Tutkimusmenetelmät-kurssi, s-2004
|
|
- Topi Jokinen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20
2 Sisällys Tänään Tietojenkäsittelytiede tutkimusalana Algoritmitutkimuksen käsitteet ja tulokset Analyyttiset menetelmät Ensi viikolla Kokeelliset menetelmät Algoritmisten tulosten raportointi Algoritmitutkimuksen menetelmistä p.2/20
3 TKT tutkimusalana Ks. esim. E. Ukkonen: Tietojenkäsittelytiede. Luku 1.2 teoksessa Hyvönen, Karanta, Syrjänen (toim.) Tekoälyn ensyklopedia, Gaudeamus, TKT (Computer Science) on menetelmätiede, kohteena tietojenkäsittelymenetelmät tietojenkäsittelyongelmat, algoritmit abstraktiot kuvaustavat: tiedon esitystavat, ohjelmointi- ja kuvauskielet,... rajapinnat tietorakenteet, tietomallit suunnittelumenetelmät e.m. toteuttaminen ja soveltaminen Algoritmitutkimuksen menetelmistä p.3/20
4 TKT:n tutkimustulokset? Uusi menetelmä, toteutustapa tai sovellus Menetelmään, toteutustapaan tai soveltamiseen liittyvä uusi tieto Tieteellisyys: tiedon paikkansapitävyys perusteltu olemassaoleva tieto formaali todistus empiirinen koe Algoritmitutkimuksen menetelmistä p.4/20
5 Algoritmitutkimuksen luonnehdintaa Algoritmitutkimus klassista tietojenkäsittelytiedettä Eleganttia: eksakteja ja yleisiä tuloksia Haastavaa: hyviä (= osin vaikeita) ongelmia Relevanttia: läheinen yhteys sovelluksiin Algoritmitutkimuksen menetelmistä p.5/20
6 Korkeantason näkemys IDEAALI- MAAILMA malli. deduktio idealisoitu ratkaisu abstraktio tulkinta REAALI- MAAILMA ongelma suora ratkaisu (mahd. liian mutkikas) ratkaisu Algoritmitutkimuksen menetelmistä p.6/20
7 Algoritmit Algoritmi: täsmällisesti määritellyn tk-tehtävän automatisoitavissa oleva ratkaisu tietokoneohjelma ei sama; pikemmin ohjelmien komponentteja mielellään yleisen ongelman ratkaisu Oikea/hyvä algoritmi? Toimii oikein Toimii tehokkaasti Seuraavaksi esimerkki formaalista oikeellisuus- ja tehokkuustarkastelusta Algoritmitutkimuksen menetelmistä p.7/20
8 Algoritmin oikeellisuus Annettava oikea vastaus jokaiseen ratkaistavan ongelman tapaukseen Esimerkki: Pikalajittelu Lajittelutehtävä: Järjestä jono S = s 1,..., s n jonoksi S = s 1,..., s n s.e. s 1 s 2 s n Huom: Täsmällisyyden ja määritelmien merkitys; Tutkija luo tietoon järjestystä! Algoritmitutkimuksen menetelmistä p.8/20
9 Pikalajittelu ( Hajota-ja-hallitse ) procedure QuickSort(S): if S 1 then return S; else Valitse jakoalkio s S; Osita S jonoiksi S <s, S =s ja S >s ; return QuickSort(S <s ) S =s QuickSort(S >s ); endif; Metodi 1: Mallintaminen: Algoritmi on toteutusten oleelliset piirteet säilyttävä yksinkertaistus Algoritmitutkimuksen menetelmistä p.9/20
10 Pikalajittelun oikeellisuus Lause Proseduuri QuickSort toimii oikein. Todistus Induktio alkioiden lkm n = S suhteen. Metodi 2: Matemaattinen induktio: 1 P (k) 2 P (k), P (k + 1),..., P (n 1) P (n) P (n) kaikilla n k Algoritmitutkimuksen menetelmistä p.10/20
11 Algoritmin tehokkuus Resurssien (aika, muisti) tarve tietyn kokoisilla syötteillä? riippuvuutena syötteen koosta (n) huomion kohteena algoritmin skaalautuvuus Yksinkertaistuksia: keskitytään riittävän suuriin syötteisiin (n n 0 ) eliminoidaan ohjelmointitaidon sekä suoritusympäristön ja laitteiston vaikutus: analysoidaan perusoperaatioiden lukumäärää Asymptoottiset kertaluokka-arviot (Mielekkäitä? Yleensä, mutta hyvä olla kriittinen.) Algoritmitutkimuksen menetelmistä p.11/20
12 Kertaluokka-arviot Yläraja: T (n) = O(f(n)), jos T (n) cf(n) kun n n 0 joillain c, n 0. Aito pienemmyys: T (n) = o(f(n)) jos lim n T (n)/f(n) = 0 Vast. alaraja T (n) = Ω(f(n)) ja tarkka kertaluokka T (n) = Θ(f(n)) Välittömiä sievennystekniikoita: c f(n) = O(f(n)) Θ(f(n)) Ω(f(n)) (vakiokertoimien c > 0 merkityksettömyys) f(n) ± g(n) = Θ(f(n)), jos g(n) = o(f(n)) (alempiasteisten termien merkityksettömyys) Algoritmitutkimuksen menetelmistä p.12/20
