Paikkatiedon käsittely 6. Kyselyn käsittely

Koko: px
Aloita esitys sivulta:

Download "Paikkatiedon käsittely 6. Kyselyn käsittely"

Transkriptio

1 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 6. Kyselyn käsittely Antti Leino Tietojenkäsittelytieteen laitos

2 Kysely indeksin avulla Sijaintitieto indeksissä approksimoituna Haku tyypillisesti kaksiosainen 1. Etsitään indeksistä minimisuorakulmion perusteella 2. Tarkistetaan osumista, täyttävätkö hakuehdon Vrt. GiST-puun Consistent : osumat epävarmoja, hylkäykset varmoja Joissakin tapauksissa lopullinen tieto jo indeksistä Esim.»sisältyykö kohde suorakulmioon?»

3 Topologiset kyselyt R-puun yhteydessä oli algoritmi aluekyselylle»mitkä kohteet leikkaavat suorakulmion x 1 x x 2,y 1 y y 2?» Sama algoritmi käytettävissä muihinkin topologisiin suhteisiin R-puussa suorakulmioapproksimaatio Tarkat suhteet selvitettävä erikseen Puusta haettaessa mahdollisesti käytössä puskuri»mitkä kohteet leikkaavat suorakulmion (x 1 ε) x (x 2 + ε),(y 1 ε) y (y 2 + ε)?» Näin saadaan varmasti mukaan vierekkäiset kohteet

4 Suuntakyselyt Myös suuntasuhteisiin perustuvat kyselyt mahdollisia R-puussa Suuntasuhteet neljään pää- ja neljään väli-ilmansuuntaan suorakulmion nurkkapisteiden perusteella Kaksiosainen haku 1. Haetaan R-puun solmut, joissa osumia voi olla 2. Käydään läpi niiden sisältämät alkiot Näissä askelissa ei välttämättä käytetä samaa ehtoa

5 Suuntakysely Esimerkki:»heikosti pohjoiseen» Kohde osittain toisen pohjoispuolella, muttei kokonaan Haetaan puusta ne solmut, joilla N f < q s ja N s > q s Haetaan löytyneistä solmuista ne kohteet, joilla q f < p f < q s ja p s > q s

6 Naapuruuskyselyt Tehtävä: etsitään kohteen k lähintä naapuria Hyödyllisiä mittoja: Piste P, kohde O ja sen minimisuorakulmio R mindist (P, R): lyhin etäisyys P:stä R:ään minmaxdist (P, R): etäisyys P:stä lähimpään sellaiseen R:n nurkkapisteeseen, joka on samalla sivulla kuin kauimmainen R:n nurkkapiste P:n ja O:n kauimmaisen pisteen etäisyys vähintään minmaxdist (P, R)

7 Minimietäisyyksien käyttöä Lähimmän naapurin etsintä Kyselypiste P, kohteet O,O ja niiden minimisuorakulmiot R,R Jos mindist (P,R) > minmaxdist (P,R ), R voidaan hylätä Jos distance (P,O) > minmaxdist (P,R ), O voidaan hylätä Jos mindist (P,R) > distance (P,O), R voidaan hylätä

8 Lähimmän naapurin etsintä Lehtisolmussa käy läpi kaikki lapset: Jos etäisyys tähän kohteeseen pienempi kuin tähänastiseen lähimpään naapuriin, tämä on uusi lähinaapuri Haarautumasolmussa: Järjestä solmun lapset etäisyyden mukaan Poista joukosta ne, jotka eivät ainakaan tule kyseeseen (vrt. edellinen kalvo) Etsi lähintä naapuria jäljellä olevista

9 Kohteiden järjestäminen etäisyyden mukaan Lähimmän naapurin etsintä on helpohko muuttaa etsimään k lähintä naapuria Pidetään kirjaa k naapurista Hylätään joka kierroksella kaukaisin Joskus tarpeen kohteiden järjestäminen etäisyysjärjestykseen Oliot jonona, joka on järjestetty etäisyyden mukaan Haarautumasolmun lapset sijoitetaan jonoon mindist :n mukaan

10 Järjestäminen R-puun avulla Pane puun juuri jonoon etäisyydelle 0 Pura jonoa, kunnes se on tyhjä: Jos jonon kärjessä on kohde, tulosta se kohteen minimisuorakulmio, Jos todellinen etäisyys < etäisyys jonossa seuraavaan, tulosta kohde Muuten pane kohde jonoon todellisen etäisyyden mukaiseen kohtaan lehti- tai haarautumasolmu, pane solmun lapset jonoon minimisuorakulmioidensa mukaiseen kohtaan

