ALGORITMIT & OPPIMINEN
|
|
- Matilda Mäkinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 ALGORITMIT & OPPIMINEN Mitä voidaan automatisoida? Mikko Koivisto
2 Avoimet aineistot tulevat Tekijä: Lauri Vanhala
3 yhdistä, kuvita, selitä, ennusta! Tekijä: Logica
4 Mitä voidaan automatisoida? Algoritmi on tarkasti määritelty äärellinen (päättyvä) vaihesarja, jota seuraamalla voidaan ratkaista tietty ongelma. Wikipedia Laskenta = vaihesarjan automaattinen seuraaminen
5 Mitä voidaan automatisoida? Algoritmi on tarkasti määritelty äärellinen (päättyvä) vaihesarja, jota seuraamalla voidaan ratkaista tietty ongelma. Wikipedia Laskenta = vaihesarjan automaattinen seuraaminen Koneoppiminen: Field of study that gives computers the ability to learn without being explicitly programmed. A. Samuel (1959) Oppiminen = suorituksen paraneminen kokemuksen myötä Oppiminen = valmiuksien virittyminen havaintoihin
6 Pääteemat Algoritmit: Ongelmatyypit Algoritmien suunnittelumallit Tehokkuuden mittarit Laskettavuuden rajat
7 Pääteemat Algoritmit: Ongelmatyypit Algoritmien suunnittelumallit Tehokkuuden mittarit Laskettavuuden rajat Oppiminen: Tehtävätyypit Käsite- ja malliluokat Suoriutumisen mittarit Oppimisen rajat
8 70 neliön asunnon hinta? 400 K m 2
9 70 neliön asunnon hinta? K Sovita suora jäykkä m 2
10 70 neliön asunnon hinta? K Sovita käyrä taipuisa m 2
11 70 neliön asunnon hinta? K Lähin naapuri äärimmäisen taipuisa m 2
12 70 neliön asunnon hinta? K // Lähimmän naapurin arvo // Syöte: n piste-arvo-paria (x_i, y_i) // sekä 200 kyselypiste p. // Tulos: arvo y_j, missä j minimoi // etäisyyden x_j p. // Algoritmi: raa alla voimalla. // 100 int lahin(int p, int x[], int y[], int n){ int j = 0; for (int i = 1; i < n; ++i) if (abs(x[i] - p) < abs(x[j] - p)) j = i; return y[j]; } Lähin naapuri äärimmäisen taipuisa m 2
13 Pääteemat Algoritmit: Ongelmatyypit Laskettavuuden rajat Tehokkuuden mittarit Algoritmien suunnittelumallit Oppiminen: Tehtävätyypit Oppimisen rajat Suoriutumisen mittarit Käsite- ja malliluokat
14 Ongelmatyypit / Tehtävätyypit Algoritmit: Päätös-, optimointi-, lukumäärä-, luettelu-, etsintäongelma? Algebrallinen ongelma, verkko-ongelma, merkkijono-ongelma, geometrinen ongelma? Tietorakenneongelma?
15 Ongelmatyypit / Tehtävätyypit Algoritmit: Päätös-, optimointi-, lukumäärä-, luettelu-, etsintäongelma? Algebrallinen ongelma, verkko-ongelma, merkkijono-ongelma, geometrinen ongelma? Tietorakenneongelma? Oppiminen: Ohjattu vai ohjaamaton? Vähitellen vai kerralla? Aktiivinen vai passiivinen? Sovelluksia: - Roskapostin suodattaminen - Webbisivujen järjestäminen (esim. Google) - Sään ennustaminen - Kasvojen tunnistaminen - Puheen tunnistaminen - Luonnollisen kielen jäsentäminen - Motiivien paikantaminen genomissa
16 Laskennan / Oppimisen rajat Algoritmit: Yleisesti hyväksytty: kaikkia ongelmia ei voida ratkaista algoritmisesti. Jotkin ongelmat ratkeavat jo rajoitetussa laskennan mallissa: Äärellinen automaatti Pinoautomaatti Vakiosyvyinen piiri Paikallinen laskenta
17 Laskennan / Oppimisen rajat Algoritmit: Yleisesti hyväksytty: kaikkia ongelmia ei voida ratkaista algoritmisesti. Jotkin ongelmat ratkeavat jo rajoitetussa laskennan mallissa: Äärellinen automaatti Pinoautomaatti Vakiosyvyinen piiri Paikallinen laskenta Oppiminen: No free lunch Kolmen kauppa: 1. Taipuisa 2. Nopeasti virittyvä 3. Tarkka ennustaja voit valita enintään kaksi.