13 Pahin ja keskimääräinen tapaus Huom: Samankokoistenkin syötteiden resurssintarve voi vaihdella (Kuva) Pahimman tapauksen analysointi: Edut ja haitat: + : analyysi yksinkertaistuu T max (n) = max T (w) w =n + : takuu: kompleksisuus ei koskaan huonompi : liian pessimistinen, jos pahin tapaus harvinainen Algoritmitutkimuksen menetelmistä p.13/20
14 Pikalajittelun pahin tapaus Lause Pikalajittelun T max (n) = Θ(n 2 ). Tod. Merk. T (n) = T max (n). Ositus vaatii (jollain b) ajan bn Kun n 2, T (n) bn + T (n 1) (jakoalkio min tai max). bn + b(n 1) + T (n 2) b(n + (n 1) + + 2) nx n(n + 1) = b i = b( 2 i=2 1) = Ω(n 2 ) Metodi 3: Kaavamanipulointi Algoritmitutkimuksen menetelmistä p.14/20
15 Pikalajittelun pahin tapaus (2) Toisaalta kukin alkio s S jakoalkiona enintään kerran rekursiivisia kutsuja O(n) kpl, ja kussakin ositustyö O(n); Siten T (n) = O(n 2 ), joten T (n) = Θ(n 2 ). Metodi 4: Kombinatorinen havainnointi Käytännössä pikalajittelu huomattavasti pahinta tapaustaan parempi (Ks. seur.) Algoritmitutkimuksen menetelmistä p.15/20
16 Keskimääräinen kompleksisuus T avg (n) = w =n p(w)t (w) Kompleksisuuden odotusarvo: keskikompleksisuus painotettuna tapausten w esiintymistodennäköidyydellä p(w) Edut ja haitat: + : kuva keskimääräisestä käyttäytymisestä : tapausten todennäköisyysjakauma? : analyysin vaikeutuminen Algoritmitutkimuksen menetelmistä p.16/20
17 Pikalajittelu keskimäärin (Aho, Hopcroft & Ullman, 1974, s ) Lause Pikalajittelun T avg (n) = O(n log n). Tod. Merk. T (n) = T avg (n). Jakaumaoletus: syötteet erillisten alkioiden permutaatioita, kukin yhtä usein. T (0) = T (1) = a (vakio). Onnistukoon proseduurin paikallinen työ ajassa bn. Jakaumaoletus kullakin i = 1,..., n on S <s = i 1 ja S >s = n i todennäköisyydellä 1/n Kun n 2, T (n) bn + 1/n = bn + 2/n nx (T (i 1) + T (n i)) i=1 n 1 X i=0 T (i) (1) Algoritmitutkimuksen menetelmistä p.17/20
18 Pikalajittelu keskimäärin (2) Osoitetaan T (n) cn ln n, kun n 2 ja c = 2(a + b): Perustapaus: T (2) 2b + 2a 2(a + b)2 ln 2; OK Induktioaskel: Kirjoitetaan yläraja (1) muotoon bn + 2/n[T (0) + T (1) + n 1 X i=2 T (i)] bn + 4a/n + 2c/n n 1 X i=2 i ln i P n 1 i=2 i ln i R n 2 x ln xdx (n2 ln n)/2 n 2 /4 Arvioidaan: Siten T (n) bn + 4a/n + cn ln n cn/2 Nyt bn + 4a/n cn/2, joten T (n) cn ln n Metodi 5: Reaalianalyysi, tn-laskenta, lukuteoria ym. Algoritmitutkimuksen menetelmistä p.18/20
19 Pikalajittelu käytännössä Logaritmit kasvavat hitaasti, joten O(n log n)-algoritmi skaalautuu lähes yhtä hyvin kuin lineaarinen Pikalajittelu käytännössä parhaita lajittelumenetelmiä (esim. virtuaalimuistin käytön suhteen) Kokeellinen algoritmitutkimus Algoritmitutkimuksen menetelmistä p.19/20
20 Yhteenveto Teoreettisen algoritmitutkimuksen tulokset algoritmit, niiden oikeellisuus ja kompleksisuus Metodit analyyttis-deduktiivisia, matemaattisia Muita näkökohtia: toteutettavuus, käyttökelpoisuus, teoreettisen tarkastelun validius, todellinen tehokkuus,... Kokeellinen algoritmitutkimus Algoritmitutkimuksen menetelmistä p.20/20
f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))
Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia
Algoritmit 1. Luento 2 Ke Timo Männikkö
Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät
1.4 Funktioiden kertaluokat
1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee
4 Tehokkuus ja algoritmien suunnittelu
TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin
3. Laskennan vaativuusteoriaa
3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan
Johnson, A Theoretician's Guide to the Experimental Analysis of Algorithms.
