Algoritmit 2. Luento 13 Ti Timo Männikkö
|
|
- Sami Korhonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Algoritmit 2 Luento 13 Ti Timo Männikkö
2 Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys Algoritmit 2 Kevät 2017 Luento 13 Ti /35
3 Merkkijonon sovitus Merkkijono taulukossa T, pituus n Yksittäinen merkki T [i], missä 0 i n 1 Alimerkkijono T [i..j], missä 0 i j n 1 Mallimerkkijono P, pituus m Tehtävä: Löytyykö P merkkijonosta T Toisin sanoen: Onko jollain i T [i.. i + m 1] = P[0.. m 1] Algoritmit 2 Kevät 2017 Luento 13 Ti /35
4 Merkkijonon sovitus Raa an voiman menetelmä: Etsitään P:tä merkki kerrallaan T :n ensimmäisestä merkistä alkaen Ellei löydy, etsitään T :n toisesta merkistä alkaen Jne. Pahimman tapauksen aikavaativuus Θ(nm) Algoritmit 2 Kevät 2017 Luento 13 Ti /35
5 Merkkijonon sovitus sovitus(t, p) { for (i = 0; i < n-m+1; i++) { j = 0; while ( j < m && t[i+j] == p[j]) j++; if (j == m) return i; } return -1; // ei löytynyt } Algoritmit 2 Kevät 2017 Luento 13 Ti /35
6 Merkkijonon sovitus Tehokkaampia menetelmiä: Esikäsitellään mallimerkkijono Kerätty tieto tallennetaan aputaulukkoon Aputaulukon tietoa käytetään hyväksi varsinaisessa sovitusvaiheessa Esimerkiksi: Horspoolin algoritmi Algoritmit 2 Kevät 2017 Luento 13 Ti /35
7 Horspoolin algoritmi Mallimerkkijono P asetetaan merkkijonon T alkuun Tarkastellaan P:tä lopusta alkaen Jos kaikki merkit täsmäävät, P löytyi Muuten P:tä siirretään eteenpäin (oikealle) Siirto voi olla useampia askeleita Jatketaan kunnes P löytyy tai kunnes tullaan T :n loppuun Algoritmit 2 Kevät 2017 Luento 13 Ti /35
8 Horspoolin algoritmi Mallimerkkijonon siirto: Siirto tehdään mahdollisimman pitkälle siten, että mahdollista sopivaa alimerkkijonoa ei kuitenkaan ohiteta Siirron suuruus päätetään siitä T :n merkistä, jota sovitettiin P:n viimeiseen merkkiin Useita eri tapauksia Algoritmit 2 Kevät 2017 Luento 13 Ti /35
9 Horspoolin algoritmi Tapaus: Mallimerkkijonossa ei ole lainkaan sovitettavaa merkkiä (tässä esimerkissä d): a b c a c b d x x x x x a c a c c Siirretään koko P:n pituuden verran: a b c a c b d x x x x x a c a c c Algoritmit 2 Kevät 2017 Luento 13 Ti /35
10 Horspoolin algoritmi Tapaus: Mallimerkkijonossa on sovitettava merkki, mutta ei viimeisen merkin kohdalla: a b c a c b d x x x x x a c d c c Siirretään vastaava oikeanpuoleisin merkki viimeisen merkin kohdalle (kaksi askelta): a b c a c b d x x x x x a c d c c Algoritmit 2 Kevät 2017 Luento 13 Ti /35
11 Horspoolin algoritmi Tapaus: Vain osa merkeistä täsmää, ja viimeistä merkkiä ei esiinny P:ssä muualla: a b c a c b d x x x x x a c a b d Siirretään koko P:n pituuden verran: a b c a c b d x x x x x a c a b d Algoritmit 2 Kevät 2017 Luento 13 Ti /35
12 Horspoolin algoritmi Tapaus: Vain osa merkeistä täsmää, ja viimeinen merkki esiintyy P:ssä muualla: a b c a c b d x x x x x a c d b d Oikeanpuoleisin merkki (P:n viimeistä merkkiä huomioimatta) viimeisen merkin kohdalle: a b c a c b d x x x x x a c d b d Algoritmit 2 Kevät 2017 Luento 13 Ti /35
13 Horspoolin algoritmi Siirtymät lasketaan etukäteen taulukkoon Taulukko indeksoidaan kaikilla mahdollisilla tekstissä ja mallissa esiintyvillä merkeillä Merkin c siirtymä: s(c) = mallimerkkijonon pituus m, jos c ei esiinny mallin (m 1):n ensimmäisen merkin joukossa s(c) = oikeanpuoleisimman merkin c etäisyys mallin viimeiseen merkkiin, jos c on (m 1):n ensimmäisen merkin joukossa Algoritmit 2 Kevät 2017 Luento 13 Ti /35
