirjaa tapahtumailmoituksia (aika, tapahtuma) Yksi rutiini kerrallaan aktivoidaan. Prosessi/oliopohjainen s. Osaprosessit olioina, joilla omat tilamuuttujat ja tapahtumarutiinit. Kaikki resurssiin liittyvä toiminta yhdessä paikassa. Erilliset metodit toisten olioiden ja järjestelijän kanssa kommunikointiin. Ei erillisiä ilmoituksia. Useampi prosessi käynnissä yhtä aikaa (korutiinit, säikeistys). Aktiviteettipohjainen s. Logiikka aktiviteettirutiineissa Rutiini liittyy aina johonkin resurssiin Kaksi rajapintaa Aktivointi (jos ehdot toteutuvat, varaa resurssin ja kiinnittää lopetusajan) Passivointi: vapauttaa resurssin annettuna aikana Kaikki aktiviteetit käydään systemaattisesti läpi Jos ehdot toteutuvat, aktivoidaan. Jos yksikään rutiini ei aktivoidu, kasvatetaan aikaa seuraavaan lopetushetkeen.
6 Tapahtumapohjainen s. Vanhin lähestymistapa Logiikka yksi kerrallaan suoritettavissa rutiineissa Helppo toteuttaa millä tahansa proseduraalisella kielellä Logiikka fragmentoituu helposti Peräkkäiset tai toisiinsa liittyvät tapahtumat eri rutiineissa Taphtumap. pesuesim. Minimissään kaksi eri tapahtumaa (tulo ja lähtö (vrt. johdanto) Molemmat voivat varata pesuaseman ja generoida lähtötapahtuman Potentiaalinen ylläpidettävyysongelma Jako 4 atomaariseen tapahtumaan Tulo (generoi asiakkaan) Alku (varaa resurssin ja käynnistää palvelun) Loppu (vapauttaa resurssin, lopettaa palvelun) Lähtö (poistaa asiakkaan) Pesu 2 Tulo Jos jonossa on tilaa Luo uusi asiakas ja aseta jonoon Luo uusi Alku-tapahtuma Luo uusi tulotapahtuma (ja uusi tuloaika) Alku Jos palvelu vapaa ja jonossa asiakas Ota jonosta asiakas Varaa palvelu Luo Loppu-tapahtuma (uusi palvelun kesto) Pesu 3 Loppu Vapauta palvelu Luo Lähtö-tapahtuma Luo Alku-tapahtuma Lähtö Kerää asiakkaan tiedot (jos on) Poista asiakas Pesu Pesu - toteutus Tulo Alku Loppu Lähtö 4 tapahtumarutiinia (aliohjelmaa) Tapahtumia varten TapahtumaTyyppi (Tulo, Alku, Loppu, Lähtö) Kirjanpitoon TapahtumaIlmoitus(Aika, Tapahtuma) Tapahtumalista hallinnoi TapahtumaIlmoituksia Metodit SeuraavaTapahtuma LisääTapahtuma (Aika, Tapahtuma) (PoistaTapahtuma) Jono Koostuu Asiakas instansseista Metodit Lisää, Ota, Pituus Palvelee Alku-tapahtumaa Lähtö tarvitsee teknisen jonon
7 Pesu - pääohjelma Alustukset T=0; LisääTapahtuma(TuloAikaJakauma(),Tulo); While (T< TMax) \\ tms lopetusehto Ilmoitus=SeuraavaTapahtuma(); T=Ilmoitus.Aika; Tyyppi=Ilmoitus.Tapahtuma; CASE Tyyppi of \\ kutsutaan a.o. tapahtumarutiinia END CASE End While Tulo Tulo_Tapahtuma() Asiakas_Tyyppi_Osoitin :: Auto { LisääTapahtuma(Tulo_Aika_Jakauma(),Tulo); If Jono.Pituus() < M then Auto= Luo_Asiakas(); Jono.Lisää(Auto) LisääTapahtuma(0.,Alku) EndIf Alku Alku_Tapahtuma() Asiakas_Tyyppi_Osoitin :: Auto { If(Asema.Vapaa() and Jono.Pituus()>0) then Auto=Jono.Ota(); Asema.Varaa(Auto); LisääTapahtuma(Palvelu_Aika_Jakauma(),Loppu) Endif Loppu Loppu_Tapahtuma() Asiakas_Tyyppi_Osoitin :: Auto { Auto= Asema.Vapauta() Lähtö.Varaa(Auto) \\ Muuten asiakas hukkuu LisääTapahtuma(0.,Lähtö) LisääTapahtuma(0.,Alku) Lähtö Lähtö_Tapahtuma() Asiakas_Tyyppi_Osoitin :: Auto { Auto=Lähtö.Vapauta() // Kerää statiikkaa Poista_Asiakas(Auto) // Varaa ja Vapauta tarvitaan välittämään asiakastieto, koska jonoa ei ole. Huomioita Erilaiset jonotusstrategiat voi piilottaa Jonon sisään. Useamman palvelun, reitityksen, asiakasvirran jne huomiointi edellyttää tapahtumien monistamista tai parametrisointia. Käytännössä palvelusta ja sen jonosta on hyvä tehdä kokonaisuus, johon asiakas reititetään.