18 Tehokkuuden / Suoriutumisen mittarit Algoritmit: Aika-, tila- vai rinnakkaistumisteho? Paras, pahin, keskimääräinen vai tyypillinen tapaus? Tarkasti vai likimäärin? Varmasti vai todennäköisesti? Käytännössä vai teoriassa?
19 Tehokkuuden / Suoriutumisen mittarit Algoritmit: Aika-, tila- vai rinnakkaistumisteho? Paras, pahin, keskimääräinen vai tyypillinen tapaus? Tarkasti vai likimäärin? Varmasti vai todennäköisesti? Käytännössä vai teoriassa? Oppiminen: Erehtymisen kustannus? Opetusaineiston määrä? (Laskennan tehokkuus?) Takeiden luonne: Satunnainen aineisto Subjektiivinen epävarmuus Suhteessa muutamiin kilpailijoihin kilpailevia koulukuntia.
20 Suunnittelumallit / Malliluokat Algoritmit: Raaka voima Palautuva etsintä Hajota ja hallitse Dynaaminen ohjelmointi Muunna ja hallitse Järjestä ja hae
21 Suunnittelumallit / Malliluokat Algoritmit: Raaka voima Palautuva etsintä Hajota ja hallitse Dynaaminen ohjelmointi Muunna ja hallitse Järjestä ja hae Oppiminen: Lineaarinen vai epälineaarinen? Staattinen vai dynaaminen? Hierarkkinen vai ei-hierarkkinen? Kombinatorinen vai algebrallinen? Deterministinen vai probabilistinen? Syy-yhteys vai pelkkä riippuvuus?
22 Työjärjestys 5. Hahmota ongelma(t) 1. Hahmota tehtävä 6. Totea laskettavuus 2. Tiedosta rajat 7. Muotoile mittarit 3. Muotoile mittarit 8. Laadi algoritmi 4. Rakenna malli
23 Jättiläisten harteilla Leslie Valiant 2011 Turing Award Judea Pearl 2012 Turing Award Alan Turing ( )
24 Kotitehtävä Tiedonlouhinnassa (engl. data mining) pyritään löytämään oleellinen tai kiinnostava suuresta tietoaineistosta, usein ohjaamattomaan oppimiseen sopivin keinoin. Yksi tyypillinen tiedonlouhinnan tehtävä on eristää annetuista näytteistä ne, jotka eivät kuulu joukkoon eli poikkeavat muista. Tarkastele tätä tehtävää käyttäen esimerkkinä asunnonhintaaineistoa. Käy läpi työjärjestyksen 8 vaihetta.
Algoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
LisätiedotIntroduction to Machine Learning
Introduction to Machine Learning Aki Koivu 27.10.2016 HUMAN HEALT H ENVIRONMENTAL HEALT H 2016 PerkinElmer Miten tietokone oppii ennustamaan tai tekemään päätöksiä? Historia tiivistettynä Machine Learning
Lisätiedot811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto
811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien
LisätiedotAlgoritmit 1. Luento 2 Ke Timo Männikkö
Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät
LisätiedotTEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)
JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.