14 Esimerkki Mallimerkkijono: a c a b d Pituus m = 5, merkkien lukumäärä k = 4 Siirtymätaulukko: a b c d s Algoritmit 2 Kevät 2017 Luento 13 Ti /35
15 Horspoolin algoritmi 1. Muodostetaan siirtymätaulukko 2. Mallimerkkijono tekstin alkua vasten 3. Toistetaan kunnes haettu merkkijono löytyy tai malli siirtyy tekstin lopun ohi: Alkaen mallin viimeisestä merkistä verrataan mallin ja tekstin merkkejä Jos eri merkit, haetaan siirtymätaulukosta vastaava siirtymä Siirtymän määrää tekstissä mallin viimeisen merkin kohdalla oleva merkki Siirretään mallia oikealle siirtymän verran Algoritmit 2 Kevät 2017 Luento 13 Ti /35
16 Esimerkki Merkkijono: a a b b a a b a b Mallimerkkijono: a b a b Siirtymätaulukko: a b s 1 2 Algoritmit 2 Kevät 2017 Luento 13 Ti /35
17 Esimerkki jatkuu a a b b a a b a b a b a b a a b b a a b a b a b a b a a b b a a b a b a b a b a a b b a a b a b a b a b Algoritmit 2 Kevät 2017 Luento 13 Ti /35
18 Horspoolin algoritmi Merkkijono t, pituus n Mallimerkkijono p, pituus m Merkistön merkkien lukumäärä k Siirtymätaulukko s, pituus k Siirtymätaulukon muodostaminen: for (i = 0; i < k; i++) s[i] = m; for (j = 0; j < m-1; j++) s[p[j]] = m j; Algoritmit 2 Kevät 2017 Luento 13 Ti /35
19 Horspoolin algoritmi Mallimerkkijonon sovitus: i = m - 1; while (i < n) { j = 0; while (j < m && p[m-1-j] == t[i-j]) j = j + 1; if (j == m) return i-m+1; else i = i + s[t[i]]; } return -1; Algoritmit 2 Kevät 2017 Luento 13 Ti /35
20 Horspoolin algoritmi Pahimman tapauksen aikavaativuus Θ(nm) Satunnaisella tekstillä huomattavasti nopeampi kuin raa an voiman algoritmi Käytännössä lähes Θ(n) Algoritmit 2 Kevät 2017 Luento 13 Ti /35
21 Kauppamatkustajan ongelma Tehtävä: Etsi lyhin reitti, joka käy täsmälleen kerran jokaisessa n:ssä kaupungissa Triviaaliratkaisu: Tutkitaan kaikki reitit Mutta: Mahdollisten reittien lukumäärä kertaluokkaa n! Käytännössä tehtävä voidaan ratkaista näin vain pienellä n Tietokoneiden tehon kasvattaminen ei auta, sillä lukumäärä kasvaa ylieksponentiaalisesti Kombinatorinen räjähdys Algoritmit 2 Kevät 2017 Luento 13 Ti /35
22 Laskennallinen vaativuus Algoritmi ratkaisee ongelman polynomisessa ajassa, jos pahimman tapauksen aikavaativuus on Θ(p(n)), missä p polynomi Ratkeava ongelma: Voidaan ratkaista polynomisessa ajassa Ratkeamaton ongelma: Ei voida ratkaista polynomisessa ajassa Kauppamatkustajan ongelmalle ei tunneta polynomisia algoritmeja Onko sellaisia olemassa? Algoritmit 2 Kevät 2017 Luento 13 Ti /35
23 Päätösongelmat Joukon S päätösongelma: Kuuluuko annettu syöttötieto x joukkoon S Vastaus joko kyllä tai ei (joko 1 tai 0) Yleisesti x ja S:n alkiot voidaan esittää bittijonoina Algoritmit 2 Kevät 2017 Luento 13 Ti /35
24 Päätösongelmat Esimerkkejä: Onko annettu binääriluku parillinen: S = {parillisten lukujen binääriesitykset} Onko annettu binääriluku alkuluku: S = {alkulukujen binääriesitykset} Sisältääkö annettu verkko Hamiltonin kehän (= verkon silmukka, joka kulkee täsmälleen kerran jokaisen solmun kautta): S = {Hamiltonin kehän sisältävien verkkojen binääriesitykset} Algoritmit 2 Kevät 2017 Luento 13 Ti /35