8 Prosessipohjainen s. Simulointi Oliopohjainen Loogisesti yhteenkuuluvat tapahtumat kootaan yhdeksi elinkaareksi (irrallisten tapahtumarutiinien sijaan) Osakokonaisuuksien hahmottaminen helpompaa Hallittava useamman samanaikaisen elinkaaren koordinointi Mahdollisesti useampia instansseja samasta elinkaaresta/prosessista. Asiakasprosessi Pesuesimerkissä jokaisella asiakkaalla on selkeä elinkaari. Esimerkki voidaan mallittaa yhdellä prosessilla, josta tehdään kopio jokaista asiakasta kohden. Miten hoidetaan useampi rinnakkainen asiakasprosessi, jos ohjelmointikieli ei tue rinnakkaisuutta. Asiakasprosessi Elinkaari on jaettava vaiheisiin (tapahtuma per vaihe), joihin voidaan viitata ja jonka prosessi-instanssi muistaa. Tapahtumalistassa aika ja viittaus prosessi-instanssiin (ja vaiheeseen). Simuloinnin pääohjelma Lukee tapahtumalistaa. Kutsuu seuraavaa prosessi-instanssia suorittamaan seuraavan vaiheensa. Asiakasprosessi AsiakasProsessi(Phase) VaiheTyyppi :: Phase CASE Phase Tulo { Auto = new Asiakas \\ Kutsuu seuraavan asiakkaan Auto.Vaihe(TuloAikaJakauma(),Tulo) Jos (Jono.Pituus< m) Jono.Lisää(*this) Palvelu.Kysy() Muuten \\Jos asiakas ei pääse jonoon, se poistuu this.vaihe(0, Lähtö) Alku { this.seuraavavaihe(palveluaikajakauma()) Loppu { Palvelu.Vapauta() Palvelu.Kysy() this.seuraavavaihe(0.) Lahto { //Keraa statiikka PoistaAsiakas ENDCASE Asiakasprosessi
9 Palvelu Palvelu.Kysy() AsiakasTyyppi :: Auto { Jos(Palvelu.Vapaa() ja Jono.Pituus()>0) { Auto=Jono.Ota() Palvelu.Varaa() Auto.SeuraavaVaihe(0.) //Vaiheeseen Alku Analyysiä Perinteisillä kielillä on erikseen Välitettävä suorituksen vaihe Välitettävä sisäiset muuttujat Jaettava suoritus vaiheisiin Rakennettava ehdolliset elinkaaret Ohjelmointi helpottuu, jos nämä voi kapseloida prosessi-instanssin sisään -> Olio Oliosimulointi Oliot keksittiin kapseloimaan simuloitavia prosesseja (SIMULA-kieli, 1967). Perintämekanismit luotiin piilottamaan säikeistyksen edellyttämät kontrollirakenteet. Prosessien tiloille ja kommunikaatiolle on luotu vakioitu sanasto/metodit. Prosessiolion tilat Neljä mahdollista tilaa Aktiivinen (parhaillaan suoritettava) Ajastettu (scheduled) Aktivoitumisaika tiedossa eli tapahtumalistassa viite tähän olioon Passiivinen (ei tiedossa tulevia tapahtumia) Jonkin toisen olion on aktivoitava/ajastettava tämä Lopetettu (terminated, ei voida enää mitenkään aktivoida) Tilamuutokset Vain aktiivinen prosessi voi tehdä tilamuutoksia Itseensä Passivate (odottaa kunnes joku aktivoi) Hold (odottaa itse määräämänsä ajan) Terminoituu jos elinkaari päättyy Toisiin Activate (herättää passiivisen, heti tai myöhemmin) Cancel (peruuttaa ajastetun aktivoinnin) Terminate (poistaa koko prosessin) Esimerkki Pesuesimerkki voidaan toteuttaa monin eri tavoin Jako aktiivisiin suureisiin (oma elinkaari) ja muihin (metodeja, joita aktiiviset prosessit kutsuvat) voidaan tehdä monella tapaa. Aktiiviset asiakkaat, passiivinen palveluresurssi jonoineen Passiivinen asiakas ja jono, aktiivinen palvelu