Kokeellinen algoritmiikka (3 ov) syventäviä opintoja edeltävät opinnot: ainakin Tietorakenteet hyödyllisiä opintoja: ASA, Algoritmiohjelmointi suoritus harjoitustyöllä (ei tenttiä) Kirjallisuutta: Johnson,
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT ALGORITMIEN ANALYYSISTÄ 1.ratkaisu Laskentaaika hakkeri - optimoitu ALGORITMIANALYYSIÄ hyvä algoritmi hakkeri -optimoitu hyvä algoritmi Tehtävän koko Kuva mukailtu
Algoritmit 2. Luento 1 Ti Timo Männikkö
Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia
Nopea kertolasku, Karatsuban algoritmi
Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa
Algoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
Algoritmit 1. Luento 12 Ke Timo Männikkö
Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:
Algoritmianalyysin perusteet
Tietorakenteet ja algoritmit Algoritmianalyysin perusteet Ari Korhonen 1 5. ALGORITMIANALYYSI 5.1 Johdanto 5.2 Tavoitteet 5.3 Algoritmien luokittelu 5.4 Kertaluokkamerkinnät (Big Oh Notation) 5.5 Kertaluokkamerkinnöillä
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen
Tietorakenteet ja algoritmit - syksy 2015 1
Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä
811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja
811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A
1 Erilaisia tapoja järjestää
TIE-20100 Tietorakenteet ja algoritmit 1 1 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi. Lisäksi
Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia
Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä
5 Kertaluokkamerkinnät
TIE-20100 Tietorakenteet ja algoritmit 75 5 Kertaluokkamerkinnät Tässä luvussa käsitellään asymptoottisessa analyysissa käytettyjä matemaattisia merkintätapoja Määritellään tarkemmin Θ, sekä kaksi muuta
4. Algoritmien tehokkuus
4. Algoritmien tehokkuus (Harel luku 6) vastaa jo minulle! [Psalmi 69:18] Kuinka paljon suoritusaikaa tai -tilaa algoritmin suoritus vaatii? Keskitymme lähinnä aikavaativuuden tarkasteluun. Myös algoritmien
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
8. Lajittelu, joukot ja valinta
8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa
4.3. Matemaattinen induktio
4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta
3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.
3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Tietorakenteet, laskuharjoitus 3, ratkaisuja
Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan
811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu
811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 3, Ratkaisu Harjoituksessa käsitellään algoritmien aikakompleksisuutta. Tehtävä 3.1 Kuvitteelliset algoritmit A ja B lajittelevat syötteenään
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku
Tutki ja kirjoita -kurssi, s-2005
Teoreettisen tutkimuksen raportoinnista Tutki ja kirjoita -kurssi, s-2005 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Teoreettisen tutkimuksen raportoinnista p.1/14 Sisältö Algoritmisten
Algoritmit 2. Luento 14 Ke Timo Männikkö
Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan
Olkoon S(n) kutsun merge-sort(a, p, q) tilavaativuus kun p q + 1 = n. Oletetaan merge toteutetuksi vakiotyötilassa (ei-triviaalia mutta mahdollista).
Esimerkki Lomitusjärjestäminen merge-sort(a, p, q): var k % paikallinen muuttuja, vakiotila 1. if p < q then 2. r := (p + q)/2 3. merge-sort(a, p, r) 4. merge-sort(a, r + 1, q) 5. merge(a, p, r, q) Olkoon
(p j b (i, j) + p i b (j, i)) (p j b (i, j) + p i (1 b (i, j)) p i. tähän. Palaamme sanakirjaongelmaan vielä tasoitetun analyysin yhteydessä.
Loppu seuraa suoralla laskulla: n n Tave TR = p j (1 + b (i, j)) j=1 = 1 + 1 i
Algoritmit 1. Luento 11 Ti Timo Männikkö
Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017
811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista
811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista
Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin
Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2
Esimerkkejä polynomisista ja ei-polynomisista ongelmista
Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia
Algoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
Tietorakenteet, laskuharjoitus 1,
Tietorakenteet, laskuharjoitus 1, 19.-22.1 Huom: laskarit alkavat jo ensimmäisellä luentoviikolla 1. Taustaa http://wiki.helsinki.fi/display/mathstatkurssit/matukurssisivu Halutaan todistaa, että oletuksesta
FYSA220/K2 (FYS222/K2) Vaimeneva värähtely
FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien
Algoritmit 1. Luento 3 Ti Timo Männikkö
Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien
58131 Tietorakenteet ja algoritmit (syksy 2015)
58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen
Algoritmi on periaatteellisella tasolla seuraava:
Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Algoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,
Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö
Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit
A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007
Kurssiesittely Tietojenkäsittelytieteiden laitos Tampereen yliopisto A215 Tietorakenteet Periodit I-II, syksy 2007 Luennot/vastuuhenkilö: Heikki Hyyrö Sähköposti: heikki.hyyro@cs.uta.fi Kurssin kotisivu:
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,
2.3 Keskimääräisen tapauksen analyysi
2.3 Keskimääräisen tapauksen analyysi Muistetaan T ave (n) = x =n P n (x)t (x) missä x on tapauksen x koko ja P n jakauma kokoa n oleville tapauksille. Siis T ave (n) on satunnaismuuttujan T (x) odotusarvo
Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.
Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja
58053-7 Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja Malliratkaisut ja pisteytysohje: Jyrki Kivinen Tentin arvostelu: Jouni Siren (tehtävät 1 ja 2) ja Jyrki Kivinen (tehtävät
Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö
Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen
Ohjelmien automaattisen verifioinnin reunamailla
Ohjelmien automaattisen verifioinnin reunamailla Antti Siirtola Tietotekniikan laitos, Perustieteiden korkeakoulu, Aalto-yliopisto, antti.siirtola@aalto.fi Suomalainen Tiedeakatemia, Nuorten akatemiaklubi,
MS-A0401 Diskreetin matematiikan perusteet
MS-A0401 Diskreetin matematiikan perusteet Osa 2: Relaatiot ja funktiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta
7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy
212 7. Aikavaativuus Edellä tarkasteltiin ongelmien ratkeavuutta kiinnittämättä huomiota ongelman ratkaisun vaatimaan aikaan Nyt siirrytään tarkastelemaan ratkeavien ongelmien aikavaativuutta Periaatteessa
TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012
TIEA241 Automaatit ja, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 2. helmikuuta 2012 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti lueteltava
2 Sanoja järjestävän funktion ohjelmoiminen
1 Tämän dokumentin tarkoitus Tämä dokumentti ei kuulu millään tavoin tenttialueeseen, enkä ota vastuuta sen lukemisen aiheuttamista vahingoista. Tässä dokumentissa esitetään esimerkin kautta, miten matematiikan
6.1 Rekursiiviset palautukset
6.1 Rekursiiviset palautukset Olk. = (Q, Σ, Γ, δ, q 0, q acc, q rej ) mv. standardimallinen Turingin kone ääritellään koneen laskema osittaisfunktio f : Σ Γ seur. u, jos q 0 w u q av, f (w) = q { q acc,
2.2.1 Ratkaiseminen arvausta sovittamalla
2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu
TIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015
TIEA241 Automaatit ja, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Formaalisti Määritelmä Nelikko G = (V, Σ, P, S) on kontekstiton kielioppi (engl. context-free
2. Algoritmien analysointimenetelmistä
2. Algoritmien analysointimenetelmistä Tietokoneohjelmien suoritusaika on usein tärkeä kysymys, erityisesti käsiteltäessä paljon tietoa tai prosessin ollessa monimutkainen, so. runsaasti aikaavievä. Monesti
2. Algoritmien analysointimenetelmistä
Kokeelliset tutkimukset 2. Algoritmien analysointimenetelmistä Tietokoneohjelmien suoritusaika on usein tärkeä kysymys, erityisesti käsiteltäessä paljon tietoa tai prosessin ollessa monimutkainen, so.
MS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.
Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,
Tiraka, yhteenveto tenttiinlukua varten
Tiraka, yhteenveto tenttiinlukua varten TERMEJÄ Tietorakenne Tietorakenne on tapa tallettaa tietoa niin, että tietoa voidaan lisätä, poistaa, muokata ja hakea. Tietorakenteet siis säilövät tiedon niin,
Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min
Koe Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Kokeessa saa olla mukana A4:n kokoinen kaksipuolinen käsiten tehty, itse kirjoitettu lunttilappu 1 Tärkeää ja vähemmäntärkeää Ensimmäisen
2. Algoritmien analysointimenetelmistä
Kokeelliset tutkimukset 2. Algoritmien analysointimenetelmistä Tietokoneohjelmien suoritusaika on usein tärkeä kysymys, erityisesti käsiteltäessä paljon tietoa tai prosessin ollessa monimutkainen, so.
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 4 24.-25.4.2019 Timo Männikkö Tehtävä 1 (a) int laske(n) { if (n
Tietojenkäsittelyteorian alkeet, osa 2
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään
Tietorakenteet (syksy 2013)
Tietorakenteet (syksy 2013) Harjoitus 1 (6.9.2013) Huom. Sinun on osallistuttava perjantain laskuharjoitustilaisuuteen ja tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. Näiden laskuharjoitusten
Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi
Imperatiivisen ohjelmoinnin peruskäsitteet muuttuja muuttujissa oleva data voi olla yksinkertaista eli primitiivistä (esim. luvut ja merkit) tai rakenteista jolloin puhutaan tietorakenteista. puhuttaessa
Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan.
5. Verkkoalgoritmeja Eräs keskeinen algoritmien suunnittelutekniikka on Palauta ongelma johonkin tunnettuun verkko-ongelmaan. Palauttaminen edellyttää usein ongelman ja algoritmin pientä modifioimista,
1. Esitä rekursiivinen määritelmä lukujonolle
Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)
58131 Tietorakenteet Erilliskoe , ratkaisuja (Jyrki Kivinen)
58131 Tietorakenteet Erilliskoe 11.11.2008, ratkaisuja (Jyrki Kivinen) 1. (a) Koska halutaan DELETEMAX mahdollisimman nopeaksi, käytetään järjestettyä linkitettyä listaa, jossa suurin alkio on listan kärjessä.
Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen
Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista
Algoritmit 2. Luento 8 To Timo Männikkö
Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät
Kytkentäkentät - Rekursio, Cantor-verkko. Kytkentäkentän ominaisarvoja
Kytkentäkentät - Rekursio, Cantor-verkko Kertaus Estottomuus Uudelleen järjestely Tiukasti estoton Yleinen kolmiportainen verkko Closin -verkko Benes -verkko Cantor -verkko Kytkentäpisteet ja kompleksisuus
MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä30.
Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen.
6. Järjestäminen On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen. Tämä on eräs klassisimpia tietojenkäsittelyongelmia,
MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 0. syyskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä0. ym.,
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A00 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 0. syyskuuta 0 Joukko-oppi ja logiikka Todistukset logiikassa Predikaattilogiikka Induktioperiaate Relaatiot
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT PERUSTIETORAKENTEET LISTA, PINO, JONO, PAKKA ABSTRAKTI TIETOTYYPPI Tietotyyppi on abstrakti, kun se on määritelty (esim. matemaattisesti) ottamatta kantaa varsinaiseen
7.4 Sormenjälkitekniikka
7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan
FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto
FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.
Analyysi: päättely ja tulkinta. Hyvän tulkinnan piirteitä. Hyvän analyysin tulee olla. Miten analysoida laadullista aineistoa
Analyysi: päättely ja tulkinta Analyysin - tai tulkinnan - pitää viedä tutkimus kuvailevan otteen ohi mielellään ohi ilmiselvyyksien KE 62 Ilpo Koskinen 20.11.05 Aineiston analyysi laadullisessa tutkimuksessa
4. Joukkojen käsittely
4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet
TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013
TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen
Algoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 25.4.2017 Timo Männikkö Luento 11 Peruutusmenetelmä Osajoukon summa Pelipuut Pelipuun läpikäynti Rajoitehaku Kapsäkkiongelma Algoritmit 2 Kevät 2017 Luento 11 Ti 25.4.2017 2/29
Havaitsevan tähtitieteen peruskurssi I
Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio
TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)
TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta
Shorin algoritmin matematiikkaa Edvard Fagerholm
Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua
Numeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
Funktion määrittely (1/2)
Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.