11 Käänteiset naapuruussuhteet Sama toisin päin:»etsi ne kohteet, joiden lähin naapuri tämä on» Tason pisteellä näitä on korkeintaan kuusi Jaetaan siis tutkittava alue kuuteen sektoriin Haettavat kohteet löytyvät kunkin sektorin lähimpien kohteiden joukosta

12 Käänteisten naapuruussuhteiden etsintä Etsi pisteen lähin naapuri kussakin sektorissa Käy läpi näin saadut ehdokkaat: Etsi ehdokkaan lähin naapuri Jos etäisyys tähän = etäisyys kyselypisteeseen, lisää ehdokas hakutulokseen

13 Paikkaliitokset Relaatioalgebran liitosoperaatio, jossa ehto liittyy sijaintitietoon Tyypillisesti leikkausehto R Rsijainti S sijainti S Muut suhteet toki myös mahdollisia Tavanomaisiin liitoksiin käytetyt algoritmit huonoja paikkaliitoksille Pohjimmainen ongelma: geometrisen leikkauksen epätyhjyys on vaikeampi testata kuin atomisten arvojen yhtäsuuruus

14 Paikkaliitoksen toteutus Kaksiosainen operaatio Suodatus minimisuorakulmioiden perusteella Lopullinen valinta todellisen sijaintitiedon perusteella Tässä R-puuhun perustuva ratkaisu Yhtä lailla mahdollista käyttää myös muunlaista indeksirakennetta

15 Paikkaliitoksen suodatusaskel Lähtökohta: puut (ts. solmut) R ja S Käy läpi kaikki solmun S alkiot E S Jos R on lehtisolmu, lisää tulokseen toisensa leikkaavien kohteiden parit (E R,E S ) Jos R on haarautumasolmu, jatka hakua kaikista solmupareista (E R,E S ) Tässä oletetaan, että puut R ja S yhtä korkeita Jos puut erikorkuisia, viimeisillä rekursiotasoilla verrataan toisen alipuuta toisen lehtisolmun alkioon

16 Suodatusalgoritmin tehokkuus Levynkäsittely suhteellisen tehokasta Sen sijaan prosessoriaikaa kuluu Mitä suurempi sivukoko sitä vallitsevammaksi prosessoriajan kulutus käy Algoritmi tehostuu, jos silmukoihin otetaan vain ne solmun alkiot, joissa osumia voi olla: S = {e S e MBR R } R = {e R e MBR S }

17 Tasonpyyhkäisy Leikkauksen E R E S epätyhjyyden testausta voi vielä optimoida tasonpyyhkäisymenetelmällä Lähdetään liikkeelle R S:n vasemmasta reunasta Edetään, kunnes löytyy suorakulmio Käydään läpi kaikki ne toisenväriset suorakulmiot, joiden vasen reuna on tarkasteltavan suorakulmion oikean reunan vasemmalla puolella Jos suorakulmiot leikkaavat myös pystysuunnassa, ne leikkaavat Merkitään suorakulmio käsitellyksi Siirretään tarkastelukohtaa, kunnes tulee vastaan seuraava suorakulmio ja käydään läpi sen alueella olevat vielä käsittelemättömät suorakulmiot

18 Lisää optimointia Tasonpyyhkäisykin riittää vasta paikalliseen optimointiin: läpikäytävien solmujen määrän globaaliin minimointiin se ei riitä. Ratkaisu: käydään puut läpi koko taso kerrallaan Kullakin tasolla kerätään keskenään leikkaavien solmujen parit tilapäisindeksiksi IJI i = {(E Ri,E Si ) R S E RiMBR E SiMBR } Kun taso on käyty läpi, siirrytään seuraavalle Nyt kunkin tason kaikki tarvittavat solmut tiedetään jo ennalta

19 Tasottainen paikkaliitosalgoritmi Käydään läpi juuret: IJI 0 = {(a,e),(b,e),(d,f)} Käydään läpi IJI 0 :n parit: IJI 1 = {(16,7),(12,13)} Puissa ei ole enempää tasoja, joten IJI 1 = liitosehdon täyttävät parit

20 Usean taulun paikkaliitokset Edellä käsitelty kahden tietokantataulun / R-puun liitoksia Useamman taulun liitokset näiden avulla Erilaisia toimintastrategioita 1. Ensin kahden taulun liitos, jonka tulos (indeksoimatta) liitetään kolmanteen 2. Ensin kahden taulun liitos, jonka tulos laaditaan jo valmiiksi sopimaan yhteen kolmannen R-puun kanssa 3. Suoraan kolmen taulun liitos

21 Liitos etäisyyden perusteella Liitosehtona eri tauluissa olevien kohteiden välinen etäisyys: R d1 distance (R,S) d 2 S Ratkaisu perustuu aiemmin nähtyyn järjestysalgoritmiin Parit (E R,E S ) järjestetään etäisyyden mukaan Näistä käsitellään ne, joissa etäisyys osuu liitosehdon määräämälle välille

22 Etäisyysliitosalgoritmi Pane puiden R ja S juuret jonoon etäisyydellä 0 Pura jonoa, kunnes se on tyhjä: Jos jonon kärjessä on kohdepari, tulosta kohteet minimisuorakulmiopari, laske kohteiden todellinen etäisyys Jos etäisyys < jonon ensimmäisen alkion etäisyys tai jono on tyhjä, tulosta kohteet Muuten lisää jonoon kohdepari todellisen etäisyyden mukaiseen paikkaan pari, jossa ensimmäisenä haarautumasolmu, pura parin 1. haarautumasolmu Muuten pura parin 2. haarautumasolmu

23 Haarautumasolmujen purkaminen Syöte: solmupari käy läpi kaikki parin ensimmäisenä olevan solmun alkiot Lisää jonoon etäisyyden mukaiseen paikkaan pari, joka koostuu tästä alkiosta ja alkuperäisen parin toisesta alkiosta Parin toisen solmun purkaminen vastaavasti

24 Yksi vai kaksi haaraa kerrallaan? Esitetyssä algoritmissa puretaan kerrallaan vain yksi haarautumasolmu Ei ole selvää, että olisi tehokkaampaa purkaa molemmat haarautumat samalla kertaa Esitetyssä muodossa algoritmi kulkee ensin puuta R lehtiin saakka ja vasta sitten puuta S Parempi ratkaisu olisi kulkea puita alas tasaisesti, esimerkiksi valitsemalla purettavaksi se puu, jossa on jäljellä enemmän tasoja Etäisyysliitosta tehostaa, jos haarautumasolmuja purettaessa tarkistetaan, että solmujen välinen minimi- / maksimietäisyys sopii liitosehdon rajoihin

Paikkatiedon hallinta ja analyysi 5. Kyselyn käsittely

Paikkatiedon hallinta ja analyysi 5. Kyselyn käsittely HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 5. Kyselyn käsittely Antti Leino 7. huhtikuuta 2005 Tietojenkäsittelytieteen

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

Algoritmit 2. Luento 6 To Timo Männikkö

Algoritmit 2. Luento 6 To Timo Männikkö Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100

Lisätiedot

Paikkatiedon käsittely 12. Yhteenveto

Paikkatiedon käsittely 12. Yhteenveto HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 12. Yhteenveto Antti Leino antti.leino@cs.helsinki.fi 22.2.2007 Tietojenkäsittelytieteen laitos Kurssin sisältö

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

Paikkatiedon käsittely 5. Paikkatiedon indeksointi

Paikkatiedon käsittely 5. Paikkatiedon indeksointi HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 5. Paikkatiedon indeksointi Antti Leino antti.leino@cs.helsinki.fi 29.1.2007 Tietojenkäsittelytieteen laitos Mistä

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten

Lisätiedot

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa)

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa) HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa) Antti Leino 4. huhtikuuta 2005 Tietojenkäsittelytieteen

Lisätiedot

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi Antti Leino 29. maaliskuuta 2005 Tietojenkäsittelytieteen

Lisätiedot

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint. Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Datatähti 2019 loppu

Datatähti 2019 loppu Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio

Lisätiedot

Algoritmit 2. Luento 2 To Timo Männikkö

Algoritmit 2. Luento 2 To Timo Männikkö Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

Algoritmit 2. Luento 4 To Timo Männikkö

Algoritmit 2. Luento 4 To Timo Männikkö Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Helsingin yliopisto/tktl Kyselykielet, s 2006 Optimointi Harri Laine 1. Kyselyn optimointi. Kyselyn optimointi

Helsingin yliopisto/tktl Kyselykielet, s 2006 Optimointi Harri Laine 1. Kyselyn optimointi. Kyselyn optimointi Miksi optimoidaan Relaatiotietokannan kyselyt esitetään käytännössä SQLkielellä. Kieli määrittää halutun tuloksen, ei sitä miten tulos muodostetaan (deklaratiivinen kyselykieli) Tietokannan käsittelyoperaatiot

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 26.3.2019 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot B-puun muunnelmia Algoritmit 2 Kevät 2019 Luento 5 Ti 26.3.2019 2/34 B-puu B-puut ovat tasapainoisia

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

D B. Tietokannan hallinta kertaus

D B. Tietokannan hallinta kertaus TKHJ:n pääkomponentit metadata TKHJ:ssä Tiedostojen käsittely puskurien rooli tiedostokäsittelyssä levymuistin rakenne ja käsittely mistä tekijöistä hakuaika muodostuu jonotus jos useita samanaikaisia

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)

Lisätiedot

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 126 Luku 3 Puut 3.1 Puu 3.2 Virittävä puu 3.3 Virittävän puun konstruointi 3.4 Minimaalinen virittävä puu

Lisätiedot

Algoritmit 1. Luento 10 Ke Timo Männikkö

Algoritmit 1. Luento 10 Ke Timo Männikkö Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot

Lisätiedot

Miten käydä läpi puun alkiot (traversal)?

Miten käydä läpi puun alkiot (traversal)? inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu

Lisätiedot

Algoritmit 1. Luento 6 Ke Timo Männikkö

Algoritmit 1. Luento 6 Ke Timo Männikkö Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty

Lisätiedot

Algoritmi III Vierekkäisten kuvioiden käsittely. Metsätehon tuloskalvosarja 7a/2018 LIITE 3 Timo Melkas Kirsi Riekki Metsäteho Oy

Algoritmi III Vierekkäisten kuvioiden käsittely. Metsätehon tuloskalvosarja 7a/2018 LIITE 3 Timo Melkas Kirsi Riekki Metsäteho Oy Algoritmi III Vierekkäisten kuvioiden käsittely Metsätehon tuloskalvosarja 7a/2018 LIITE 3 Timo Melkas Kirsi Riekki Metsäteho Oy Algoritmi III vierekkäisten kuvioiden käsittely Lähtötietoina algoritmista

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Johdatus verkkoteoriaan 4. luento

Johdatus verkkoteoriaan 4. luento Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,

Lisätiedot

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen) TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Paikkatiedon käsittely 4. Diskreettiä geometriaa

Paikkatiedon käsittely 4. Diskreettiä geometriaa HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 4. Diskreettiä geometriaa Antti Leino antti.leino@cs.helsinki.fi 25.1.2007 Tietojenkäsittelytieteen laitos Laskentatarkkuuden

Lisätiedot

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu 832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

Yhden muuttujan funktion minimointi

Yhden muuttujan funktion minimointi Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet ) T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu 1312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Parinmuodostuksesta tietojenkäsittelytieteen silmin. Petteri Kaski Tietojenkäsittelytieteen laitos Aalto-yliopisto

Parinmuodostuksesta tietojenkäsittelytieteen silmin. Petteri Kaski Tietojenkäsittelytieteen laitos Aalto-yliopisto Parinmuodostuksesta tietojenkäsittelytieteen silmin Petteri Kaski Tietojenkäsittelytieteen laitos Aalto-yliopisto Suomalainen Tiedeakatemia Nuorten Akatemiaklubi 18.10.2010 Sisältö Mitä tietojenkäsittelytieteessä

Lisätiedot

Luentorunko keskiviikolle Hierarkkinen ryvästäminen

Luentorunko keskiviikolle Hierarkkinen ryvästäminen Luentorunko keskiviikolle 3.12.2008 Hierarkkinen ryvästäminen Ryvästyshierarkia & dendrogrammi Hierarkkinen ryvästäminen tuottaa yhden ryvästyksen sijasta sarjan ryvästyksiä Tulos voidaan visualisoida

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon

Lisätiedot

10. Esitys ja kuvaus

10. Esitys ja kuvaus 10. Esitys ja kuvaus Kun kuva on ensin segmentoitu alueisiin edellisen luvun menetelmin, segmentoidut pikselit kootaan esittämään ja kuvaamaan kohteita muodossa, joka sopii hyvin jatkokäsittelyä varten.