10 Asiakasprosessi Asiakas Auto Asema Q Auto = new Asiakas Auto.Activate(TuloAikaJakauma()) \\seuraava asiakas Jos (Q.Pituus <m+1) Q.Varaa(*this) \\ varataan palvelu mahd. \\jonotuksen jälkeen Hold(PalveluAikaJakauma()) \\ kontrolli siirtyy Q.Vapauta \\ Kerätään statistiikka Terminate \\asiakasprosessi kuolee jolloin kontrolli \\ siirtyy pois Asema Alusta \\ Asetetaan jono tyhjäksi ja \\tehdään muut alustukset Varaa(Asiakas Auto) Jos Vapaa \\ varataan palvelu, jos se on vapaa Vapaa=false Muuten LisaaJonoon(Auto) \\ Jos ei vapaa, jäädään odottamaan Auto.Passivate() \\ Siirretään kontrolli pois Vapauta() Jos(Pituus >0) Auto = OtaJonosta() \\Jonon ensimmäinen Auto.Activate(0.) \\Aktivoidaan varaamaan asema Muuten Vapaa=true \\ Asema vapautuu AlustaStatiikka Pääohjelma Q = New Jono Auto = New Asiakas Auto.Activate(TuloAikaJakauma()) Hold(SimuloinninKesto) Raportoi \\ Terminoi jonossa olevat asiakkaat ja jono \\ Terminoidu itse (päätymällä koodin loppuun) Pääohjelma, controller, on prosessiolio, jolla on simulointiprosessin metodit Luodaan varsinaisessa pääohjelmassa Analyysiä Edellisessä esimerkissä tarvittiin prosesseja, joita voi suorittaa rinnakkain Taustalla säikeiden (threads) käyttö Tarvittavat luokat periytettävä käytetyn ohjelmointikielen/ympäristön säieluokista Ks esim JavaSim tai C++Sim pakettien luokkakirjastoja Käytännössä esimerkki ei toimi Dynaamiset asiakkaat luovat uusia asiakkaita Kun ensimmäinen asiakas/säie kuolee, seuraavat menevät myös sekaisin Tarvitaan erillinen pysyvä asiakasgeneraattoriprosessi Palvelupohjainen malli Pesu-esimerkki voidaan toteuttaa kahden prosessi-instanssin avulla Asiakasgeneraattori Palveluprosessi Lisäksi asiakkaat ja jono (passiivisia) Toteutus demona JavaSim-esimerkin pohjalta Oikeat esimerkit Kaikkia tilanteita ei voi helposti mallittaa edellä esitetyillä prosessien tiloilla ja metodeilla Voidaan tunnistaa yleisesti toistuvia tilanteita, joille prosessimallia voidaan laajentaa Tietyn tapahtuman tai tilanteen odottaminen Keskeytykset Kriittiset resurssit
11 Oikeat esimerkit Käsitelaajennuksia ovat Prosessi voi odottaa (wait) Tietyn ajan Tietyn prosessin päättymistä Tiettyä resurssia (semafori) Jotain muuta ärsykettä (trigger) Odottava prosessi voidaan keskeyttää (interrupt) Aktivoidaan ennen kuin odotusehto täyttyy Oikeat esimerkit Laajennuksia tarvitaan epäsynkroonisten tapahtumien hallintaan Tulevan tapahtuman aika ja/tai sen generoiva prosessi ei ole etukäteen tiedossa Semafori välittää tietoa kriittistä resurssia käyttävän ja sitä odottavien olioiden välillä Muuten kaikki mahdolliset kombinaatiot olisi huomioitava koodissa Oikeat esimerkit Yleensä simulointimalleissa on enemmän rakenneosia Useita palvelupisteitä, jonoja, asiakasvirtoja Yksittäisen osan elinkaari hallittavissa ja usein vakioitavissa (parametrisoitava luokka) Osien keskinäiset kytkennät hahmotettava (graafinen editori, visualisointi, reititystaulut) Käytännössä periytettävä myös graafisia luokkia. Linkkejä Oleellisesti SIMULA ympäristö avoimena Java toteutuksena Java-pohjainen ympäristö tapahtuma- ja oliopohjaiseen simulointiin Laaja kokoelma linkkejä simulointisoftiin Satunnaisluvut Simulointi Satunnaisluvut Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin, John v. Neumann Simuloinnissa käytetään aina näennäisesti satunnaisia lukuja (pseudo random numbers) Satunnaislukujen tulisi olla Tehokkaasti ja toistettavasti generoitavia Toistaa tavoitellun satunnaislukujonon keskeiset piirteet (tunnusluvut, näennäinen riippumattomuus) Käyttötarve määrää, mitkä piirteet keskeisiä
12 Historiaa Tarve generoida satunnaislukuja syntyi yhtä aikaa tietokoneiden kanssa Ydinreaktion simulointi, Los Alamos Alkuvaiheessa yksinkertaisuus ja laskennallinen tehokkuus korostuivat Yksinkertaiset laskutoimitukset, sopivat numeeriset vakiot Myöhemmin siirrettävyys Tehokas toteutus korkean tason kielillä Lisäksi tilastolliset ominaisuudet Satunnaislukujen generointi Generointi jaetaan yleensä kahteen osaan Tasan (0,1) jakautuneiden satunnaislukujen generointi Tasajakaumaa haetaan generoimalla tasan (0,m- 1) jakautuneita kokonaislukuja ja jakamalla lopuksi m:llä Annetun todennäköisyysjakauman mukaan jakautuneiden lukujen generointi Tehdään Tas(0,1) lukujen avulla Keskineliömenetelmä Ensimmäisiä ad hoc ajatuksia (von Neumann) Olkoon x k-numeroinen luku. Esim x=12345 Lasketaan x*2 (2k-numeroinen) Otetaan k keskimmäistä >x, U=0,16604 Jne Keskineliömenetelmä integer,parameter :: m0=100,m1=10000 integer :: seed real function random() seed=seed*seed seed=seed/m0 seed=modulo(seed,m1) random=real(seed)/real(m1) return end function random E E E E E E E E Keskineliö - analyysiä Menetelmä tuottaa päättymättömän jonon k-numeroisia lukuja. Ensimmäiset luvut yleensä näennäisesti toisistaan riippumattomia. Menetelmä päätyy toistamaan tiettyä lukusarjaa Sykli yleensä liian lyhyt simulointitarpeisiin Syklin pituutta ja laatua ei voi hallita helposti Hyvät satunnaisluvut Generoiduilta satunnaisluvuilta edellytetään Satunnaisuutta Sama sekvenssi ei saa toistua systemaattisesti käytön aikana Käytännössä syklin oltava pidempi kuin koesarjassa tarvittujen lukujen määrä Oikeaa jakaumaa Yleensä OK, jos kaikki mahdolliset arvot käydään läpi (maksimisykli).
13 Hyvät satunnaisluvut Peräkkäisten arvojen riippumattomuus Ei toteudu kirjaimellisesti, vaatii testausta Esim. k peräkkäisen arvon jakauma R^k:n yksikkökuutiossa tai max(x_i,,x_(i+k-1)):n jakauma. Taajuustesti (lukujonon tulisi olla ortogonaalinen kaikkien sini-aaltojen kanssa) Hyvyys riippuu käyttötarkoituksesta käytetäänkö lukuja yksittäin, pareittain, k-luvun ryppäissä, jne Lehmer generaattori Kehitetty 40-luvulla (D Lehmer) ensimmäisille tietokoneille (Eniac) Perusoperaatiot: kertolasku, yhteenlasku ja jakojäännöksen ottaminen X= (a X+ c) mod m Parametreilla a, c ja m voidaan vaikuttaa lukujonon ominaisuuksiin Alkuperäinen generaattori toteutettiin omana laskentayksikkönään (jonka tuloksia käytettiin vain tarvittaessa) -> lisää satunnaisuutta Lehmer generaattori Alkuperäinen generaattori Eniacille m= 10^8 +1 A= 23 C= 0 Oli tehokas toteuttaa kyseisellä koneella Ei erityisen hyvälaatuinen (pieni kertoja, peräkkäiskorrelaatiota) Lehmer generaattori Seuraava X määräytyy yksikäsitteisesti edellisestä. Generaattori alkaa toistaa samaa sarjaa heti kun X toistuu ensimmäisen kerran X:n arvoalue määrää teoreettisen maksimipituuden syklille (= m) Lehmer generaattorille tiedetään, milloin maksimisykli saavutetaan Jos q on m:n tekijä (alkuluku tai 4), a-1 =0 mod q c:llä ja m:llä ei yhteisiä tekijöitä (ja c ei nolla) Lehmer generaattori Jos c=0, maksimisykliä ei saavuteta (X=0 kuvautuu aina nollaksi) Teoreettinen maksimisykli (kun c=0) on m-1. Voidaan saavuttaa jos ja vain jos m on alkuluku a on ns primitiivinen elementti mod m Käytännössä a voidaan määrätä vain kokeellisesti Prime modulus multiplicative congruental generator Lehmer generaattorit Käytännössä suosittuja perusgeneraattoreita Käsitteellisesti helppoja laskutoimituksia 2^31-1 (maxint) on sopivasti alkuluku Helppo tehdä siirrettävä toteutus (jos a riittävän pieni) (käytettävä kaksoistarkkuuden aritmetiikkaa, jos 64 bitin kokonaislukuja ei tueta) Tutkittu ja tunnettu
14 Lehmer generaattori real(dp),parameter :: m=2._dp**31-1._dp m_1=1._dp/m a=16807._dp real(wp) function random() seed=modulo(seed*a,m) random=seed*m_1 return end function random Yhdistelmägeneraattorit Tehty aikanaan lyhyen sananpituuden koneille (16-bit), Wichman-Hill Käytetään useampaa lyhyen syklin generaattoria Esim syklit m_1, m_2 ja m_3 Tuotetaan jonot X_i ja U_i= X_i/m_i Tulos U= U_1+U_2+U_3 mod 1 Sopivin valinnoin syklin pituus on m_1*m_2*m_3 Toteutus täysin standardiaritmetiikalla Sekoitetut generaattorit Käytetään sekä syklin pidentämiseen että peräkkäiskorrelaation vähentämiseen Periaate on tuottaa satunnaislukuja generaattorilla A taulukkoon Taulukosta poimitaan generaattorin B avulla satunnainen alkio (generaattorin output) ja lasketaan tilalle uusi luku generaattorilla A Tarvitsee muistia ja käynnistysvaiheen sekä kaksi satunnaislukua/tulos Sykli pitenee (mutta paljonko) State of the Art Tämän hetken de facto standardi on Mersenne Twister Kehitetty 1990-luvun lopulla Erittäin pitkä sykli (2^ ) Parhaat tunnetut peräkkäiskorrelaatioominaisuudet Tarvitsee 624-sanan työmuistin (joten käynnistys kestää) Saatavissa useille kielille/ympäristöille Mersenne twister Mihin perustuu X_(N+1) = F(X_N,, X_(N-623)) Tilavektorissa 624*32 = bittiä Teoreettinen maksimisykli kävisi kaikki tilat läpi Jättämällä X_(N-623):sta osa biteistä käyttämättä, ja rajaamalla algoritmisesti 0-vektori pois mahdollisista tiloista saadaan haluttu teoreettisesti maksimaalinen sykli (alkuluku, ns Mersenne luku, josta nimi) Mersenne twister Tarvitaan F, joka On laskennallisesti kevyt Tuottaa maksimaalisen syklin Löydetty luokasta X_(N+1) = X_N*A_0 + X_(N-k) * A_k A_i:t kerroinmatriiseja Menetelmäluokalle on teoriaa maksimisykleistä Löydetty A:t joille vain 3 matriisia nollasta eroavia Ts vain kolmea vanhaa X arvoa käytetään yhdellä kierroksella
15 Mersenne Twister Löydetty menetelmä tuottaa pitkä sykli Laskennallisesti kevyt Peräkkäiskorrelaatio vaatii vielä huomiota K-testi: tarkastellaan peräkkäisten satunnaislukujen k-merkitsevimpien bittien jonoa Monelleko peräkkäiselle luvulle ym jono on tasajakautunut Tähän voidaan vaikuttaa sekoittamalla X:n bittejä laskennan jälkeen Ei vaikuta sykliin vaan vain output streamiin Satunnaisluvut ja jakaumat Miten generoida satunnaislukuja, joilla on haluttu tiheysjakauma. Käänteistodennäköisyyden menetelmä Olkoon f haluttu tiheysfunktio. Tätä vastaa kertymäfunktio F: x-> (0,1). Arvotaan u Tas (0,1) jakaumasta Asetetaan x = F^(-1) (u). x:n tiheysjakauma on f. Edellyttää, että F^(-1) tunnetaan suljetussa muodossa Käänteistn. menetelmä Tarkastellaan eksponenttijakaumaa Tiheys f. on f(x) = a e^(-ax) Kertymä f. on F(x) = 1- e^(-ax) Vastaavasti F^(-1) (U) = - ln(1-u)/a Eksponenttijakautuneita suureita saadaan arpomalla U ~ Tas(0,1) ja tulostamalla ln(1-u)/a Myös ln (U)/a toimii, jos U>0 aina Eliminointimenetelmä Yleinen menetelmä, edellyttää pelkästään tiheysfunktion arvoja Olkoon f tiheysfunktio välillä (a,b), 0<f<c. Arvotaan x, Tas(a,b), y, Tas(0,c). Jos y< f(x), hyväksytään x. Muuten hylätään ja arvotaan uudet x,y Hyväksytyt x:t noudattavat tiheysjakaumaa f. Mitä vähemmän hylkäyksiä, sitä tehokkaampi Tarvittaessa jaetaan väli (a,b) osaväleihin ja/tai vaihdetaan y:n jakaumaa paremmin f:ää approksimoivaksi. Yhteenvetoa Satunnaislukugeneraattoreilla 60-vuoden historia Testattuja ja tunnettuja generaattoreita hyvin saatavilla. Itse ei yleensä kannata säätää Tuntematonta generaattoria (menetelmä ja lähdeviitteet puuttuvat) ei kannata käyttää ainakaan testaamatta (vrt PC:n Basic-generaattori) Generaattoria ymmärrettävä niin, että voi tehdä hallittuja kokeita/toistoja. Simulointi Monte Carlo
16 Monte Carlo simulointi Yksittäisen stokastisen simuloinnin tulos on aina sattumanvarainen Yksittäinen instanssi satunnaismuuttujasta Simulointikoesarjan tavoite on saada tietoa satunnaismuuttujan jakaumasta tai jakauman parametreista (keskiarvo, hajonta) Taustalla periaatteessa deterministinen arvo, johon ei kuitenkaan aina suoraan päästä käsiksi. Buffonin neula Klassinen esimerkki mekaanisesta simuloinnista, jonka tarkka vastaus tunnetaan. Buffonin herttuan 1733 esittämä menetelmä π arvon määräämiseksi. Heitetään l pituista