E. Oja ja H. Mannila Datasta Tietoon: Luku 2

Koko: px
Aloita esitys sivulta:

Download "E. Oja ja H. Mannila Datasta Tietoon: Luku 2"

Transkriptio

1 2. DATASTA TIETOON: MITÄ DATAA; MITÄ TIETOA? 2.1. Data-analyysin ongelma Tulevien vuosien valtava haaste on digitaalisessa muodossa talletetun datan kasvava määrä Arvioita: Yhdysvaltojen kongressin kirjasto Washingtonissa: 29 miljoonaa kirjaa ja lehteä, 2.7 miljoonaa äänitettä, 12 miljoonaa valokuvaa, 4.8 miljoonaa karttaa, 57 miljoonaa käsikirjoitusta. Kerätty 200 vuoden aikana. Nyt sama datamäärä kertyy levyille joka 15. minuutti (noin 100 kertaa vuorokaudessa). Tämä on 5 exatavua vuodessa. (Kertaus: Exatavu = 2 60 tavua = 1,152,921,504,606,846,976 tavua (triljoona) tavua). TKK, Informaatiotekniikan laboratorio 1

2 Sama määrä tulisi, jos kaikki ihmispuhe kaikkina aikoina (n vuotta) koodattaisiin sanoiksi ja digitoitaisiin (R. Williams, CalTech). Aiemmin talletettu data oli lähinnä tekstiä ja numerodataa (taloudellishallinnollinen IT), mutta nyt yhä enemmän ns. reaalimaailman dataa (digitaaliset kuvat, videot, äänet, puhe, mittaustiedot, bioinformatiikan tietopankit jne.) Lopulta mikä tahansa tieto josta voi olla hyötyä saattaa tulla digitaalisesti haettavaksi, esim. Webin kautta Tämä asettaa suuria haasteita tallennus- ja tietokantatekniikoille Eräs keskeinen kysymys: kuinka haluttu tieto (information, knowledge) löytyy? Tarvitaan jonkinlaisia älykkäitä datan analyysi-, louhinta- ja hakumenetelmiä. TKK, Informaatiotekniikan laboratorio 2

3 2.2. Mallit ja oppiminen Peruslähtökohta data-analyysille on datan mallitus Malli tarjoaa tiivistetyn esitystavan (representaation) datalle Mallin perusteella on paljon helpompi tehdä päätelmiä kuin raakadatasta Esimerkki: aikasarjan ennustaminen Toinen esimerkki: datan todennäköisyysjakauma Kolmas esimerkki: luokitus Mistä malli sitten löytyy? Joskus voidaan käyttää olemassaolevaa tietoa (fysikaalisia luonnonlakeja, inhimillistä kokemusta, tms) Usein kuitenkin joudutaan käyttämään tilastollisia malleja jotka TKK, Informaatiotekniikan laboratorio 3

4 muodostetaan suoraan datan perusteella (kuten edellisissä esimerkeissä) Kurssi datasta tietoon (ainakin alkuosa) käsittelee tilastollisia malleja ja niiden johtamista datajoukoista. Usein mallin automaattista muodostamista datajoukosta kutsutaan koneoppimiseksi (machine learning) Sana tulee ihmisen oppimisesta, joka myös pohjimmiltaan on mallien oppimista Datasta oppimisen menetelmät jakaantuvat kahteen pääluokkaan: ohjattu oppiminen ja ohjaamaton oppiminen Ohjatussa (kone)oppimisessa annetaan joukko data-alkioita ja niitä vastaavia nimikkeitä joihin ne halutaan liittää: esimerkiksi pätkä ihmisen puhetta ja kirjain a TKK, Informaatiotekniikan laboratorio 4

5 Tehtävä: muodosta malli joka liittää toisiinsa data-alkiot ja nimikkeet (automaattista puheentunnistusta verten) Vastaa ihmisellä opettajan johdolla tapahtuvaa oppimista. Ohjaamattomassa (kone)oppimisessa annetaan vain joukko data-alkioita mutta ei mitään muuta; esimerkiksi iso määrä kaupan asiakkaistaan keräämiä tietoja Tehtävä: muodosta malli, joka yhdistää toisiinsa samoista tuotteista kiinnostuneet asiakkaat (täsmämainontaa varten) Vastaa ihmisellä itsekseen tapahtuvaa oppimista. TKK, Informaatiotekniikan laboratorio 5

6 2.3. Esimerkkejä Kieliteknologia Konekääntäminen luonnollisten kielten välillä Puheen tunnistaminen (audiotietokannan automaattinen muuuntaminen tekstiksi; TV-lähetysten on-line tekstitys) Käyttöliittymät Puheentunnistus Käsinkirjoitettujen merkkien tunnistus Eleiden, ilmeiden, katseen suunnan tunnistus Käyttäjän profilointi Web-haku Googlen laajennukset; semanttinen verkko Oppiva semantiikka; ontologioiden tms. tiedon rakenteiden TKK, Informaatiotekniikan laboratorio 6

7 automaattinen muodostus Teknistieteellinen data Tietoliikenne (verkon kuormituksen ennustaminen; ympäristöään tarkkaileva kännykkä) Neuroinformatiikka (biolääketieteen mittaukset kuten EEG, MEG, fmri); ihmisen ja koneen väliset kehittyneet käyttöliittymät Bioinformatiikka: geenisekvenssit, DNA-sirudata Ympäristön tila, ilmasto Sensoriverkot Taloudellinen data Aikasarjojen (pörssikurssit, valuuttakurssit) ennustaminen Yritysten tilinpäätöstietojen analyysi Luottokorttien käytön seuranta TKK, Informaatiotekniikan laboratorio 7

8 Asiakkaiden ryhmittely ja käyttäytymisen ennustaminen (ostoskorianalyysi)... ja paljon paljon muuta! TKK, Informaatiotekniikan laboratorio 8

9 2.4. Case study: WEBSOM WEBSOM (Web Self Organizing Map) on informaatiotekniikan laboratoriossa prof. Teuvo Kohosen johdolla kehitetty dokumenttien selaus- ja hakujärjestelmä Se perustuu SOM (Self Organizing Map) -neuroverkkoon Suurimmassa sovelluksessa tehtiin kartta 7 miljoonalle dokumentille, jotka ovat elektronisessa muodossa olevia patenttien tiivistelmiä WEBSOMin visuaalisen käyttöliitymän avulla voi helposti selailla tietyn alan patentteja. Ks. demo. TKK, Informaatiotekniikan laboratorio 9

Luku 2. Datasta tietoon: mitä dataa? mitä tietoa?