Lisätiedot

Kyselyt: Lähtökohtana joukko lukuja Laskukaava kertoo miten luvuista lasketaan tulos soveltamalla laskentaoperaatioita

Kyselyt: Lähtökohtana joukko lukuja Laskukaava kertoo miten luvuista lasketaan tulos soveltamalla laskentaoperaatioita Relaatioalgebra Relaatiomalliin liittyy malli tietokannan käsittelystä Tietokannasta pitää pystyä hakemaan tietoa ja toisaalta tietokantaa on ylläpidettävä Tietokannan käsittelyn malli relaatioalgebra

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009 TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe D tiistai 10.11. klo 10 välikielen generointi Vaihe E tiistai

Lisätiedot

Viimeistely Ajourien huomiointi puutiedoissa ja lopullinen kuviointi. Metsätehon tuloskalvosarja 5/2018 LIITE 4 Timo Melkas Kirsi Riekki Metsäteho Oy

Viimeistely Ajourien huomiointi puutiedoissa ja lopullinen kuviointi. Metsätehon tuloskalvosarja 5/2018 LIITE 4 Timo Melkas Kirsi Riekki Metsäteho Oy Viimeistely Ajourien huomiointi puutiedoissa ja lopullinen kuviointi Metsätehon tuloskalvosarja 5/2018 LIITE 4 Timo Melkas Kirsi Riekki Metsäteho Oy Viimeistely ajourien huomiointi ja lopullinen kuviointi

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

Relaatioalgebra. Kyselyt:

Relaatioalgebra. Kyselyt: Relaatioalgebra Relaatiomalliin liittyy malli tietokannan käsittelystä Tietokannasta pitää pystyä hakemaan tietoa ja toisaalta tietokantaa on ylläpidettävä Tietokannan käsittelyn malli relaatioalgebra

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Algoritmit 1. Luento 13 Ma Timo Männikkö

Algoritmit 1. Luento 13 Ma Timo Männikkö Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu 1312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

Relaatioalgebra. Relaatioalgebra. Relaatioalgebra. Relaatioalgebra - erotus (set difference) Kyselyt:

Relaatioalgebra. Relaatioalgebra. Relaatioalgebra. Relaatioalgebra - erotus (set difference) Kyselyt: Relaatiomalliin liittyy malli tietokannan käsittelystä Tietokannasta pitää pystyä hakemaan tietoa ja toisaalta tietokantaa on ylläpidettävä Tietokannan käsittelyn malli relaatioalgebra määrittelee operaatiot,

Lisätiedot

TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto

TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Indeksin luonti ja hävitys TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Komentoa ei ole standardoitu ja niinpä sen muoto vaihtelee järjestelmäkohtaisesti Indeksi voidaan

Lisätiedot

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min! Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x

Lisätiedot

Esimerkki. pankkien talletus- ja lainatietokanta: Yhdiste, leikkaus, erotus ym. Leikkaus (intersect) Yhdiste (Union) Erotus (except/minus) Leikkaus

Esimerkki. pankkien talletus- ja lainatietokanta: Yhdiste, leikkaus, erotus ym. Leikkaus (intersect) Yhdiste (Union) Erotus (except/minus) Leikkaus Yhdiste, leikkaus, erotus ym. SQL tarjoaa myös relaatioalgebran operaatiot yhdiste, leikkaus, erotus Näissä operaatioissa taulujen on oltava samarakenteisia, ts. niissä on oltava samantyyppiset vastinsarakkeet.

Lisätiedot

Datatähti 2000: alkukilpailun ohjelmointitehtävä

Datatähti 2000: alkukilpailun ohjelmointitehtävä Datatähti 2000: alkukilpailun ohjelmointitehtävä 1 Lyhyt tehtävän kuvaus Tehtävänä on etsiä puurakenteen esiintymiä kirjaintaulukosta. Ohjelmasi saa syötteenä kirjaintaulukon ja puun, jonka jokaisessa

Lisätiedot

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti. Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen

Lisätiedot

private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla;

private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla; Tietorakenteet, laskuharjoitus 7, ratkaisuja 1. Opiskelijarekisteri-luokka saadaan toteutetuksi käyttämällä kahta tasapainotettua binäärihakupuuta. Toisen binäärihakupuun avaimina pidetään opiskelijoiden

Lisätiedot

Algoritmi I kuvioiden ja niille johtavien ajourien erottelu. Metsätehon tuloskalvosarja 7a/2018 LIITE 1 Timo Melkas Kirsi Riekki Metsäteho Oy

Algoritmi I kuvioiden ja niille johtavien ajourien erottelu. Metsätehon tuloskalvosarja 7a/2018 LIITE 1 Timo Melkas Kirsi Riekki Metsäteho Oy Algoritmi I kuvioiden ja niille johtavien ajourien erottelu Metsätehon tuloskalvosarja 7a/2018 LIITE 1 Timo Melkas Kirsi Riekki Metsäteho Oy Algoritmi I kuvioiden ja niille johtavien ajourien erottelu

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta 811312A Tietorakenteet ja algoritmit 2018-2019 Kertausta jälkiosasta V Hashtaulukot ja binääriset etsintäpuut Hashtaulukot Perusajatus tunnettava Tiedettävä mikä on tiivistefunktio Törmäysongelman hallinta:

Lisätiedot

1. a) Laadi suoraviivaisesti kyselyä vastaava optimoimaton kyselypuu.