neulaa alustalle, jossa on yhdensuuntaisia suoria d välein. Lasketaan, kuinka usein neula koskettaa viivaa. Kokeellinen todennäköisyys P= #osumat/#yritykset Buffonin neula Buffonin neula Neula osuu viivaan jos Neulan keskipisteen etäisyys viivasta on pienempi kuin l sin α, missä α on neulan ja viivan välinen kulma Kulma ~ Tas(0, π/2) Keskipiste ~ Tas (0,d/2) d l α Osuman todennäköisyys lasketaan sinikäyrän rajoittaman pinta-alan avulla p= 2l/(πd) Jos p:lle tunnetaan havaintoarvo, voidaan saada estimaatti π:lle. d/2 l/2 π/2 Buffonin neula Yksittäisen heiton tulos on satunnainen Samoin N heiton keskiarvo. Mitä tiedämme N heiton jälkeen? Määrättävä N heiton keskiarvon (P) jakauma Tai aínakin odotusarvo ja keskihajonta P on N:n riippumattoman satunnaissuureen keskiarvo Yksittäiset kokeet noudattava binomijakaumaa odotusarvolla p (=2l/(πd)) E(P)=p. Buffonin neula Yksittäisen heiton tuloksen (tai Bin(p) muuttujan) varianssi on p(1-p) N riippumattoman kokeen keskiarvon varianssi on p(1-p)/n Ts Var(P) = p(1-p)/n Nyt meillä on havainto satunnaissuureesta, jonka varianssi tunnetaan. Voimme tehdä arvioita havainnon (otoskeskiarvo) ja odotusarvon välisestä suhteesta.
17 Luottamusväli Oletetaan, että tunnemme satunnaismuuttujasta otoskeskiarvon Millä välillä on todellinen odotusarvo esim 99% todennäköisyydellä. Määriteltävä ns. luottamusväli, jolle pätee P( P-δ < p< P+δ) >0.99. Määrittely mahdollista, jos P:n jakauma tunnetaan. P N riippumattoman Bin-muuttujan summa, joten suurilla N, P likimain normaalijakautunut. δ laskettavissa ja muotoa c(p)n^(1/2). Monte Carlo Integrointi Buffonin neulan taustalla oli odotusarvon integraalilauseke, jolle haettiin estimaattia kokeellisesti. Samaa voi soveltaa yleisemminkin integraalien laskentaan. Integroidaan f välillä [a,b] jos 0<f<c Jos x on Tas(a,b) ja y on Tas(0,c) jakautunut, määrätään (kokeellisesti) tn p, jolla y< f(x). Integraali on p(b-a)c. Monte Carlo Integrointi Kokeellinen arvo integraalille on sitä tarkempi, mitä useampi koetoisto tehdään. Luottamusväli tarkentuu suhteessa N^(1/2):een. Hyötysuhde on huono yksiulotteisille integraaleille Luottamusvälin pituus ja käyttäytyminen ei riipu integraalin dimensiosta (vaan vain osumistodennäköisyydestä p) Tehokas tapa saada karkeita likiarvoja moniulotteisille integraaleille. Monte Carlo Edellinen Monte Carlo ei suoraan sovellu kaikkiin tapauksiin Rajoittamaton funktio tai väli Mahdollista luopua y muuttujasta Lasketaan vain E(f(x)) Halvempi, mutta varianssianalyysi vaikeampaa Korvataan tasainen yläraja Etsitään tn tiheysfunktio g s.e. f(x)< cg(x) Arvotaan x:t g-jakaumasta Tavoitteena osumis tn ~ 1 Monte Carlo sovelluksia Tyypillinen Monte Carlo sovellus on (erittäin) moniulotteinen integraali, joka syntyy kun mallitetaan säteilyn etenemistä materiaalissa. Jokainen törmäys mallittuu moniulotteisella integraalilla (heijastus ja absorptiotodennäköisyydet, tulokulman, energian jne funktioina, partikkelien muodot, pintaominaisuudet, sironta väliaineessa jne) Yksittäisen säteen simuloinnin kannalta monimutkaisuus kasvaa vain lineaarisesti.