25 Aikavaativuus Aikavaativuusfunktiot: time A (x) = Algoritmin A syötteellä x suorittamien laskenta-askelten lukumäärä time A (n) = max{time A (x) : x = n} ( x syöttötiedon koko tai pituus) Polynominen algoritmi: Aikavaativuutta time A (n) rajoittaa jokin n:n polynomi Vaativuusluokka P: P = { päätösongelmat, jotka voidaan ratkaista polynomisella algoritmilla } Algoritmit 2 Kevät 2017 Luento 13 Ti /35
26 Epädeterministinen algoritmi Vaikka ongelman ratkaiseminen on vaikeaa, voi annetun ratkaisun tarkistaminen olla helppoa Esimerkkejä: Hamiltonin kehä -ongelma: Verkon solmuille arvataan oikea järjestys Helppo tarkistaa, että muodostuu Hamiltonin kehä Yhdistettyjen lukujen tunnistamisongelma: Luvun x tekijät y ja z arvataan Helppo tarkistaa, että x = yz Algoritmit 2 Kevät 2017 Luento 13 Ti /35
27 Epädeterministinen algoritmi Epädeterministinen arvausvaihe : Muodostetaan päätösongelman esiintymälle ratkaisuehdotus Deterministinen tarkistusvaihe : Tarkistetaan deterministisellä algoritmilla, onko ratkaisuehdotus esiintymän ratkaisu Algoritmit 2 Kevät 2017 Luento 13 Ti /35
28 Epädeterministinen algoritmi Epädeterministinen algoritmi ratkaisee päätösongelman Ongelman jokaiselle kyllä-esiintymälle se palauttaa vastauksen kyllä jollakin suorituksella Epädeterministinen algoritmi on epädeterministinen polynominen algoritmi, jos tarkistusvaihe toimii polynomiajassa Vaativuusluokka NP: NP = { päätösongelmat, jotka voidaan ratkaista epädeterministisellä polynomisella algoritmilla } Algoritmit 2 Kevät 2017 Luento 13 Ti /35
29 NP-luokan ongelmia Propositiologiikan toteutuvuusongelma (SAT): Onko proposiotiolause toteutuva, ts. onko olemassa sellaista totuusjakaumaa joka tekee lauseesta toden Kauppamatkustajan päätösongelma (TSP): Sisältääkö verkko Hamiltonin kehän, jonka pituus on enintään k Kauppamatkustajan ongelma: Etsi Hamiltonin kehä, jonka pituus on minimaalinen Tämä ei ole päätösongelma, vaan optimointiongelma Algoritmit 2 Kevät 2017 Luento 13 Ti /35
30 NP-luokan ongelmia Solmupeiteongelma (VC): Sisältääkö verkko enintään k:n solmun solmupeitteen (solmujoukko, joka peittää jokaisesta kaaresta ainakin toisen päätesolmun) Riippumaton joukko -ongelma (IS): Sisältääkö verkko vähintään k riippumatonta solmua (solmujoukko, jonka solmujen välillä ei ole yhtään kaarta) Klikkiongelma (CLIQUE): Sisältääkö verkko vähintään k:n solmun muodostaman klikin (solmujoukko, jonka kaikkien solmuparien välillä on kaari) Algoritmit 2 Kevät 2017 Luento 13 Ti /35
31 Vaativuusluokat Selvästi P NP On olemassa NP-ongelmia, joille ei tunneta polynomisia algoritmeja On olemassa myös ongelmia, jotka eivät kuulu joukkoon NP Onko P = NP? Algoritmit 2 Kevät 2017 Luento 13 Ti /35
32 Polynominen palautus Päätösongelma T 1 on polynomisesti muunnettavissa päätösongelmaksi T 2, jos on olemassa funktio f, joka muuntaa T 1 :n esiintymän T 2 :n esiintymäksi siten, että f kuvaa T 1 :n jokaisen kyllä-esiintymän T 2 :n kyllä-esiintymäksi ja jokaisen T 1 :n ei-esiintymän T 2 :n ei-esiintymäksi f on laskettavissa polynomisessa ajassa Tällöin merkitään T 1 p T 2 Algoritmit 2 Kevät 2017 Luento 13 Ti /35