Luku 2. Datasta tietoon: mitä dataa? mitä tietoa? 1 / 14 Luku 2. Datasta tietoon: mitä dataa? mitä tietoa? T-61.2010 Datasta tietoon, syksy 2011 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 31.10.2011 2 / 14 Tämän luennon sisältö

Lisätiedot

T DATASTA TIETOON

T DATASTA TIETOON TKK / Informaatiotekniikan laboratorio Syyslukukausi, periodi II, 2007 Erkki Oja, professori, ja Heikki Mannila, akatemiaprofessori: T-61.2010 DATASTA TIETOON TKK, Informaatiotekniikan laboratorio 1 JOHDANTO:

Lisätiedot

Tekoäly ja alustatalous. Miten voit hyödyntää niitä omassa liiketoiminnassasi

Tekoäly ja alustatalous. Miten voit hyödyntää niitä omassa liiketoiminnassasi Tekoäly ja alustatalous Miten voit hyödyntää niitä omassa liiketoiminnassasi AI & Alustatalous AI Digitaalisuudessa on 1 ja 0, kumpia haluamme olla? Alustatalouden kasvuloikka Digitaalisen alustatalouden

Lisätiedot

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ] Johdatus tekoälyyn Luento 6.10.2011: Koneoppiminen Patrik Hoyer [ Kysykää ja kommentoikaa luennon aikana! ] Koneoppiminen? Määritelmä: kone = tietokone, tietokoneohjelma oppiminen = ongelmanratkaisukyvyn

Lisätiedot

Tilastotiede ottaa aivoon

Tilastotiede ottaa aivoon Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen

Lisätiedot

Tekoäly liiketoiminnassa. Tuomas Ritola CEO, selko.io

Tekoäly liiketoiminnassa. Tuomas Ritola CEO, selko.io Tekoäly liiketoiminnassa Tuomas Ritola CEO, selko.io Selko.io Automaattista teknisen tekstin luokittelua ja analysointia, eli tekoälyä tekstidatalle. Päivän agenda: Tekoäly. Muotisana? Strategia? Uhka?

Lisätiedot

Tekoäly tukiäly. Eija Kalliala, Marjatta Ikkala

Tekoäly tukiäly. Eija Kalliala, Marjatta Ikkala Tekoäly tukiäly Eija Kalliala, Marjatta Ikkala 29.11.2018 Mitä on tekoäly? Unelma koneesta, joka ajattelee kuin ihminen Hype-sana, jota kuulee joka paikassa Väärinymmärretty sana -> vääriä odotuksia, pelkoja

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Tekoälykoulutus seniorimentoreille

Tekoälykoulutus seniorimentoreille Tekoälykoulutus seniorimentoreille Pauli Isoaho Tekoälyasiantuntija Omnia AI Lab 17.9.2018 Aikataulu Päivä 18.9 ti 19.9 ke 20.9 to 24.9 ma Tekoäly 9:30 12:00 9:30 12:00 9:30 12:00 9:30 12:00 Tekoälyn perusteet

Lisätiedot

R intensiivisesti. Erkki Räsänen Ecitec Oy

R intensiivisesti. Erkki Räsänen Ecitec Oy R intensiivisesti Erkki Räsänen Ecitec Oy Päivän tavoitteet Yleinen perehdytys R:ään; miten sitä käytetään ja mitä sillä voi tehdä Ymmärrämme yleisimpiä analyysimenetelmiä ja osaamme tulkita tuloksia Madallamme

Lisätiedot

Tarvitseeko informaatioteknologia matematiikkaa?

Tarvitseeko informaatioteknologia matematiikkaa? Tarvitseeko informaatioteknologia matematiikkaa? Oulun yliopisto Matemaattisten tieteiden laitos 1 Kyllä kai IT matematiikkaa tarvitsee!? IT ja muu korkea teknologia on nimenomaan matemaattista teknologiaa.

Lisätiedot

CHERMUG-pelien käyttö opiskelijoiden keskuudessa vaihtoehtoisen tutkimustavan oppimiseksi

CHERMUG-pelien käyttö opiskelijoiden keskuudessa vaihtoehtoisen tutkimustavan oppimiseksi Tiivistelmä CHERMUG-projekti on kansainvälinen konsortio, jossa on kumppaneita usealta eri alalta. Yksi tärkeimmistä asioista on luoda yhteinen lähtökohta, jotta voimme kommunikoida ja auttaa projektin

Lisätiedot

Tiedonlouhinta rakenteisista dokumenteista (seminaarityö)

Tiedonlouhinta rakenteisista dokumenteista (seminaarityö) Tiedonlouhinta rakenteisista dokumenteista (seminaarityö) Miika Nurminen (minurmin@jyu.fi) Jyväskylän yliopisto Tietotekniikan laitos Kalvot ja seminaarityö verkossa: http://users.jyu.fi/~minurmin/gradusem/

Lisätiedot

mtiimit, mobiilinäytöt, -tentit, -työselosteet ja -viestintä

mtiimit, mobiilinäytöt, -tentit, -työselosteet ja -viestintä mtiimit, mobiilinäytöt, -tentit, -työselosteet ja -viestintä Hannu Äystö Samsung-tabletit viherpihatuunauksen dokumentointiin. Testata miten mobiililaitteet soveltuvat ulkotilatyöskentelyyn. Aurinkoinen

Lisätiedot

Tilastotiede ottaa aivoon

Tilastotiede ottaa aivoon Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen

Lisätiedot

ALGORITMIT & OPPIMINEN

ALGORITMIT & OPPIMINEN ALGORITMIT & OPPIMINEN Mitä voidaan automatisoida? Mikko Koivisto Avoimet aineistot tulevat Tekijä: Lauri Vanhala yhdistä, kuvita, selitä, ennusta! Tekijä: Logica Mitä voidaan automatisoida? Algoritmi

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.

Lisätiedot

Edistyksen päivät, Helsinki. Voiko tutkija muuttaa maailmaa? Humanistista meta-analyysiä merkitysneuvottelevien koneiden avulla.

Edistyksen päivät, Helsinki. Voiko tutkija muuttaa maailmaa? Humanistista meta-analyysiä merkitysneuvottelevien koneiden avulla. Edistyksen päivät, Helsinki Voiko tutkija muuttaa maailmaa? Humanistista meta-analyysiä merkitysneuvottelevien koneiden avulla Timo Honkela timo.honkela@helsinki.fi 5.10.2017 Taustaa: Rauhankone-konsepti

Lisätiedot

OPPIMISKYVYKKYYS DIGITALISOITUVASSA MAAILMASSA

OPPIMISKYVYKKYYS DIGITALISOITUVASSA MAAILMASSA OPPIMISKYVYKKYYS DIGITALISOITUVASSA MAAILMASSA Sisältö Ihmisen oppiminen ja ohjautuvuus Ihminen digitalisoituvassa elinympäristössä Oleellisen oppimiskyvykkyys, mikä meitä vie? Yhteistyötä yrityksissä

Lisätiedot

Multimodaalisuus oppijan tukena oppimateriaaleista eportfolioon

Multimodaalisuus oppijan tukena oppimateriaaleista eportfolioon Multimodaalisuus oppijan tukena oppimateriaaleista eportfolioon Merja Saarela, Yliopettaja, tutkimuspäällikkö HAMK Poluttamo-hankkeen päätösseminaari 21.11.2018 Esityksen sisältö Avata sitä, kuinka informaation

Lisätiedot

Metatieto mihin ja miten? Juha Hakala Helsingin yliopiston kirjasto juha.hakala@helsinki.fi

Metatieto mihin ja miten? Juha Hakala Helsingin yliopiston kirjasto juha.hakala@helsinki.fi Metatieto mihin ja miten? Juha Hakala Helsingin yliopiston kirjasto juha.hakala@helsinki.fi Sisältö Metatiedon määrittely Metatiedon käytöstä Metatietoformaatit MARC, Dublin Core, IEEE LOM Elektronisten

Lisätiedot

Työkalujen merkitys mittaamisessa

Työkalujen merkitys mittaamisessa Työkalujen merkitys mittaamisessa Mittaaminen ja Ohjelmistotuotanto -seminaari Toni Sandelin 18.4.2001, VTT Elektroniikka, Oulu 1 Sisältö Mihin työkalutukea tarvitaan? Työkalut & metriikat: luokitus Mittausohjelmien

Lisätiedot

Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto)

Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto) Tekoäly tänään 6.6.2017, Vadim Kulikov (Helsingin Yliopisto) Lyhyesti: kehitys kognitiotieteessä Representationalismi, Kognitio on symbolien manipulointia. Symbolinen tekoäly. Sääntöpohjaiset järjestelmät

Lisätiedot

Puheentunnistus. Joel Pyykkö 1. 1 DL-AT Consulting

Puheentunnistus. Joel Pyykkö 1. 1 DL-AT Consulting Puheentunnistus Joel Pyykkö 1 1 DL-AT Consulting 2018 Sisällysluettelo Puheentunnistus Yleisesti Chattibotin Luonti Esimerkkinä - Amazon Lex Puheentunnistus Yleisesti Puheentunnistus Yleisesti Puheentunnistus

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Kynä ja kone keskustakampuksella. Kaikki siitä puhuvat, mutta mitä se on: digitaalisuus? Kynä ja kone: Menetelmät ja analyysit.

Kynä ja kone keskustakampuksella. Kaikki siitä puhuvat, mutta mitä se on: digitaalisuus? Kynä ja kone: Menetelmät ja analyysit. Kynä ja kone keskustakampuksella Kaikki siitä puhuvat, mutta mitä se on: digitaalisuus? Kynä ja kone: Menetelmät ja analyysit Timo Honkela timo.honkela@helsinki.fi 15.9.2016 Järjestäjät Pirjo Hiidenmaa

Lisätiedot

Kirjaston verkkopalvelun suunnittelu käyttäjäkeskeisesti. Päivi Ylitalo-Kallio Eduskunnan kirjasto (Metropolia Ammattikorkeakoulun kirjasto)

Kirjaston verkkopalvelun suunnittelu käyttäjäkeskeisesti. Päivi Ylitalo-Kallio Eduskunnan kirjasto (Metropolia Ammattikorkeakoulun kirjasto) Kirjaston verkkopalvelun suunnittelu käyttäjäkeskeisesti STKS Tietoaineistoseminaari 14.3.2012 Päivi Ylitalo-Kallio Eduskunnan kirjasto (Metropolia Ammattikorkeakoulun kirjasto) tietoisku Oppiva kirjasto

Lisätiedot

Digitaalinen portfolio oppimisen tukena (4op)

Digitaalinen portfolio oppimisen tukena (4op) Digitaalinen portfolio oppimisen tukena (4op) Harto Pönkä, Essi Vuopala Tavoitteet ja toteutus Osaamistavoitteet Kurssin jälkeen opiskelija osaa suunnitella ja toteuttaa digitaalisen portfolion blogi ympäristöön,

Lisätiedot

Tiedonlouhinta ja sen mahdollisuudet

Tiedonlouhinta ja sen mahdollisuudet Tiedonlouhinta ja sen mahdollisuudet Henry Joutsijoki Sisältö Johdanto Tiedonlouhinta Koneoppiminen ja tiedonlouhinta Tiedonlouhinnan tulevaisuus Alustusta Nyky-yhteiskunnassamme käsitteet tehokkuus, nopeus,

Lisätiedot

Vinkkejä opettajalle

Vinkkejä opettajalle BRIEFR Messaging Vinkkejä opettajalle BRIEFR viestittelysovelluksen käyttö onnistuu kaikilta Käyttö on ilmaista ja rajoittamatonta Aiempaa kokemusta pikaviestisovelluksista ei tarvita Voit käyttää BRIEFRiä

Lisätiedot

Tällä kerralla ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus Kertausta: Perseptronin oppimissääntö

Tällä kerralla ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus Kertausta: Perseptronin oppimissääntö Tällä kerralla ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 19.2. Nelli Salminen nelli.salminen@helsinki.fi D433 vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Malleja ja menetelmiä geometriseen tietokonenäköön

Malleja ja menetelmiä geometriseen tietokonenäköön Malleja ja menetelmiä geometriseen tietokonenäköön Juho Kannala 7.5.2010 Johdanto Tietokonenäkö on ala, joka kehittää menetelmiä automaattiseen kuvien sisällön tulkintaan Tietokonenäkö on ajankohtainen