Simulointi. Tapahtumapohjainen
Simulointi Tapahtumapohjainen Diskreettiaikainen simulointi 1 Tarkastellaan systeemejä, joissa on äärellisen monta komponenttia. Jokaisella komponentilla äärellisen monta tilaa. Komponentit vaikuttavat
Simulointi. Johdanto
Simulointi Johdanto Simulointi Simulointi ~ jäljittely Pyrkii kuvaamaan tutkittavan ilmiön tai systeemin oleellisia piirteitä mallin avulla. Systeemin rajaus ja tarkasteltavat piirteet määriteltävä ennen
Simulointi. Satunnaisluvut
Simulointi Satunnaisluvut Satunnaisluvut Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin, John v. Neumann Simuloinnissa käytetään aina näennäisesti satunnaisia
Simulointi. Oliopohjainen
Simulointi Oliopohjainen Prosessipohjainen s. Loogisesti yhteenkuuluvat tapahtumat kootaan yhdeksi elinkaareksi (irrallisten tapahtumarutiinien sijaan) Osakokonaisuuksien hahmottaminen helpompaa Hallittava
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
Satunnaislukujen generointi
Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,
Prosessin reaalisaatioiden tuottaminen
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Tulosten keruu ja analyysi Varianssinreduktiotekniikoista 20/09/2004
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Teoria. Prosessin realisaatioiden tuottaminen
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Tapahtumapohjaisen simuloinnin periaatteet Esimerkki: M/M/1 jonon simulointi Simulointiohjelman geneeriset komponentit
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
Simulointi. Varianssinhallintaa Esimerkki
Simulointi Varianssinhallintaa Esimerkki M C Esimerkki Tarkastellaan lasersäteen sirontaa partikkelikerroksesta Jukka Räbinän pro gradu 2005 Tavoitteena simuloida sirontakuvion tunnuslukuja Monte Carlo
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
tilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
Johdanto. Luku Mallit ja simulointi
Luku 1 Johdanto 1.1 Mallit ja simulointi Simulointi ja mallit liittyvät läheisesti yhteen. Simulointi tarkoittaa pohjimmiltaan simuloitavan systeemin tai ilmiön jäljittelyä. Tätä varten tarvitaan malli:
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
Jatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
Numeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?
TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä
Todennäköisyysjakaumia
8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma
Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Johdanto ja pseudosatunnaislukujen generointi Eri menetelmiä satunnaismuuttujien
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Teema 8: Parametrien estimointi ja luottamusvälit
Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.
Generointi yksinkertaisista diskreeteistä jakaumista
S-38.148 Tietoverkkojen simulointi / Satunnaismuuttujien generointi 1(18) Generointi yksinkertaisista diskreeteistä jakaumista Seuraavassa U, U 1,..., U n tarkoittavat riippumattomia U(0,1)-jakautuneita
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa
Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä
MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
Tilastollisia peruskäsitteitä ja Monte Carlo
Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2018-2019 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen
Tietotekniikan valintakoe
Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan
A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
Signaalien generointi
Signaalinkäsittelyssä joudutaan usein generoimaan erilaisia signaaleja keinotekoisesti. Tyypillisimpiä generoitavia aaltomuotoja ovat eritaajuiset sinimuotoiset signaalit (modulointi) sekä normaalijakautunut
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin
Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta
MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
Normaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
031021P Tilastomatematiikka (5 op) viikko 3
031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan
Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3
Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,
7.4 Sormenjälkitekniikka
7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan
Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?
21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä
Batch means -menetelmä
S-38.148 Tietoverkkojen simulointi / Tulosten keruu ja analyysi 1(9) Batch means -menetelmä Batch means -menetelmää käytetään hyvin yleisesti Simulointi suoritetaan tässä yhtenä pitkänä ajona olkoon simuloinnin
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
Johdatus tn-laskentaan torstai 16.2.2012
Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki
https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen
Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
pitkittäisaineistoissa
Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon
Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)
1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 5 (vko 4/003) (Aihe: jatkuvia satunnaismuuttujia ja jakaumia, sekamalli, Laininen luvut 5.1 5.7, 6.1 6.3)
Numeerinen integrointi
Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),