LisätiedotTiedon louhinnan teoria (ja käytäntö) OUGF kevätseminaari 2004 Hannu Toivonen
Tiedon louhinnan teoria (ja käytäntö) OUGF kevätseminaari 2004 Hannu Toivonen hannu.toivonen@cs.helsinki.fi 1 2 A 1 4 8 2 2 1 2 6 2 A 2 4 3 7 3 2 8 4 2 A 4 5 2 4 5 5 2 6 4 A 7 2 3 7 5 4 5 2 2 A 5 2 4 6
LisätiedotAlgoritmit 2. Luento 14 Ke Timo Männikkö
Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan
Lisätiedot1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS LUONNOLLISEN KIELEN KÄSITTELY (NATURAL LANGUAGE PROCESSING, NLP) TEKOÄLYSOVELLUKSET, JOTKA LIITTYVÄT IHMISTEN KANSSA (TAI IHMISTEN VÄLISEEN) KOMMUNIKAATIOON, OVAT TEKEMISISSÄ
LisätiedotE. Oja ja H. Mannila Datasta Tietoon: Luku 2
2. DATASTA TIETOON: MITÄ DATAA; MITÄ TIETOA? 2.1. Data-analyysin ongelma Tulevien vuosien valtava haaste on digitaalisessa muodossa talletetun datan kasvava määrä Arvioita: Yhdysvaltojen kongressin kirjasto
LisätiedotJohdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]
Johdatus tekoälyyn Luento 6.10.2011: Koneoppiminen Patrik Hoyer [ Kysykää ja kommentoikaa luennon aikana! ] Koneoppiminen? Määritelmä: kone = tietokone, tietokoneohjelma oppiminen = ongelmanratkaisukyvyn
LisätiedotViikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi
Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 29-31.10.2008. 1 Tällä viikolla 1. Käytännön järjestelyistä 2. Kurssin sisällöstä ja aikataulusta 3. Johdantoa Mitä koneoppiminen
LisätiedotEsimerkkejä polynomisista ja ei-polynomisista ongelmista
Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia
LisätiedotT 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi
T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi Johdantoluento (22.1.2008) Nikolaj Tatti ntatti@cc.hut.fi Johdantoluento Kurssijärjestelyt ja vaatimukset. Kurssin sisällöstä. Hyvä esitelmä
Lisätiedot1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä
LisätiedotRelevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi
Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN
LisätiedotNeuroverkkojen soveltaminen vakuutusdatojen luokitteluun
Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään
LisätiedotYhteydettömän kieliopin jäsennysongelma
Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa
LisätiedotTekoäly tukiäly. Eija Kalliala, Marjatta Ikkala
Tekoäly tukiäly Eija Kalliala, Marjatta Ikkala 29.11.2018 Mitä on tekoäly? Unelma koneesta, joka ajattelee kuin ihminen Hype-sana, jota kuulee joka paikassa Väärinymmärretty sana -> vääriä odotuksia, pelkoja
Lisätiedot805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Johdatus monimuuttujamenetelmiin Luennot 30.10.13.12.-18 Tiistaina klo 12-14 (30.10., BF119-1) Keskiviikkoisin klo 10-12 (MA101,
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN
LisätiedotAlgoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
LisätiedotTekoälykoulutus seniorimentoreille
Tekoälykoulutus seniorimentoreille Pauli Isoaho Tekoälyasiantuntija Omnia AI Lab 17.9.2018 Aikataulu Päivä 18.9 ti 19.9 ke 20.9 to 24.9 ma Tekoäly 9:30 12:00 9:30 12:00 9:30 12:00 9:30 12:00 Tekoälyn perusteet
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3.11.2017 Mitä tekoäly on? Wikipedia: Tekoäly on tietokone tai tietokoneohjelma, joka kykenee älykkäiksi
LisätiedotOngelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin?
Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? 2013-2014 Lasse Lensu 2 Algoritmit ovat deterministisiä toimintaohjeita
LisätiedotKielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri }
135 4.3 Algoritmeista Churchin ja Turingin formuloinnit laskennalle syntyivät Hilbertin vuonna 1900 esittämän kymmenennen ongelman seurauksena Oleellisesti Hilbert pyysi algoritmia polynomin kokonaislukujuuren
LisätiedotEsimerkkejä vaativuusluokista
Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään
LisätiedotLuku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti
Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan
Lisätiedot3. Laskennan vaativuusteoriaa
3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan
LisätiedotOppijan saama palaute määrää oppimisen tyypin
281 5. KONEOPPIMINEN Älykäs agentti voi joutua oppimaan mm. seuraavia seikkoja: Kuvaus nykytilan ehdoilta suoraan toiminnolle Maailman relevanttien ominaisuuksien päätteleminen havaintojonoista Maailman
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 3: 18.1.2016-6.3.2016 (7 VIIKKOA+KOE) LUENNOT (CK112): MA 14-16, TI 14-16 LASKUHARJOITUKSET: RYHMÄ
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
LisätiedotTietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:
LisätiedotLuku 2. Datasta tietoon: mitä dataa? mitä tietoa?