33 Polynominen palautus T 1 p T 2 Palautusfunktio f muuntaa ongelman T 1 syötetapaukset x ongelman T 2 vastaaviksi tapauksiksi f (x) T 1 on yksinkertaisempi kuin T 2 Jos T 2 voidaan ratkaista polynomisessa ajassa, myös T 1 voidaan ratkaista polynomisessa ajassa Esimerkiksi: VC p IS p CLIQUE Algoritmit 2 Kevät 2017 Luento 13 Ti /35
34 NP-täydellisyys Määritelmä: Ongelma T on NP-täydellinen, jos T NP S p T kaikilla S NP Lemma: Ongelma T on NP-täydellinen, jos T NP S p T jollakin NP-täydellisellä S Kaikki edellä esitetyt ongelmat (SAT, TSP, VC, IS, CLIQUE) ovat NP-täydellisiä Algoritmit 2 Kevät 2017 Luento 13 Ti /35
35 NP-täydelliset ongelmat Luokan NP vaikeimmat ongelmat Jos jokin niistä pystytään ratkaisemaan polynomisessa ajassa, kaikki NP-luokan ongelmat pystytään ratkaisemaan polynomisessa ajassa Jos ongelman koko ei ole suuri, voidaan käydä läpi kaikki ratkaisuvaihtoehdot Muuten käytetään esim. heuristisia algoritmeja ja tyydytään tarpeeksi hyvään ratkaisuun Algoritmit 2 Kevät 2017 Luento 13 Ti /35
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 8.5.2018 Timo Männikkö Luento 13 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys Kertaus ja tenttivinkit Algoritmit 2 Kevät
LisätiedotAlgoritmit 2. Luento 14 To Timo Männikkö
Algoritmit 2 Luento 14 To 2.5.2019 Timo Männikkö Luento 14 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydelliset ongelmat Kertaus ja tenttivinkit Algoritmit
LisätiedotAlgoritmit 2. Luento 12 To Timo Männikkö
Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien
LisätiedotAlgoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
Lisätiedot= k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko
238 7.2 Luokka NP Luokka NP on: NP = { NTIME(t) t on polynomi } = k 0 NTIME(n k + k) Siis polynomisessa ajassa epädeterministisellä Turingin koneella tunnistettavien kielten joukko P NP Luokan NP ongelmista
LisätiedotAlgoritmit 2. Luento 14 Ke Timo Männikkö
Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan
LisätiedotC C. x 2. x 3 x 3. Lause 3SAT p m VC Todistus. Olk. φ = C 1 C 2 C m 3-cnf-kaava, jossa esiintyvät muuttujat. φ toteutuva:
Lause 3SAT p m VC Todistus. Olk. φ = C 1 C C m 3-cnf-kaava, jossa esiintyvät muuttujat x 1,..., x n. Vastaava solmupeiteongelman tapaus G, k muodostetaan seuraavasti. G:ssä on solmu kutakin literaalia
LisätiedotEpädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna
Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna. q 0 x solmuina laskennan mahdolliset tilanteet juurena alkutilanne lehtinä tilanteet joista ei siirtymää,
LisätiedotAlgoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
Lisätiedot3SAT-ongelman NP-täydellisyys [HMU ]
3SAT-ongelman NP-täydellisyys [HMU 10.3.4] erotukseksi yleisestä CNF-esityksestä, kaikilla kaavoilla ei ole 3-CNF-esitystä; esim. x 1 x 2 x 3 x 4 esitämme muunnoksen, jolla polynomisessa ajassa mielivaltaisesta
Lisätiedot7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy
212 7. Aikavaativuus Edellä tarkasteltiin ongelmien ratkeavuutta kiinnittämättä huomiota ongelman ratkaisun vaatimaan aikaan Nyt siirrytään tarkastelemaan ratkeavien ongelmien aikavaativuutta Periaatteessa
LisätiedotAlgoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
LisätiedotInduktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.
Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman
LisätiedotEsimerkkejä polynomisista ja ei-polynomisista ongelmista
Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia
LisätiedotLause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen.
261 Lause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen. Pitää osoittaa siis, että A mp SAT mielivaltaisella A NP Ainoa, mitä A:sta tiedetään on, että sillä on polynomisessa
LisätiedotAlgoritmit 1. Luento 2 Ke Timo Männikkö
Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät
LisätiedotAlgoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
LisätiedotAlgoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
Lisätiedot6. Approksimointialgoritmit
6. Approksimointialgoritmit Tässä luvussa käsitellään lyhyesti approksimointiin liittyvät peruskäsitteet ja joitain keskeisiä approksimoituvuustuloksia. Tavoitteena on, että opiskelija näkee approksimointialgoritmien
LisätiedotAlgoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
LisätiedotAlgoritmit 2. Luento 12 Ke Timo Männikkö
Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit
LisätiedotAlgoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
LisätiedotMuita vaativuusluokkia
Muita vaativuusluokkia Käydään lyhyesti läpi tärkeimpiä vaativuusluokkiin liittyviä tuloksia. Monet tunnetuista tuloksista ovat vaikeita todistaa, ja monet kysymykset ovat vielä auki. Lause (Ladner 1975):
LisätiedotAlgoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
Lisätiedot3. Laskennan vaativuusteoriaa
3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan
LisätiedotLaskennan vaativuus ja NP-täydelliset ongelmat
Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan
Lisätiedotkaikki kielet tunnistettavat A TM HALT TM { a n } { a n b n } { a n b n c n } TOTAL TM EQ TM
Kurssi tähän asti: säännölliset yhteydettömät ratkeavat { a n } { a n b n } { a n b n c n } tunnistettavat A TM HALT TM kaikki kielet A TM HALT TM TOTAL TM TOTAL TM EQ TM EQ TM 277 5. Laskennan vaativuus
LisätiedotAlgoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan
LisätiedotAlgoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
LisätiedotOikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen.
Tietorakenteet, kevät 2012 Kurssikoe 2, mallivastaukset 2. (a) Järjestämistä ei voi missään tilanteessa suorittaa nopeammin kuin ajassa Θ(n log n), missä n on järjestettävän taulukon pituus. Epätosi: Yleisessä
LisätiedotAlgoritmit 2. Luento 1 Ti Timo Männikkö
Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia
LisätiedotKombinatorinen optimointi
Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein
LisätiedotAlgoritmit 2. Luento 6 To Timo Männikkö
Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100
LisätiedotAlgoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö
Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit
LisätiedotAlgoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018
LisätiedotAlgoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
LisätiedotV. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen
V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan
LisätiedotAlgoritmit 2. Luento 6 Ke Timo Männikkö
Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu
Lisätiedot6.1 Rekursiiviset palautukset
6.1 Rekursiiviset palautukset Olk. = (Q, Σ, Γ, δ, q 0, q acc, q rej ) mv. standardimallinen Turingin kone ääritellään koneen laskema osittaisfunktio f : Σ Γ seur. u, jos q 0 w u q av, f (w) = q { q acc,
LisätiedotAlgoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017
Lisätiedot3. Laskennan vaativuusteoriaa
3. Laskennan vaativuusteoriaa Siirrymme tarkastelemaan, mitä laskennallisia ongelmia voidaan ratkaista tehokkaalla algoritmilla [HMU luku 10]. Tämän luvun jälkeen opiskelija tuntee laskennallisen vaativuuden
LisätiedotAlgoritmit 1. Luento 11 Ti Timo Männikkö
Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017
LisätiedotAlgoritmit 1. Luento 12 Ke Timo Männikkö
Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu
Lisätiedot10. Satunnaisalgoritmit
316 10. Satunnaisalgoritmit Probabilistic algorithms, randomized algorithms Toinen tapa liiallisen laskennallisen vaativuuden kanssa toimeen tulemiseksi ovat satunnaisalgoritmit Jotkin ongelmat, joissa