Lisätiedot

Järjestelmäarkkitehtuuri (TK081702) Avoimet web-rajapinnat

Järjestelmäarkkitehtuuri (TK081702) Avoimet web-rajapinnat Järjestelmäarkkitehtuuri (TK081702) SOA yleistyvät verkkopalveluissa Youtube Google... Avaavat pääsyn verkkopalvelun sisältöön. Rajapintojen tarjoamia tietolähteitä yhdistelemällä luodaan uusia palveluja,

Lisätiedot

Mediakulttuurit University of TAMPERE

Mediakulttuurit University of TAMPERE Partneri Nimi Reijo Kupiainen Mediakulttuurit University of TAMPERE Avustaja Maa Suomi Institutio Osallistujat Konteksti Kasvatustieteiden tiedekunta, Tampereen yliopisto Luokanopettaja-opiskelijat Tämä

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3.11.2017 Mitä tekoäly on? Wikipedia: Tekoäly on tietokone tai tietokoneohjelma, joka kykenee älykkäiksi

Lisätiedot

Tutkimusperustaisuus käytännön opetuksessa? Tapaus Sosiaalityön käytäntö 2. Taru Kekoni Ma. Yliopistonlehtori Itä-Suomen yliopisto

Tutkimusperustaisuus käytännön opetuksessa? Tapaus Sosiaalityön käytäntö 2. Taru Kekoni Ma. Yliopistonlehtori Itä-Suomen yliopisto Tutkimusperustaisuus käytännön opetuksessa? Tapaus Sosiaalityön käytäntö 2 Taru Kekoni Ma. Yliopistonlehtori Itä-Suomen yliopisto Lähtökohta esitykselle: Opetusjakson tutkimusperustaisuus on selkeä ja

Lisätiedot

JUHTA ja VAHTI juhlatilaisuus, Tietojärjestelmien tulevaisuudesta tekoälyn kehityksen näkökulmasta. Timo Honkela.

JUHTA ja VAHTI juhlatilaisuus, Tietojärjestelmien tulevaisuudesta tekoälyn kehityksen näkökulmasta. Timo Honkela. JUHTA ja VAHTI juhlatilaisuus, 2017 Tietojärjestelmien tulevaisuudesta tekoälyn kehityksen näkökulmasta Timo Honkela timo.honkela@helsinki.fi 31. lokakuuta 2017 Ihmisestä ja ihmisyhteisöistä Kuva:/skylgroup.com/communities--socities/

Lisätiedot

Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 29-31.10.2008. 1 Tällä viikolla 1. Käytännön järjestelyistä 2. Kurssin sisällöstä ja aikataulusta 3. Johdantoa Mitä koneoppiminen

Lisätiedot

Flipped classroom (2op) Käänteinen opetus/luokkahuone Lähipäivä

Flipped classroom (2op) Käänteinen opetus/luokkahuone Lähipäivä Flipped classroom (2op) Käänteinen opetus/luokkahuone Lähipäivä 6.10.2015 Learning services / OPIT Timo Ovaska Keskeinen sisältö ja osaamistavoitteet Käänteisen opetuksen suunnittelu ja elementit Erilaisten

Lisätiedot

Data-analyysi tieteenalana Professori, laitosjohtaja Sasu Tarkoma Tietojenkäsittelytieteen laitos Helsingin yliopisto

Data-analyysi tieteenalana Professori, laitosjohtaja Sasu Tarkoma Tietojenkäsittelytieteen laitos Helsingin yliopisto Data-analyysi tieteenalana Professori, laitosjohtaja Sasu Tarkoma Tietojenkäsittelytieteen laitos Helsingin yliopisto Faculty of Science Department of Computer Science www.cs.helsinki.fi 9.5.2017 1 Sisällys

Lisätiedot

Googlen palvelut synkronoinnin apuna. Kampin palvelukeskus Jukka Hanhinen, Urho Karjalainen, Rene Tigerstedt, Pirjo Salo

Googlen palvelut synkronoinnin apuna. Kampin palvelukeskus Jukka Hanhinen, Urho Karjalainen, Rene Tigerstedt, Pirjo Salo Googlen palvelut synkronoinnin apuna Kampin palvelukeskus 31.01.2018 Jukka Hanhinen, Urho Karjalainen, Rene Tigerstedt, Pirjo Salo Google-tili Jos käytät Gmail-sähköpostia niin sinulla on Google-tili (nn.nn@gmail.com)

Lisätiedot

Automatisoinnilla tehokkuutta mittaamiseen

Automatisoinnilla tehokkuutta mittaamiseen Automatisoinnilla tehokkuutta mittaamiseen Finesse seminaari 22.3.2000 Päivi Parviainen 1 Miksi automatisoida? Mittaamisen hyödyt ohjelmistokehityksen ajantasainen seuranta ja hallinta tuotteen laadun

Lisätiedot

Kognitiivinen mallintaminen. Nelli Salminen

Kognitiivinen mallintaminen. Nelli Salminen Kognitiivinen mallintaminen Neuraalimallinnus 24.11. Nelli Salminen nelli.salminen@tkk.fi Tällä kerralla ohjelmassa vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko oppimissääntöjen

Lisätiedot

Opiskelijat vertaisopettajina: opetusvideoita ja sulautuvaa oppimista tiedonhankinnan kurssilla

Opiskelijat vertaisopettajina: opetusvideoita ja sulautuvaa oppimista tiedonhankinnan kurssilla Opiskelijat vertaisopettajina: opetusvideoita ja sulautuvaa oppimista tiedonhankinnan kurssilla DIGILUU DIGILEI: PEDAGOGIIKKA EDELLÄ MUUTOKSEEN Tieto- ja viestintätekniikan opetuskäytön kynnyksen madaltaminen

Lisätiedot

Seitsemän syytä semanttiseen webiin. Eero Hyvönen Aalto-yliopisto ja HY Semanttisen laskennan tutkimusryhmä (SeCo)

Seitsemän syytä semanttiseen webiin. Eero Hyvönen Aalto-yliopisto ja HY Semanttisen laskennan tutkimusryhmä (SeCo) Seitsemän syytä semanttiseen webiin Eero Hyvönen Aalto-yliopisto ja HY Semanttisen laskennan tutkimusryhmä (SeCo) 1 Sisältö WWW tänään (30 min) Palvelut ja tiedonhaku: ongelmia Tiedon esitys: merkkauskielet

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

DL SOFTWARE Uumajankatu 2 Umeågatan FIN-65350 VAASA/VASA FINLAND +358-(0)207 701 701 Fax +358-(0)207 701 711 http://www.dlsoftware.

DL SOFTWARE Uumajankatu 2 Umeågatan FIN-65350 VAASA/VASA FINLAND +358-(0)207 701 701 Fax +358-(0)207 701 711 http://www.dlsoftware. 15.11.2007 1 (10) HELPDESKIN KÄYTTÖ JA OHJELMIEN PÄIVITYS INTERNETISSÄ DL Helpdesk Online Asiakastukemme avuksi on rakennettu Helpdesk, joka löytyy osoitteesta helpdesk.dlsoftware.com Jokainen ylläpitoasiakas

Lisätiedot

OPPIMISANALYTIIKKA OPPILAITOKSISSA (2018) DigiKilta-seminaari, Hämeenlinna LEENA VAINIO

OPPIMISANALYTIIKKA OPPILAITOKSISSA (2018) DigiKilta-seminaari, Hämeenlinna LEENA VAINIO OPPIMISANALYTIIKKA OPPILAITOKSISSA (2018) DigiKilta-seminaari, Hämeenlinna 7.11.2018 LEENA VAINIO 3 Mitä se on? Oppimisanalytiikalla tarkoitetaan oppijoista ja heidän toimintaympäristöistä kerättävää

Lisätiedot

Kriteeri 1: Oppija on aktiivinen ja ottaa vastuun oppimistuloksista (aktiivisuus)

Kriteeri 1: Oppija on aktiivinen ja ottaa vastuun oppimistuloksista (aktiivisuus) Kriteeri 1: Oppija on aktiivinen ja ottaa vastuun oppimistuloksista (aktiivisuus) Oppimistehtävät ovat mielekkäitä ja sopivan haasteellisia (mm. suhteessa opittavaan asiaan ja oppijan aikaisempaan tietotasoon).

Lisätiedot

Miksipä Benchmarking?

Miksipä Benchmarking? Esityksen sisälmykset Miksipä Benchmarking? 1. yleistä (so. korkealentoista) benchmarkingista 2. kokemuksia yhdestä yritelmästä TieVie-asiantuntijakoulutus Turun lähiseminaari 18.3.2005 Markku Ihonen Benchmarking

Lisätiedot

Tekoälykoulutus seniorimentoreille

Tekoälykoulutus seniorimentoreille Tekoälykoulutus seniorimentoreille Pauli Isoaho Tekoälyasiantuntija Omnia AI Lab 17.9.2018 Aikataulu Päivä To 15.11 pe 16.11 Ma 19.11 Ti 20.11 Tekoäly 9:30 12:00 9:30 12:00 9:30 12:00 9:30 12:00 Tekoälyn

Lisätiedot

Tee-se-itse -tekoäly

Tee-se-itse -tekoäly Tee-se-itse -tekoäly Avainsanat: koneoppiminen, tekoäly, neuroverkko Luokkataso: 6.-9. luokka, lukio, yliopisto Välineet: kynä, muistilappuja tai kertakäyttömukeja, herneitä tms. pieniä esineitä Kuvaus:

Lisätiedot

Digitalisaation vahvistaminen

Digitalisaation vahvistaminen Digitalisaation vahvistaminen Digitalisoituminen Osaamisen muutos: osaaminen vs. tietäminen Vaikuttaa radikaalisti työelämässä ja yhteiskunnassa tarvittavaan osaamiseen Muuttaa käsitystä tiedosto, työstä

Lisätiedot

Koneoppiminen ja tekoäly suurten tietomassojen käsittelyssä yleensä ja erityisesti sovellettuina satelliittidatan käyttöön metsien arvioinnissa

Koneoppiminen ja tekoäly suurten tietomassojen käsittelyssä yleensä ja erityisesti sovellettuina satelliittidatan käyttöön metsien arvioinnissa Koneoppiminen ja tekoäly suurten tietomassojen käsittelyssä yleensä ja erityisesti sovellettuina satelliittidatan käyttöön metsien arvioinnissa Metsätieteen päivä 26.11.2018 Jorma Laaksonen, vanhempi yliopistonlehtori

Lisätiedot

Laskut käyvät hermoille

Laskut käyvät hermoille Laskut käyvät hermoille - Miten ja miksi aivoissa lasketaan todennäköisyyksiä Aapo Hyvärinen Matematiikan ja tilastotieteen laitos & Tietojenkäsittelytieteen laitos Helsingin Yliopisto Tieteen päivät 13.1.2011

Lisätiedot

MIKKO-projekti ja mittausten automatisointi

MIKKO-projekti ja mittausten automatisointi MIKKO-projekti ja mittausten automatisointi FiSMA-seminaari 11.12.00 Matias Vierimaa VTT Elektroniikka 1 MIKKO-projekti Projektin tavoitteena on kehittää mittauskehikko, joka tukee ohjelmistoprosessin

Lisätiedot

Tekoäly muuttaa arvoketjuja

Tekoäly muuttaa arvoketjuja Tekoäly muuttaa arvoketjuja Näin kartoitat tekoälyn mahdollisuuksia projektissasi Harri Puolitaival Harri Puolitaival Diplomi-insinööri ja yrittäjä Terveysteknologia-alan start-up: Likelle - lämpötilaherkkien

Lisätiedot

MedIndecs. NeuroMed - diagnoosipalvelu. Proudly presents: Valtakunnallinen jäynäkisa 2004 - Konserni

MedIndecs. NeuroMed - diagnoosipalvelu. Proudly presents: Valtakunnallinen jäynäkisa 2004 - Konserni Proudly presents: NeuroMed - diagnoosipalvelu Johdanto Arvoisa ylituomaristo oli päättänyt, että ensimmäinen jäynä tulisi liittyä jollain tavalla terveysteemaan. Tiimimme otti annetun aihealueen ilolla

Lisätiedot

LC Profiler. - Oppimisympäristön keskeisiä piirteitä. Antti Peltonen, LC Prof Oy

LC Profiler. - Oppimisympäristön keskeisiä piirteitä. Antti Peltonen, LC Prof Oy LC Profiler - Oppimisympäristön keskeisiä piirteitä Antti Peltonen, LC Prof Oy Profiler - Sovelluksen kehityskaari... Ensimmäiset versiot oppimisympäristöstä 1995 ProTo -projekti 1997-98, Oulun yliopisto

Lisätiedot

Tekoäly ja sen soveltaminen yrityksissä. Mika Rantonen

Tekoäly ja sen soveltaminen yrityksissä. Mika Rantonen Tekoäly ja sen soveltaminen yrityksissä Mika Rantonen Tekoäly- paljon puhetta, mistä kyse? Lyhyesti sanottuna: tekoäly on sellaista koneen tekemää toimintaa, joka ihmisen tekemänä olisi älykästä Otetaan

Lisätiedot

Tietojärjestelmätiede (TJT) / Tekninen viestintä (TEVI) linjavalintainfo

Tietojärjestelmätiede (TJT) / Tekninen viestintä (TEVI) linjavalintainfo Tietojärjestelmätiede (TJT) / Tekninen viestintä (TEVI) linjavalintainfo Tietojärjestelmätiede 5.4.2017 2 Tietojärjestelmätiede Markkinat IT ja markkinat Organisaatio Ryhmä IT ja organisaatio IT ja ryhmä

Lisätiedot

Tekstinlouhinnan mahdollisuudet Digin historiallisessa sanomalehtiaineistossa. Kimmo Kettunen Dimiko (Digra-projekti)

Tekstinlouhinnan mahdollisuudet Digin historiallisessa sanomalehtiaineistossa. Kimmo Kettunen Dimiko (Digra-projekti) Tekstinlouhinnan mahdollisuudet Digin historiallisessa sanomalehtiaineistossa Kimmo Kettunen Dimiko (Digra-projekti) Tekstinlouhinta Tekstinlouhinnassa pyritään saamaan tekstimassoista automaattisesti

Lisätiedot

Teknologian pedagoginen käyttö eilen, tänään ja huomenna

Teknologian pedagoginen käyttö eilen, tänään ja huomenna Essi Vuopala/ LET Teknologian pedagoginen käyttö eilen, tänään ja huomenna Opetusohjelmista kaikkialla läsnäolevaan oppimiseen Oppiminen ja sen ohjaaminen, 2015 Essi Vuopala, tutkijatohtori, oppiminen

Lisätiedot

Tietojenkäsittelytieteen pääaine Pääaineinfo ke

Tietojenkäsittelytieteen pääaine Pääaineinfo ke Tietojenkäsittelytieteen pääaine Pääaineinfo ke Pekka Orponen Tietojenkäsittelytieteen laitos Aalto-yliopisto http://ics.aalto.fi/ Tietojenkäsittelytiede Kehitetään systemaattisia ja tehokkaita malleja

Lisätiedot

Opetuksen ja opiskelun tehokas ja laadukas havainnointi verkkooppimisympäristössä

Opetuksen ja opiskelun tehokas ja laadukas havainnointi verkkooppimisympäristössä Opetuksen ja opiskelun tehokas ja laadukas havainnointi verkkooppimisympäristössä Jukka Paukkeri (projektitutkija) Tampereen Teknillinen Yliopisto Matematiikan laitos Intelligent Information Systems Laboratory

Lisätiedot

Digitalisaatio oppimisen maailmassa. Tommi Lehmusto Digital Advisor Microsoft Services

Digitalisaatio oppimisen maailmassa. Tommi Lehmusto Digital Advisor Microsoft Services Digitalisaatio oppimisen maailmassa Tommi Lehmusto Digital Advisor Microsoft Services Oppimisen trendit ja ajurit Teknologia on muuttamassa oppimista 50Mrd Arvioitu lukumäärä verkkoon yhdistetyistä laitteista

Lisätiedot

Tassu Takala pääaineinfo 2.3.2009

Tassu Takala pääaineinfo 2.3.2009 Tassu Takala pääaineinfo 2.3.2009 1 Kaksi näkökulmaa mediaan Tekniikka eri medialajeja ja koosteita käsittelevät algoritmit uudet teknologiat Sisältö mediatuotteiden käsittely valmiilla välineillä tuotantoprosessin

Lisätiedot

Miten tästä eteenpäin? FinnONTO 2.0:n jatkonäkymiä Semanttiset jokapaikan palvelut 2009-2011

Miten tästä eteenpäin? FinnONTO 2.0:n jatkonäkymiä Semanttiset jokapaikan palvelut 2009-2011 Miten tästä eteenpäin? FinnONTO 2.0:n jatkonäkymiä Semanttiset jokapaikan palvelut 2009-2011 Prof. Eero Hyvönen Helsinki University of Technology (TKK) and University of Helsinki Semantic Computing Research

Lisätiedot

Say it again, kid! - peli ja puheteknologia lasten vieraan kielen oppimisessa

Say it again, kid! - peli ja puheteknologia lasten vieraan kielen oppimisessa Say it again, kid! - peli ja puheteknologia lasten vieraan kielen oppimisessa Sari Ylinen, Kognitiivisen aivotutkimuksen yksikkö, käyttäytymistieteiden laitos, Helsingin yliopisto & Mikko Kurimo, signaalinkäsittelyn

Lisätiedot

Sähköinen matematiikan ja ohjelmoinnin opintopolku alakoulusta yliopistoon. Mikko Lujasmaa, Salon lukio Mikko-Jussi Laakso, Turun yliopisto

Sähköinen matematiikan ja ohjelmoinnin opintopolku alakoulusta yliopistoon. Mikko Lujasmaa, Salon lukio Mikko-Jussi Laakso, Turun yliopisto Sähköinen matematiikan ja ohjelmoinnin opintopolku alakoulusta yliopistoon Lukion ohjelmointi v 2.0 monipuolisilla automaattisesti arvioiduilla tehtävillä Mikko Lujasmaa, Salon lukio Mikko-Jussi Laakso,

Lisätiedot

TVT-kurssimoduulin mitat

TVT-kurssimoduulin mitat Teemu Kerola & Teija Kujala TVT-kurssimoduulin mitat Verkkokurssi Kurssin moduulit Moduulien kustannukset 1 Verkkokurssi Perinteiset kurssimoduulit tiedotus, luennot, kalvot, kotitehtävät, kokeet, Muut

Lisätiedot

Lyhyen videotyöpajan ohjelma (90 min)

Lyhyen videotyöpajan ohjelma (90 min) Lyhyen videotyöpajan ohjelma (90 min) Päätarkoitus: - Lyhyiden selitysvideoiden tuotanto (max 3 minuuttia) yksinkertaisin keinoin Selitysvideoiden tuottaminen edistää reflektioprosessia liittyen omaan

Lisätiedot

MTTTS2 Pro gradu -tutkielma ja seminaari. Kevät 2014, 40op Jaakko Peltonen

MTTTS2 Pro gradu -tutkielma ja seminaari. Kevät 2014, 40op Jaakko Peltonen MTTTS2 Pro gradu -tutkielma ja seminaari Kevät 2014, 40op Jaakko Peltonen Osaamistavoitteet Opiskelija osaa tehdä itsenäisesti tilastollista tutkimustyötä ja osaa raportoida sekä käyttämiensä menetelmien

Lisätiedot

Tutkimuksen alkuasetelmat

Tutkimuksen alkuasetelmat Tutkimuksen alkuasetelmat Ihan alussa yleensä epämääräinen kiinnnostus laajaan aiheeseen ( muoti, kulutus, nuoriso, luovuus, värit, sukupuoli )... Kiinnostusta kohdennetaan (pilotit, kirjallisuuden haravointi)

Lisätiedot

ONKI SKOS Sanastojen ja ontologioiden julkaiseminen ja käyttö Asiasanaston muuntaminen SKOS muotoon: case YSA

ONKI SKOS Sanastojen ja ontologioiden julkaiseminen ja käyttö Asiasanaston muuntaminen SKOS muotoon: case YSA ONKI SKOS Sanastojen ja ontologioiden julkaiseminen ja käyttö Asiasanaston muuntaminen SKOS muotoon: case YSA ONKI julkistustilaisuus 12.9.2008 Jouni Tuominen, Matias Frosterus Semantic Computing Research

Lisätiedot

Yhteentoimivuusalusta: Miten saadaan ihmiset ja koneet ymmärtämään toisiaan paremmin?

Yhteentoimivuusalusta: Miten saadaan ihmiset ja koneet ymmärtämään toisiaan paremmin? Yhteentoimivuusalusta: Miten saadaan ihmiset ja koneet ymmärtämään toisiaan paremmin? Avoin verkkoalusta ihmisen ja koneen ymmärtämien tietomääritysten tekemiseen Riitta Alkula 20.3.2019 Esityksen sisältö

Lisätiedot

8003051 Puheenkäsittelyn menetelmät

8003051 Puheenkäsittelyn menetelmät 8003051 Puheenkäsittelyn menetelmät Luento 7.10.2004 Puhesynteesi Sisältö 1. Sovelluskohteita 2. Puheen ja puhesyntetisaattorin laatu 3. Puhesynteesin toteuttaminen TTS-syntetisaattorin komponentit Kolme

Lisätiedot

Rakenteisen oppimateriaalin tuottaminen verkossa esimerkki Rhaptos. Antti Auer Koordinaattori, HT Jyväskylän yliopisto Virtuaaliyliopistohanke

Rakenteisen oppimateriaalin tuottaminen verkossa esimerkki Rhaptos. Antti Auer Koordinaattori, HT Jyväskylän yliopisto Virtuaaliyliopistohanke Rakenteisen oppimateriaalin tuottaminen verkossa esimerkki Rhaptos Antti Auer Koordinaattori, HT Jyväskylän yliopisto Virtuaaliyliopistohanke Rakenteisuus kahdella tasolla Oppimisaihiot ( Learning Objects

Lisätiedot

Liikkuvien työkoneiden etäseuranta

Liikkuvien työkoneiden etäseuranta Liikkuvien työkoneiden etäseuranta TAMK IoT Seminaari 14.4.2016 2 1) IoT liiketoiminnan tukena 2) Iot ja liikkuvat työkoneet 3) Case esimerkit 4) Yhteenveto, johtopäätökset, tulevaisuuden näkymät Cinia

Lisätiedot

TK081001 Palvelinympäristö

TK081001 Palvelinympäristö TK081001 Palvelinympäristö 5 opintopistettä!! Petri Nuutinen! 8 opintopistettä!! Petri Nuutinen! SAS (Serial Attached SCSI) Yleinen kiintolevyväylä nykyisissä palvelimissa Ohjataan SCSI-komennoin Siirrytty

Lisätiedot

Semanttinen Web. Ossi Nykänen Tampereen teknillinen yliopisto (TTY), DMI / Hypermedialaboratorio W3C Suomen toimisto

Semanttinen Web. Ossi Nykänen Tampereen teknillinen yliopisto (TTY), DMI / Hypermedialaboratorio W3C Suomen toimisto Semanttinen Web Ossi Nykänen ossi.nykanen@tut.fi Tampereen teknillinen yliopisto (TTY), DMI / Hypermedialaboratorio W3C Suomen toimisto Esitelmä "Semanttinen Web" Sisältö Konteksti: W3C, Web-teknologiat

Lisätiedot

Tiedonhaku opiskelun osana CHEM Virpi Palmgren Tietoasiantuntija DI Oppimiskeskus beta

Tiedonhaku opiskelun osana CHEM Virpi Palmgren Tietoasiantuntija DI Oppimiskeskus beta Tiedonhaku opiskelun osana CHEM 15.9.2016 Virpi Palmgren Tietoasiantuntija DI Oppimiskeskus beta virpi.palmgren@aalto.fi Tietoaineistot opiskeluun Elektroniset tiedelehdet 66 000 Painetut tiedelehdet 800

Lisätiedot

Modernit toimintatavat kunnossapidossa. Markku Tervo Jarkko Pirinen

Modernit toimintatavat kunnossapidossa. Markku Tervo Jarkko Pirinen Modernit toimintatavat kunnossapidossa Markku Tervo Jarkko Pirinen 21.1.2014 MIHIN OLEMME MENOSSA? VISIO paperiton toiminta KUINKA TOIMITAAN 2020-2025? Mitkä ovat kriittiset tekijät? Mitä tarkoittaa käytännössä?

Lisätiedot

Määräykset ja ohjeet 2010: 13. ISSN-L 1798 887X ISSN 1798 8888 (verkkojulkaisu)

Määräykset ja ohjeet 2010: 13. ISSN-L 1798 887X ISSN 1798 8888 (verkkojulkaisu) Lukiodiplomi Kuvataide 2010 2011 Määräykset ja ohjeet 2010: 13 ISSN-L 1798 887X ISSN 1798 8888 (verkkojulkaisu) Kuvataiteen lukiodiplomin sisältö 1 Lukiodiplomin muoto, rakenne ja laajuus 3 2 Lukiodiplomikurssi

Lisätiedot

Tekoäly ja data science mistä on kyse? Data Scientist Jukka Kärkimaa, Tilastokeskus

Tekoäly ja data science mistä on kyse? Data Scientist Jukka Kärkimaa, Tilastokeskus Tekoäly ja data science mistä on kyse? Data Scientist Jukka Kärkimaa, Tilastokeskus Sisällys 1. Keskeiset käsitteet ja tilannekuva 2. Data scientistin tehtäväkenttä 3. Mitä osaamista tarvitaan? 4. Kehittäjän

Lisätiedot

Online-oppiva ilmavalvontajärjestelmän suorituskykymalli

Online-oppiva ilmavalvontajärjestelmän suorituskykymalli Online-oppiva ilmavalvontajärjestelmän suorituskykymalli MATINE:n tutkimusseminaari 16.11.2017 Juha Jylhä ja Marja Ruotsalainen Tampereen teknillinen yliopisto Signaalinkäsittelyn laboratorio Hankkeelle

Lisätiedot

Sulautuvan opetuksen seminaari, Helsingin yliopisto, Saara Repo, HY, Avoin yliopisto Paavo Pylkkänen, Filosofian laitos, HY ja Skövden

Sulautuvan opetuksen seminaari, Helsingin yliopisto, Saara Repo, HY, Avoin yliopisto Paavo Pylkkänen, Filosofian laitos, HY ja Skövden Sulautuvan opetuksen seminaari, Helsingin yliopisto, 8.3.2012 Saara Repo, HY, Avoin yliopisto Paavo Pylkkänen, Filosofian laitos, HY ja Skövden korkeakoulu, Ruotsi Kurssin esittely Opiskelijapalautteen

Lisätiedot

Teknologian hyödyntäminen oppimisen ja kehittämisen tukena

Teknologian hyödyntäminen oppimisen ja kehittämisen tukena Teknologian hyödyntäminen oppimisen ja kehittämisen tukena Sami M. Leppänen 13.11.2012 Nokia Internal Use Only Motivaatio, uteliaisuus, hyöty, Tiedon käytettävyys, asenne, kognitiivisuus, kokemukset Pilvioppiminen

Lisätiedot

HOIDA AIVOJASI. Minna Huotilainen. Helsingin yliopisto. Kasvatustieteen professori. 14/03/2019 1

HOIDA AIVOJASI. Minna Huotilainen. Helsingin yliopisto. Kasvatustieteen professori. 14/03/2019 1 HOIDA AIVOJASI Minna Huotilainen Kasvatustieteen professori Helsingin yliopisto Twitter: @minnahuoti 14/03/2019 1 MITEN AIVOJA TUTKITAAN? 1. Laboratoriossa simuloidaan MEG eli magnetoenkefalografia fmri

Lisätiedot

Eero Hyvönen. Semanttinen web. Linkitetyn avoimen datan käsikirja

Eero Hyvönen. Semanttinen web. Linkitetyn avoimen datan käsikirja Eero Hyvönen Semanttinen web Linkitetyn avoimen datan käsikirja WSOY:n kirjallisuussäätiö on tukenut teoksen kirjoittamista Copyright 2018 Eero Hyvönen & Gaudeamus Gaudeamus Oy www.gaudeamus.fi Kansi:

Lisätiedot

AALTO PK-JOKO 79. Uuden sukupolven johtamisvalmennus

AALTO PK-JOKO 79. Uuden sukupolven johtamisvalmennus AALTO PK-JOKO 79 Uuden sukupolven johtamisvalmennus Kenelle PK-JOKO soveltuu? Pienten ja keskisuurten yritysten toimitusjohtajille nykyisille ja tuleville avainhenkilöille tulosyksiköiden johdolle Joilla

Lisätiedot

Toimintaympäristön muutoksesta. SSYK-hanke. PLP/Joensuu

Toimintaympäristön muutoksesta. SSYK-hanke. PLP/Joensuu Toimintaympäristön muutoksesta SSYK-hanke PLP/Joensuu Toimintaympäristöstä tänään Muutoksia, jotka vaikuttavat asiakkaiden käyttäytymiseen Muutoksia, jotka vaikuttavat kirjastotyön osaamisvaateisiin Muutoksia,

Lisätiedot

LAAJENNETTU TYÖSSÄOPPIMINEN JA PBL-OPETUSSUUNNITELMA

LAAJENNETTU TYÖSSÄOPPIMINEN JA PBL-OPETUSSUUNNITELMA LAAJENNETTU TYÖSSÄOPPIMINEN JA PBL-OPETUSSUUNNITELMA Rovaniemen koulutuskuntayhtymä Lapin ammattiopisto, palvelualat Sosiaali- ja terveysalan perustutkinto Anna-Leena Heikkilä LAAJENNETTU TYÖSSÄOPPIMINEN

Lisätiedot

ICT-info opiskelijoille. Syksy 2017

ICT-info opiskelijoille. Syksy 2017 ICT-info opiskelijoille Syksy 2017 BYOD on toimintamalli, joka on nopeasti yleistymässä niin yrityksissä kuin oppilaitoksissakin. BYOD-kokonaisuuteen kuuluu WLAN, tulostus, tietoturva, sovellukset, IT-luokat,

Lisätiedot

Big-data analytiikka-alusta osana markkinoinnin kokonaisratkaisua

Big-data analytiikka-alusta osana markkinoinnin kokonaisratkaisua Big-data analytiikka-alusta osana markkinoinnin kokonaisratkaisua IAB Finland Big Data seminaari 6.6.2014 Fonecta Enterprise Solutions Mikko Hakala, Head of Business IT 105 asiakkuusmarkkinoinnin, analytiikan

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä

Lisätiedot

Office 365 OneDrive Opiskelijan ohje 2017

Office 365 OneDrive Opiskelijan ohje 2017 Digitaalisen oppimisen tiimi/ Mia Tele & Kalle Malinen 13.10.2017 Office 365 OneDrive Opiskelijan ohje 2017 Sisältö 1. OneDrive... 2 2. Miten voin ottaa OneDriven käyttöön?... 3 3. Mitä OneDrivella voi

Lisätiedot

Johdatus rakenteisiin dokumentteihin

Johdatus rakenteisiin dokumentteihin -RKGDWXVUDNHQWHLVLLQGRNXPHQWWHLKLQ 5DNHQWHLQHQGRNXPHQWWL= rakenteellinen dokumentti dokumentti, jossa erotetaan toisistaan dokumentin 1)VLVlOW, 2) UDNHQQHja 3) XONRDVX(tai esitystapa) jotakin systemaattista

Lisätiedot