1 / 14 Luku 2. Datasta tietoon: mitä dataa? mitä tietoa? T-61.2010 Datasta tietoon, syksy 2011 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 31.10.2011 2 / 14 Tämän luennon sisältö
LisätiedotPinoautomaatit. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 6. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. Pinoautomaatit.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. kesäkuuta 2013 Sisällys Aikataulumuutos Tämänpäiväinen demotilaisuus on siirretty maanantaille klo 14:15 (Ag Delta).
LisätiedotS BAB ABA A aas bba B bbs c
T-79.148 Kevät 2003 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S) tuottama
Lisätiedot4 Tehokkuus ja algoritmien suunnittelu
TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin
LisätiedotT Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut
T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama
LisätiedotTIE Tietorakenteet ja algoritmit 1. TIE Tietorakenteet ja algoritmit
TIE-20100 Tietorakenteet ja algoritmit 1 TIE-20100 Tietorakenteet ja algoritmit TIE-20100 Tietorakenteet ja algoritmit 2 Lähteet Luentomoniste pohjautuu vahvasti prof. Antti Valmarin vanhaan luentomonisteeseen
LisätiedotLuetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki
Luetteloivat ja heuristiset menetelmät Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Branch and Bound sekä sen variaatiot (Branch and Cut, Lemken menetelmä) Optimointiin
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016
ja ja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys ja ja Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/
LisätiedotLaskennan vaativuus ja NP-täydelliset ongelmat
Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan
Lisätiedot!""# $%&'( ' )' (*' " '' '( "! ' *'&' "! ' '( "!! )& "! # "! & "! ' "! $''!! &'&' $' '! $ & "!!" #!$ %! & '()%%'!! '!! # '&' &'!! &'&' *('(' &'!*! +& &*%!! $ & #" !!" "!!!" $ " # ' '&& % & #! # ' '&&
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen
LisätiedotTietorakenteet ja algoritmit - syksy 2015 1
Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä
LisätiedotUuden äärellä ohjelmoitava vai oppiva kone?
01110111010110 11110101010101 00101011010011 01010111010101 01001010101010 10101010101010 Uuden äärellä ohjelmoitava vai oppiva kone? Petteri Kaski Tietotekniikan laitos Aalto-yliopisto CS-A1120 Ohjelmointi
LisätiedotAlgoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys
LisätiedotAlgoritmit 2. Luento 1 Ti Timo Männikkö
Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia
LisätiedotTiedonlouhinta ja sen mahdollisuudet
Tiedonlouhinta ja sen mahdollisuudet Henry Joutsijoki Sisältö Johdanto Tiedonlouhinta Koneoppiminen ja tiedonlouhinta Tiedonlouhinnan tulevaisuus Alustusta Nyky-yhteiskunnassamme käsitteet tehokkuus, nopeus,
LisätiedotTuringin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton kontekstinen
Lisätiedot7.4 Sormenjälkitekniikka
7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan
LisätiedotLaskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus.
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 17.10.2016 klo 15:07 passed waiting redo submitters
LisätiedotDiskriminanttianalyysi I
Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 3: 16.1.2017-3.3.2016 (7 VIIKKOA+KOE) LUENNOT (CK112): MA 14-16, TI 14-16 LASKUHARJOITUKSET: RYHMÄ
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti
LisätiedotSatunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos
Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 4 OP PERIODI 1: 6.9.2012-12.10.2012 (6 VIIKKOA) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14 LASKUHARJOITUKSET
LisätiedotTekoäly liiketoiminnassa. Tuomas Ritola CEO, selko.io
Tekoäly liiketoiminnassa Tuomas Ritola CEO, selko.io Selko.io Automaattista teknisen tekstin luokittelua ja analysointia, eli tekoälyä tekstidatalle. Päivän agenda: Tekoäly. Muotisana? Strategia? Uhka?
LisätiedotTäydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista
Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.
LisätiedotPysähtymisongelman ratkeavuus [Sipser luku 4.2]
Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2018-2019 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen
LisätiedotLisää pysähtymisaiheisia ongelmia
Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti
LisätiedotJOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 1: 4.9.2014-17.10.2012 (7 VIIKKOA+KOE) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14
LisätiedotMATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2019 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
Lisätiedot2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
LisätiedotImplementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely)
Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Jari Hast xx.12.2013 Ohjaaja: Harri Ehtamo Valvoja: Hari Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
LisätiedotMat Systeemien identifiointi, aihepiirit 1/4
, aihepiirit 1/4 Dynaamisten systeemien matemaattinen mallintaminen ja analyysi Matlab (System Identification Toolbox), Simulink 1. Matemaattinen mallintaminen: Mallintamisen ja mallin määritelmät Fysikaalinen
LisätiedotOngelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida?
Ongelma(t): Miten digitaalista tietoa voidaan toisintaa ja visualisoida? Miten monimutkaista tietoa voidaan toisintaa ja visualisoida? 2 Tieto on koodattu aikaisempaa yleisemmin digitaaliseen muotoon,
Lisätiedot582206 Laskennan mallit
582206 Laskennan mallit luennot syksylla 2006, periodit I{II Jyrki Kivinen tietojenkasittelytieteen aineopintokurssi, 6 op, paaaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot)
Lisätiedot(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3
T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w
LisätiedotParinmuodostuksesta tietojenkäsittelytieteen silmin. Petteri Kaski Tietojenkäsittelytieteen laitos Aalto-yliopisto
Parinmuodostuksesta tietojenkäsittelytieteen silmin Petteri Kaski Tietojenkäsittelytieteen laitos Aalto-yliopisto Suomalainen Tiedeakatemia Nuorten Akatemiaklubi 18.10.2010 Sisältö Mitä tietojenkäsittelytieteessä
LisätiedotUolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2
Uolevin reitti Kuvaus Uolevi on ruudukon vasemmassa ylänurkassa ja haluaisi päästä oikeaan alanurkkaan. Uolevi voi liikkua joka askeleella ruudun verran vasemmalle, oikealle, ylöspäin tai alaspäin. Lisäksi
LisätiedotTIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010
TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla
LisätiedotEtsintä verkosta (Searching from the Web) T Datasta tietoon Jouni Seppänen
Etsintä verkosta (Searching from the Web) T-61.2010 Datasta tietoon Jouni Seppänen 13.12.2006 1 Webin lyhyt historia 2 http://info.cern.ch/proposal.html 3 4 5 http://browser.arachne.cz/screen/ 6 7 Etsintä
LisätiedotLaskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. maaliskuuta 2012 Sisällys Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on
LisätiedotLaskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS.
TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. kesäkuuta 2013 Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on muotoa Onko
LisätiedotVerkon värittämistä hajautetuilla algoritmeilla
Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)
LisätiedotKombinatorinen optimointi
Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein
LisätiedotGeneettiset algoritmit
Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin
LisätiedotLineaarisen ohjelman määritelmä. Joonas Vanninen
Lineaarisen ohjelman määritelmä Joonas Vanninen Sisältö Yleinen optimointitehtävä Kombinatorinen tehtävä Optimointiongelman tapaus Naapurusto Paikallinen ja globaali optimi Konveksi optimointitehtävä Lineaarinen
LisätiedotEtsintä verkosta (Searching from the Web) T Datasta tietoon Heikki Mannila, Jouni Seppänen
Etsintä verkosta (Searching from the Web) T-61.2010 Datasta tietoon Heikki Mannila, Jouni Seppänen 12.12.2007 Webin lyhyt historia http://info.cern.ch/proposal.html http://browser.arachne.cz/screen/
LisätiedotEsimerkki: Laskin (alkua) TIEA341 Funktio ohjelmointi 1 Syksy 2005
Esimerkki: Laskin (alkua) TIEA341 Funktio ohjelmointi 1 Syksy 2005 Esimerkki: Laskin Liukulukulaskentaa Yhteen, vähennys, kerto ja jakolaskut Syötteenä laskutehtävä, tulosteena tulos tai virheilmoitus
LisätiedotTäydentäviä muistiinpanoja laskennan rajoista
Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen
LisätiedotPaikkatiedon käsittely 6. Kyselyn käsittely
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 6. Kyselyn käsittely Antti Leino antti.leino@cs.helsinki.fi 1.2.2007 Tietojenkäsittelytieteen laitos Kysely indeksin
LisätiedotMeri-Toppilan päiväkodin toimintasuunnitelma
Meri-Toppilan päiväkodin toimintasuunnitelma 2017-2018 Toimintakulttuuri Toimimme pienryhmissä. Tavoitteenamme on kiireetön arki. Kirjaamme sovitut asiat ryhmävasuun. Päiväkotimme tilat ovat kaikkien
LisätiedotSovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa
Sovelluksia additiivisen arvofunktion käytöstä projektiportfolion valinnassa Mat-2.4142 Optimointiopin seminaari kevät 2011 Kleinmuntz ja Kleinmuntz1999 TEHTÄVÄ Sairaalan strategisen investointibudjetin
LisätiedotLaskennan mallit (syksy 2008) 2. kurssikoe , ratkaisuja
582206 Laskennan mallit (syksy 2008) 2. kurssikoe 11.12., ratkaisuja Tehtävän 1 tarkasti Harri Forsgren, tehtävän 2 Joel Kaasinen ja tehtävän 3 Jyrki Kivinen. Palautetilaisuuden 19.12. jälkeen arvosteluun
LisätiedotA ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
LisätiedotREKURSIO. Rekursiivinen ohjelma Kutsuu itseään. Rekursiivinen rakenne. Rakenne sisältyy itseensä. Rekursiivinen funktio. On määritelty itsensä avulla
REKURSIO Rekursiivinen ohjelma Kutsuu itseään Rekursiivinen rakenne Rakenne sisältyy itseensä Rekursiivinen funktio On määritelty itsensä avulla Esim. Fibonacci-luvut: X(i) = X(i-1) + X(i-2), X(0) = X(1)
LisätiedotTutkimusmenetelmät-kurssi, s-2004
Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20 Sisällys Tänään Tietojenkäsittelytiede
LisätiedotÄlykäs datan tuonti kuljetusongelman optimoinnissa. Antoine Kalmbach
Älykäs datan tuonti kuljetusongelman optimoinnissa Antoine Kalmbach ane@iki.fi Sisällys Taustaa Kuljetusongelma Datan tuominen vaikeaa Teoriaa Tiedostojen väliset linkit Mikä sarake on mikäkin? Ratkaisutoteutus
LisätiedotLectio praecursoria. Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin. Markus Ojala. 12.
Lectio praecursoria Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden arviointiin Markus Ojala 12. marraskuuta 2011 Käsitteet Satunnaistusalgoritmeja tiedonlouhinnan tulosten merkitsevyyden
LisätiedotICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.
LisätiedotKaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat
1 Tukivektoriluokittelija Tukivektorikoneeseen (support vector machine) perustuva luoikittelija on tilastollisen koneoppimisen teoriaan perustuva lineaarinen luokittelija. Perusajatus on sovittaa kahden
LisätiedotTalousmatematiikan perusteet: Luento 12. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla
Talousmatematiikan perusteet: Luento 12 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,
LisätiedotHarjoitustyön testaus. Juha Taina
Harjoitustyön testaus Juha Taina 1. Johdanto Ohjelman teko on muutakin kuin koodausta. Oleellinen osa on selvittää, että ohjelma toimii oikein. Tätä sanotaan ohjelman validoinniksi. Eräs keino validoida
LisätiedotTietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
Lisätiedot