LisätiedotAlgoritmit 1. Luento 13 Ma Timo Männikkö
Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
LisätiedotAlgoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku
LisätiedotAlgoritmit 1. Luento 3 Ti Timo Männikkö
Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien
LisätiedotDatatähti 2019 loppu
Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio
LisätiedotAlgoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
LisätiedotAlgoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 11.4.2019 Timo Männikkö Luento 10 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutusmenetelmä Osajoukon summa Algoritmit 2 Kevät 2019 Luento 10 To
LisätiedotAlgoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016
LisätiedotAlgoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
LisätiedotGraafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria
Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:
LisätiedotLaskennan mallit (syksy 2008) 2. kurssikoe , ratkaisuja
582206 Laskennan mallit (syksy 2008) 2. kurssikoe 11.12., ratkaisuja Tehtävän 1 tarkasti Harri Forsgren, tehtävän 2 Joel Kaasinen ja tehtävän 3 Jyrki Kivinen. Palautetilaisuuden 19.12. jälkeen arvosteluun
LisätiedotNP-täydellisyys. Joonas Järvenpää ja Topi Talvitie. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos
NP-täydellisyys Joonas Järvenpää ja Topi Talvitie Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 Sisältö 1 Johdanto 1 2 Ongelman määrittely
LisätiedotAlgoritmit 1. Luento 5 Ti Timo Männikkö
Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti
LisätiedotSAT-ongelman rajoitetut muodot
SAT-ongelman rajoitetut muodot olemme juuri osoittaneet että SAT on NP-täydellinen perusidea on nyt osoittaa joukolle kiinnostavia ongelmia A NP että SAT p m A, jolloin kyseiset A myös ovat NP-täydellisiä
LisätiedotTarkennamme geneeristä painamiskorotusalgoritmia
Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi
LisätiedotAlgoritmit 2. Luento 8 To Timo Männikkö
Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät
LisätiedotALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,
LisätiedotAlgoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
LisätiedotAlgoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 4 24.-25.4.2019 Timo Männikkö Tehtävä 1 (a) int laske(n) { if (n
LisätiedotOnko algoritmiselle ongelmalle löydetty ratkaisualgoritmi riittävän hyvä?
Ongelman vaativuuden rajat Onko algoritmiselle ongelmalle löydetty ratkaisualgoritmi riittävän hyvä? Olisiko mahdollista löytää asymptoottisesti tehokkaampi ratkaisu, vai onko algoritmi optimaalinen? Kysymyksiin
LisätiedotSatunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos
Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden
LisätiedotSatunnaisalgoritmit. Antti Tanhuanpää. 25. maaliskuuta 2013
Satunnaisalgoritmit Antti Tanhuanpää 25. maaliskuuta 2013 Johdanto Satunnaisalgoritmit ovat algoritmeja, jotka hyödyntävät satunnaisuutta osana laskentaansa. Ensimmäisen tällaisen algoritmin kehitti Michael
LisätiedotAlgoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon
LisätiedotAlgoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien
LisätiedotAlgoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa
LisätiedotValitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.
Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.
Lisätiedot1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
LisätiedotAlgoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti
Lisätiedot1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen. succ(n) = n + 1
Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 11 Ratkaisut 1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen kahta yhdistämissääntöä. Perusfunktioita
Lisätiedot4 Tehokkuus ja algoritmien suunnittelu
TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin
LisätiedotAlgoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 2 7.-8.2.2018 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: etsipienin(t, n) { pnn = t[0]; for (i = 1; i < n; i++) { pnn = min(pnn, t[i]); return pnn; Silmukka suoritetaan
LisätiedotICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.
LisätiedotAlgoritmit 1. Luento 7 Ti Timo Männikkö
Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017
Lisätiedot4.3. Matemaattinen induktio
4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta
Lisätiedot58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)
811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo
Lisätiedotδ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}.
42 Turingin koneiden laajennuksia 1 oniuraiset koneet Sallitaan, että Turingin koneen nauha koostuu k:sta rinnakkaisesta urasta, jotka kaikki kone lukee ja kirjoittaa yhdessä laskenta-askelessa: Koneen
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
LisätiedotPolynomiset palautukset ja NP-täydellisyys
Polynomiset palautukset ja NP-täydellisyys [HMU 10.1.5, 10.1.6] Polynomisen palautuksen idea on sama kuin rekursiivisen palautuksen, paitsi että liikutaan polynomisen aikavaativuuden maailmassa. Funktio
LisätiedotAlgoritmi on periaatteellisella tasolla seuraava:
Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S
LisätiedotTKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut
TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut Pisteytys on ilmoitettu välikoevaihtoehdon mukaan (joko tehtävät 1, 2 ja 3 välikokeen 1 uusintana tai tehtävät 4, 5 ja 6 välikokeen 2 uusintana).
LisätiedotGraafin 3-värittyvyyden tutkinta T Graafiteoria, projektityö (eksakti algoritmi), kevät 2005
Graafin 3-värittyvyyden tutkinta T-79.165 Graafiteoria, projektityö (eksakti algoritmi), kevät 2005 Mikko Malinen, 36474R 29. maaliskuuta, 2005 Tiivistelmä Artikkelissa käydään läpi teoriaa, jonka avulla
LisätiedotAlgoritmit 2. Luento 4 To Timo Männikkö
Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4
LisätiedotJohdatus graafiteoriaan
Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste
LisätiedotA ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
LisätiedotP? = NP Kysymys ratkaisun keksimisestä ja sen tarkistamisesta
P? = NP Kysymys ratkaisun keksimisestä ja sen tarkistamisesta Juha Nurmonen Matematiikan laitos Helsingin yliopisto Ajatellaanpa esimerkiksi kauppamatkustajan jokapäiväistä ongelmaa: Kauppamatkustajan
Lisätiedot58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut
Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten
LisätiedotVerkon värittämistä hajautetuilla algoritmeilla
Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)
LisätiedotTietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
Lisätiedotisomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
Lisätiedotvaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 13. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 13.10.2016 klo 9:42 passed waiting redo submitters
LisätiedotAlgoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 2 3.-4.4.2019 Timo Männikkö Tehtävä 1 Avoin osoitteenmuodostus: Hajautustaulukko t (koko m) Erikoisarvot VAPAA ja POISTETTU Hajautusfunktio h(k,i) Operaatiot: lisaa etsi poista Algoritmit
LisätiedotSeminaari: Hajautetut algoritmit syksy 2009
Seminaari: Hajautetut algoritmit syksy 2009 http://www.cs.helsinki.fi/u/josuomel/sem-2009s/ Jukka Suomela 10.9.2009 Seminaari: Hajautetut algoritmit syksy 2009 Seminaarin työmuodot 2 / 38 Aikataulu ja
LisätiedotSäännöllisen kielen tunnistavat Turingin koneet
186 Säännöllisen kielen tunnistavat Turingin koneet Myös säännöllisen kielen hyväksyvien Turingin koneiden tunnistaminen voidaan osoittaa ratkeamattomaksi palauttamalla universaalikielen tunnistaminen
LisätiedotTietotekniikan valintakoe
Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan
Lisätiedot1.4 Funktioiden kertaluokat
1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee
LisätiedotTehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)
Tehtävä 1 Päättele resoluutiolla seuraavista klausuulijoukoista. a. {{p 0 }, {p 1 }, { p 0, p 2 }, {p 1, p 2, p 3 }, { p 2, p 3 }, {p 3 }}, b. {{ p 0, p 2 }, {p 0, p 1 }, {{ p 1, p 2 }, { p 2 }}, c. {{p
LisätiedotAlgoritmit 2. Luento 4 Ke Timo Männikkö
Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4
Lisätiedot