1. a) Laadi suoraviivaisesti kyselyä vastaava optimoimaton kyselypuu. Helsingin yliopisto, Tietojenkäsittelytieteen laitos Kyselykielet, s 2006, Harjoitus 5 (7.12.2006) Tietokannassa on tietoa tavaroista ja niiden toimittajista: Supplier(sid,sname,city,address,phone,etc);

Lisätiedot

Mitä murteita Suomessa onkaan?

Mitä murteita Suomessa onkaan? HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Mitä murteita Suomessa onkaan? Antti Leino antti.leino@cs.helsinki.fi 9. syyskuuta 2006 Tietojenkäsittelytieteen laitos Kotimaisten kielten

Lisätiedot

Yhdiste, leikkaus, erotus ym.

Yhdiste, leikkaus, erotus ym. Yhdiste, leikkaus, erotus ym. SQL tarjoaa myös relaatioalgebran operaatiot yhdiste, leikkaus, erotus Näissä operaatioissa taulujen on oltava samarakenteisia, ts. niissä on oltava samantyyppiset vastinsarakkeet.

Lisätiedot

Paikkatiedon käsittely 10. Aluekohteiden yhteisesiintymät

Paikkatiedon käsittely 10. Aluekohteiden yhteisesiintymät HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 10. Aluekohteiden yhteisesiintymät Antti Leino antti.leino@cs.helsinki.fi 15.2.2007 Tietojenkäsittelytieteen laitos

Lisätiedot

Algoritmit 2. Demot Timo Männikkö

Algoritmit 2. Demot Timo Männikkö Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan

Lisätiedot

Ei-yhteydettömät kielet [Sipser luku 2.3]

Ei-yhteydettömät kielet [Sipser luku 2.3] Ei-yhteydettömät kielet [Sipser luku 2.3] Yhteydettömille kielille pätee samantapainen pumppauslemma kuin säännöllisille kielille. Siinä kuitenkin pumpataan kahta osamerkkijonoa samaan tahtiin. Lause 2.25

Lisätiedot

13 Lyhimmät painotetut polut

13 Lyhimmät painotetut polut TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

Helsingin yliopisto/ tktl DO Tietokantojen perusteet, s 2000 Relaatioalgebra 14.9.2000. Harri Laine 1. Relaatioalgebra

Helsingin yliopisto/ tktl DO Tietokantojen perusteet, s 2000 Relaatioalgebra 14.9.2000. Harri Laine 1. Relaatioalgebra DO NOT PRINT THIS DOCUMENT operaatiot, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus erityisiä relaatioalgebran operaatioita projektio,

Lisätiedot

Sinulle on annettu bittijono, ja tehtäväsi on muuttaa jonoa niin, että jokainen bitti on 0.

Sinulle on annettu bittijono, ja tehtäväsi on muuttaa jonoa niin, että jokainen bitti on 0. A Bittien nollaus Sinulle on annettu bittijono, ja tehtäväsi on muuttaa jonoa niin, että jokainen bitti on 0. Saat käyttää seuraavia operaatioita: muuta jokin bitti vastakkaiseksi (0 1 tai 1 0) muuta kaikki

Lisätiedot

P (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1)

P (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1) Harjoitustehtäviä (erä 1) 1 1. Käytetään yksinkertaisesti Bayesin kaavaa: P (A B) = P (A)P (B A). P (B) Tapauksessa B = 1 saadaan P (A = 0 B = 1) = P (A = 1 B = 1) = P (A = 0)P (B = 1 A = 0) P (A = 1)P

Lisätiedot

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen

V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan

Lisätiedot

Algoritmit 1. Luento 12 Ti Timo Männikkö

Algoritmit 1. Luento 12 Ti Timo Männikkö Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

joukko operaatioita, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus

joukko operaatioita, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus DO NOT PRINT THIS DOCUMENT joukko operaatioita, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus erityisiä relaatioalgebran operaatioita

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista 811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot