Paikkatiedon käsittely 6. Kyselyn käsittely
|
|
- Jaana Melasniemi
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 6. Kyselyn käsittely Antti Leino Tietojenkäsittelytieteen laitos
2 Kysely indeksin avulla Sijaintitieto indeksissä approksimoituna Haku tyypillisesti kaksiosainen 1. Etsitään indeksistä minimisuorakulmion perusteella 2. Tarkistetaan osumista, täyttävätkö hakuehdon Vrt. GiST-puun Consistent : osumat epävarmoja, hylkäykset varmoja Joissakin tapauksissa lopullinen tieto jo indeksistä Esim.»sisältyykö kohde suorakulmioon?»
3 Topologiset kyselyt R-puun yhteydessä oli algoritmi aluekyselylle»mitkä kohteet leikkaavat suorakulmion x 1 x x 2,y 1 y y 2?» Sama algoritmi käytettävissä muihinkin topologisiin suhteisiin R-puussa suorakulmioapproksimaatio Tarkat suhteet selvitettävä erikseen Puusta haettaessa mahdollisesti käytössä puskuri»mitkä kohteet leikkaavat suorakulmion (x 1 ε) x (x 2 + ε),(y 1 ε) y (y 2 + ε)?» Näin saadaan varmasti mukaan vierekkäiset kohteet
4 Suuntakyselyt Myös suuntasuhteisiin perustuvat kyselyt mahdollisia R-puussa Suuntasuhteet neljään pää- ja neljään väli-ilmansuuntaan suorakulmion nurkkapisteiden perusteella Kaksiosainen haku 1. Haetaan R-puun solmut, joissa osumia voi olla 2. Käydään läpi niiden sisältämät alkiot Näissä askelissa ei välttämättä käytetä samaa ehtoa
5 Suuntakysely Esimerkki:»heikosti pohjoiseen» Kohde osittain toisen pohjoispuolella, muttei kokonaan Haetaan puusta ne solmut, joilla N f < q s ja N s > q s Haetaan löytyneistä solmuista ne kohteet, joilla q f < p f < q s ja p s > q s
6 Naapuruuskyselyt Tehtävä: etsitään kohteen k lähintä naapuria Hyödyllisiä mittoja: Piste P, kohde O ja sen minimisuorakulmio R mindist (P, R): lyhin etäisyys P:stä R:ään minmaxdist (P, R): etäisyys P:stä lähimpään sellaiseen R:n nurkkapisteeseen, joka on samalla sivulla kuin kauimmainen R:n nurkkapiste P:n ja O:n kauimmaisen pisteen etäisyys vähintään minmaxdist (P, R)
7 Minimietäisyyksien käyttöä Lähimmän naapurin etsintä Kyselypiste P, kohteet O,O ja niiden minimisuorakulmiot R,R Jos mindist (P,R) > minmaxdist (P,R ), R voidaan hylätä Jos distance (P,O) > minmaxdist (P,R ), O voidaan hylätä Jos mindist (P,R) > distance (P,O), R voidaan hylätä
8 Lähimmän naapurin etsintä Lehtisolmussa käy läpi kaikki lapset: Jos etäisyys tähän kohteeseen pienempi kuin tähänastiseen lähimpään naapuriin, tämä on uusi lähinaapuri Haarautumasolmussa: Järjestä solmun lapset etäisyyden mukaan Poista joukosta ne, jotka eivät ainakaan tule kyseeseen (vrt. edellinen kalvo) Etsi lähintä naapuria jäljellä olevista
9 Kohteiden järjestäminen etäisyyden mukaan Lähimmän naapurin etsintä on helpohko muuttaa etsimään k lähintä naapuria Pidetään kirjaa k naapurista Hylätään joka kierroksella kaukaisin Joskus tarpeen kohteiden järjestäminen etäisyysjärjestykseen Oliot jonona, joka on järjestetty etäisyyden mukaan Haarautumasolmun lapset sijoitetaan jonoon mindist :n mukaan
10 Järjestäminen R-puun avulla Pane puun juuri jonoon etäisyydelle 0 Pura jonoa, kunnes se on tyhjä: Jos jonon kärjessä on kohde, tulosta se kohteen minimisuorakulmio, Jos todellinen etäisyys < etäisyys jonossa seuraavaan, tulosta kohde Muuten pane kohde jonoon todellisen etäisyyden mukaiseen kohtaan lehti- tai haarautumasolmu, pane solmun lapset jonoon minimisuorakulmioidensa mukaiseen kohtaan
11 Käänteiset naapuruussuhteet Sama toisin päin:»etsi ne kohteet, joiden lähin naapuri tämä on» Tason pisteellä näitä on korkeintaan kuusi Jaetaan siis tutkittava alue kuuteen sektoriin Haettavat kohteet löytyvät kunkin sektorin lähimpien kohteiden joukosta
12 Käänteisten naapuruussuhteiden etsintä Etsi pisteen lähin naapuri kussakin sektorissa Käy läpi näin saadut ehdokkaat: Etsi ehdokkaan lähin naapuri Jos etäisyys tähän = etäisyys kyselypisteeseen, lisää ehdokas hakutulokseen
13 Paikkaliitokset Relaatioalgebran liitosoperaatio, jossa ehto liittyy sijaintitietoon Tyypillisesti leikkausehto R Rsijainti S sijainti S Muut suhteet toki myös mahdollisia Tavanomaisiin liitoksiin käytetyt algoritmit huonoja paikkaliitoksille Pohjimmainen ongelma: geometrisen leikkauksen epätyhjyys on vaikeampi testata kuin atomisten arvojen yhtäsuuruus
14 Paikkaliitoksen toteutus Kaksiosainen operaatio Suodatus minimisuorakulmioiden perusteella Lopullinen valinta todellisen sijaintitiedon perusteella Tässä R-puuhun perustuva ratkaisu Yhtä lailla mahdollista käyttää myös muunlaista indeksirakennetta
15 Paikkaliitoksen suodatusaskel Lähtökohta: puut (ts. solmut) R ja S Käy läpi kaikki solmun S alkiot E S Jos R on lehtisolmu, lisää tulokseen toisensa leikkaavien kohteiden parit (E R,E S ) Jos R on haarautumasolmu, jatka hakua kaikista solmupareista (E R,E S ) Tässä oletetaan, että puut R ja S yhtä korkeita Jos puut erikorkuisia, viimeisillä rekursiotasoilla verrataan toisen alipuuta toisen lehtisolmun alkioon
16 Suodatusalgoritmin tehokkuus Levynkäsittely suhteellisen tehokasta Sen sijaan prosessoriaikaa kuluu Mitä suurempi sivukoko sitä vallitsevammaksi prosessoriajan kulutus käy Algoritmi tehostuu, jos silmukoihin otetaan vain ne solmun alkiot, joissa osumia voi olla: S = {e S e MBR R } R = {e R e MBR S }
17 Tasonpyyhkäisy Leikkauksen E R E S epätyhjyyden testausta voi vielä optimoida tasonpyyhkäisymenetelmällä Lähdetään liikkeelle R S:n vasemmasta reunasta Edetään, kunnes löytyy suorakulmio Käydään läpi kaikki ne toisenväriset suorakulmiot, joiden vasen reuna on tarkasteltavan suorakulmion oikean reunan vasemmalla puolella Jos suorakulmiot leikkaavat myös pystysuunnassa, ne leikkaavat Merkitään suorakulmio käsitellyksi Siirretään tarkastelukohtaa, kunnes tulee vastaan seuraava suorakulmio ja käydään läpi sen alueella olevat vielä käsittelemättömät suorakulmiot
18 Lisää optimointia Tasonpyyhkäisykin riittää vasta paikalliseen optimointiin: läpikäytävien solmujen määrän globaaliin minimointiin se ei riitä. Ratkaisu: käydään puut läpi koko taso kerrallaan Kullakin tasolla kerätään keskenään leikkaavien solmujen parit tilapäisindeksiksi IJI i = {(E Ri,E Si ) R S E RiMBR E SiMBR } Kun taso on käyty läpi, siirrytään seuraavalle Nyt kunkin tason kaikki tarvittavat solmut tiedetään jo ennalta
19 Tasottainen paikkaliitosalgoritmi Käydään läpi juuret: IJI 0 = {(a,e),(b,e),(d,f)} Käydään läpi IJI 0 :n parit: IJI 1 = {(16,7),(12,13)} Puissa ei ole enempää tasoja, joten IJI 1 = liitosehdon täyttävät parit
20 Usean taulun paikkaliitokset Edellä käsitelty kahden tietokantataulun / R-puun liitoksia Useamman taulun liitokset näiden avulla Erilaisia toimintastrategioita 1. Ensin kahden taulun liitos, jonka tulos (indeksoimatta) liitetään kolmanteen 2. Ensin kahden taulun liitos, jonka tulos laaditaan jo valmiiksi sopimaan yhteen kolmannen R-puun kanssa 3. Suoraan kolmen taulun liitos
21 Liitos etäisyyden perusteella Liitosehtona eri tauluissa olevien kohteiden välinen etäisyys: R d1 distance (R,S) d 2 S Ratkaisu perustuu aiemmin nähtyyn järjestysalgoritmiin Parit (E R,E S ) järjestetään etäisyyden mukaan Näistä käsitellään ne, joissa etäisyys osuu liitosehdon määräämälle välille
22 Etäisyysliitosalgoritmi Pane puiden R ja S juuret jonoon etäisyydellä 0 Pura jonoa, kunnes se on tyhjä: Jos jonon kärjessä on kohdepari, tulosta kohteet minimisuorakulmiopari, laske kohteiden todellinen etäisyys Jos etäisyys < jonon ensimmäisen alkion etäisyys tai jono on tyhjä, tulosta kohteet Muuten lisää jonoon kohdepari todellisen etäisyyden mukaiseen paikkaan pari, jossa ensimmäisenä haarautumasolmu, pura parin 1. haarautumasolmu Muuten pura parin 2. haarautumasolmu
23 Haarautumasolmujen purkaminen Syöte: solmupari käy läpi kaikki parin ensimmäisenä olevan solmun alkiot Lisää jonoon etäisyyden mukaiseen paikkaan pari, joka koostuu tästä alkiosta ja alkuperäisen parin toisesta alkiosta Parin toisen solmun purkaminen vastaavasti
24 Yksi vai kaksi haaraa kerrallaan? Esitetyssä algoritmissa puretaan kerrallaan vain yksi haarautumasolmu Ei ole selvää, että olisi tehokkaampaa purkaa molemmat haarautumat samalla kertaa Esitetyssä muodossa algoritmi kulkee ensin puuta R lehtiin saakka ja vasta sitten puuta S Parempi ratkaisu olisi kulkea puita alas tasaisesti, esimerkiksi valitsemalla purettavaksi se puu, jossa on jäljellä enemmän tasoja Etäisyysliitosta tehostaa, jos haarautumasolmuja purettaessa tarkistetaan, että solmujen välinen minimi- / maksimietäisyys sopii liitosehdon rajoihin
Paikkatiedon hallinta ja analyysi 5. Kyselyn käsittely
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 5. Kyselyn käsittely Antti Leino 7. huhtikuuta 2005 Tietojenkäsittelytieteen
Algoritmit 2. Luento 6 Ke Timo Männikkö
Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu
Algoritmit 2. Luento 6 To Timo Männikkö
Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100
Paikkatiedon käsittely 12. Yhteenveto
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 12. Yhteenveto Antti Leino antti.leino@cs.helsinki.fi 22.2.2007 Tietojenkäsittelytieteen laitos Kurssin sisältö
Algoritmit 1. Luento 7 Ti Timo Männikkö
Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017
Paikkatiedon käsittely 5. Paikkatiedon indeksointi
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 5. Paikkatiedon indeksointi Antti Leino antti.leino@cs.helsinki.fi 29.1.2007 Tietojenkäsittelytieteen laitos Mistä
58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut
Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten
Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa)
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa) Antti Leino 4. huhtikuuta 2005 Tietojenkäsittelytieteen
Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi Antti Leino 29. maaliskuuta 2005 Tietojenkäsittelytieteen
v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.
Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta
Luku 8. Aluekyselyt. 8.1 Summataulukko
Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa
Datatähti 2019 loppu
Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio
Algoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä
Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko
Algoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti
Algoritmit 2. Luento 4 To Timo Männikkö
Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4
Algoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
Helsingin yliopisto/tktl Kyselykielet, s 2006 Optimointi Harri Laine 1. Kyselyn optimointi. Kyselyn optimointi
Miksi optimoidaan Relaatiotietokannan kyselyt esitetään käytännössä SQLkielellä. Kieli määrittää halutun tuloksen, ei sitä miten tulos muodostetaan (deklaratiivinen kyselykieli) Tietokannan käsittelyoperaatiot
Algoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 26.3.2019 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot B-puun muunnelmia Algoritmit 2 Kevät 2019 Luento 5 Ti 26.3.2019 2/34 B-puu B-puut ovat tasapainoisia
Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia
Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä
Algoritmit 2. Luento 4 Ke Timo Männikkö
Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4
D B. Tietokannan hallinta kertaus
TKHJ:n pääkomponentit metadata TKHJ:ssä Tiedostojen käsittely puskurien rooli tiedostokäsittelyssä levymuistin rakenne ja käsittely mistä tekijöistä hakuaika muodostuu jonotus jos useita samanaikaisia
Malliratkaisut Demot
Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)
AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta
AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja
Johdatus graafiteoriaan
Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 126 Luku 3 Puut 3.1 Puu 3.2 Virittävä puu 3.3 Virittävän puun konstruointi 3.4 Minimaalinen virittävä puu
Algoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
Miten käydä läpi puun alkiot (traversal)?
inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu
Algoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
Harjoitus 6 ( )
Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.
Algoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)
58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu
Algoritmit 1. Luento 6 Ke Timo Männikkö
Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty
Algoritmi III Vierekkäisten kuvioiden käsittely. Metsätehon tuloskalvosarja 7a/2018 LIITE 3 Timo Melkas Kirsi Riekki Metsäteho Oy
Algoritmi III Vierekkäisten kuvioiden käsittely Metsätehon tuloskalvosarja 7a/2018 LIITE 3 Timo Melkas Kirsi Riekki Metsäteho Oy Algoritmi III vierekkäisten kuvioiden käsittely Lähtötietoina algoritmista
Tietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
Johdatus verkkoteoriaan 4. luento
Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,
TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)
TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,
Paikkatiedon käsittely 4. Diskreettiä geometriaa
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 4. Diskreettiä geometriaa Antti Leino antti.leino@cs.helsinki.fi 25.1.2007 Tietojenkäsittelytieteen laitos Laskentatarkkuuden
lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa
Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()
811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu
832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa
Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina
Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella
811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus
Harjoitus 6 ( )
Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,
Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,
Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.
Yhden muuttujan funktion minimointi
Yhden muuttujan funktion minimointi Aloitetaan yhden muuttujan tapauksesta Tarpeellinen myös useamman muuttujan tapauksessa Tehtävä on muotoa min kun f(x) x S R 1 Sallittu alue on muotoa S = [a, b] tai
Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003
Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja
Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
Algoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.
T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet )
T-79144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (opetusmoniste, kappaleet 11-22) 26 29102004 1 Ilmaise seuraavat lauseet predikaattilogiikalla: a) Jokin porteista on viallinen
811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu
1312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,
Kombinatorinen optimointi
Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein
Ohjelmoinnin peruskurssi Y1
Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.
Parinmuodostuksesta tietojenkäsittelytieteen silmin. Petteri Kaski Tietojenkäsittelytieteen laitos Aalto-yliopisto
Parinmuodostuksesta tietojenkäsittelytieteen silmin Petteri Kaski Tietojenkäsittelytieteen laitos Aalto-yliopisto Suomalainen Tiedeakatemia Nuorten Akatemiaklubi 18.10.2010 Sisältö Mitä tietojenkäsittelytieteessä
Luentorunko keskiviikolle Hierarkkinen ryvästäminen
Luentorunko keskiviikolle 3.12.2008 Hierarkkinen ryvästäminen Ryvästyshierarkia & dendrogrammi Hierarkkinen ryvästäminen tuottaa yhden ryvästyksen sijasta sarjan ryvästyksiä Tulos voidaan visualisoida
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017
Algoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon
10. Esitys ja kuvaus
10. Esitys ja kuvaus Kun kuva on ensin segmentoitu alueisiin edellisen luvun menetelmin, segmentoidut pikselit kootaan esittämään ja kuvaamaan kohteita muodossa, joka sopii hyvin jatkokäsittelyä varten.
Kyselyt: Lähtökohtana joukko lukuja Laskukaava kertoo miten luvuista lasketaan tulos soveltamalla laskentaoperaatioita
Relaatioalgebra Relaatiomalliin liittyy malli tietokannan käsittelystä Tietokannasta pitää pystyä hakemaan tietoa ja toisaalta tietokantaa on ylläpidettävä Tietokannan käsittelyn malli relaatioalgebra
Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria
Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018
1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 9. marraskuuta 2009
TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe D tiistai 10.11. klo 10 välikielen generointi Vaihe E tiistai
Viimeistely Ajourien huomiointi puutiedoissa ja lopullinen kuviointi. Metsätehon tuloskalvosarja 5/2018 LIITE 4 Timo Melkas Kirsi Riekki Metsäteho Oy
Viimeistely Ajourien huomiointi puutiedoissa ja lopullinen kuviointi Metsätehon tuloskalvosarja 5/2018 LIITE 4 Timo Melkas Kirsi Riekki Metsäteho Oy Viimeistely ajourien huomiointi ja lopullinen kuviointi
Algoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
Relaatioalgebra. Kyselyt:
Relaatioalgebra Relaatiomalliin liittyy malli tietokannan käsittelystä Tietokannasta pitää pystyä hakemaan tietoa ja toisaalta tietokantaa on ylläpidettävä Tietokannan käsittelyn malli relaatioalgebra
811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit
811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi
Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Algoritmit 1. Luento 13 Ma Timo Männikkö
Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin
811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu
1312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,
7.4 Sormenjälkitekniikka
7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan
Algoritmit 1. Luento 5 Ti Timo Männikkö
Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti
Relaatioalgebra. Relaatioalgebra. Relaatioalgebra. Relaatioalgebra - erotus (set difference) Kyselyt:
Relaatiomalliin liittyy malli tietokannan käsittelystä Tietokannasta pitää pystyä hakemaan tietoa ja toisaalta tietokantaa on ylläpidettävä Tietokannan käsittelyn malli relaatioalgebra määrittelee operaatiot,
TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto
Indeksin luonti ja hävitys TKHJ:ssä on yleensä komento create index, jolla taululle voidaan luoda hakemisto Komentoa ei ole standardoitu ja niinpä sen muoto vaihtelee järjestelmäkohtaisesti Indeksi voidaan
Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!
Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x
Esimerkki. pankkien talletus- ja lainatietokanta: Yhdiste, leikkaus, erotus ym. Leikkaus (intersect) Yhdiste (Union) Erotus (except/minus) Leikkaus
Yhdiste, leikkaus, erotus ym. SQL tarjoaa myös relaatioalgebran operaatiot yhdiste, leikkaus, erotus Näissä operaatioissa taulujen on oltava samarakenteisia, ts. niissä on oltava samantyyppiset vastinsarakkeet.
Datatähti 2000: alkukilpailun ohjelmointitehtävä
Datatähti 2000: alkukilpailun ohjelmointitehtävä 1 Lyhyt tehtävän kuvaus Tehtävänä on etsiä puurakenteen esiintymiä kirjaintaulukosta. Ohjelmasi saa syötteenä kirjaintaulukon ja puun, jonka jokaisessa
2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.
Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen
private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla;
Tietorakenteet, laskuharjoitus 7, ratkaisuja 1. Opiskelijarekisteri-luokka saadaan toteutetuksi käyttämällä kahta tasapainotettua binäärihakupuuta. Toisen binäärihakupuun avaimina pidetään opiskelijoiden
Algoritmi I kuvioiden ja niille johtavien ajourien erottelu. Metsätehon tuloskalvosarja 7a/2018 LIITE 1 Timo Melkas Kirsi Riekki Metsäteho Oy
Algoritmi I kuvioiden ja niille johtavien ajourien erottelu Metsätehon tuloskalvosarja 7a/2018 LIITE 1 Timo Melkas Kirsi Riekki Metsäteho Oy Algoritmi I kuvioiden ja niille johtavien ajourien erottelu
811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta
811312A Tietorakenteet ja algoritmit 2018-2019 Kertausta jälkiosasta V Hashtaulukot ja binääriset etsintäpuut Hashtaulukot Perusajatus tunnettava Tiedettävä mikä on tiivistefunktio Törmäysongelman hallinta:
1. a) Laadi suoraviivaisesti kyselyä vastaava optimoimaton kyselypuu.
Helsingin yliopisto, Tietojenkäsittelytieteen laitos Kyselykielet, s 2006, Harjoitus 5 (7.12.2006) Tietokannassa on tietoa tavaroista ja niiden toimittajista: Supplier(sid,sname,city,address,phone,etc);
Mitä murteita Suomessa onkaan?
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Mitä murteita Suomessa onkaan? Antti Leino antti.leino@cs.helsinki.fi 9. syyskuuta 2006 Tietojenkäsittelytieteen laitos Kotimaisten kielten
Yhdiste, leikkaus, erotus ym.
Yhdiste, leikkaus, erotus ym. SQL tarjoaa myös relaatioalgebran operaatiot yhdiste, leikkaus, erotus Näissä operaatioissa taulujen on oltava samarakenteisia, ts. niissä on oltava samantyyppiset vastinsarakkeet.
Paikkatiedon käsittely 10. Aluekohteiden yhteisesiintymät
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 10. Aluekohteiden yhteisesiintymät Antti Leino antti.leino@cs.helsinki.fi 15.2.2007 Tietojenkäsittelytieteen laitos
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan
Ei-yhteydettömät kielet [Sipser luku 2.3]
Ei-yhteydettömät kielet [Sipser luku 2.3] Yhteydettömille kielille pätee samantapainen pumppauslemma kuin säännöllisille kielille. Siinä kuitenkin pumpataan kahta osamerkkijonoa samaan tahtiin. Lause 2.25
13 Lyhimmät painotetut polut
TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia
58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli
Helsingin yliopisto/ tktl DO Tietokantojen perusteet, s 2000 Relaatioalgebra 14.9.2000. Harri Laine 1. Relaatioalgebra
DO NOT PRINT THIS DOCUMENT operaatiot, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus erityisiä relaatioalgebran operaatioita projektio,
Sinulle on annettu bittijono, ja tehtäväsi on muuttaa jonoa niin, että jokainen bitti on 0.
A Bittien nollaus Sinulle on annettu bittijono, ja tehtäväsi on muuttaa jonoa niin, että jokainen bitti on 0. Saat käyttää seuraavia operaatioita: muuta jokin bitti vastakkaiseksi (0 1 tai 1 0) muuta kaikki
P (A)P (B A). P (B) P (A B) = P (A = 0)P (B = 1 A = 0) P (B = 1) P (A = 1)P (B = 1 A = 1) P (B = 1)
Harjoitustehtäviä (erä 1) 1 1. Käytetään yksinkertaisesti Bayesin kaavaa: P (A B) = P (A)P (B A). P (B) Tapauksessa B = 1 saadaan P (A = 0 B = 1) = P (A = 1 B = 1) = P (A = 0)P (B = 1 A = 0) P (A = 1)P
V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen
V. V. Vazirani: Approximation Algorithms, luvut 3-4 Matti Kääriäinen Luento omatoimisen luennan tueksi algoritmiikan tutkimusseminaarissa 23.9.2002. 1 Sisältö Esitellään ongelmat Steiner-puu Kauppamatkustajan
Algoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
joukko operaatioita, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus
DO NOT PRINT THIS DOCUMENT joukko operaatioita, joilla relaatioista voidaan muodostaa uusia relaatioita joukko opin perusoperaatiot yhdiste, erotus, ristitulo, leikkaus erityisiä relaatioalgebran operaatioita
Algoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista
811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee