Fysiikan historia Luento 6 Kevät 2011
|
|
- Eeva-Kaarina Sariola
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Fysiikan historia Luento 6 Kevät 2011
2 Newtonin perintö Tieteellinen vallankumous päättyi Newtoniin. Fysiikka siirtyi uuteen aikakauteen, jota luonnehtivat Fysiikan teorioiden esittäminen matematiikan kielellä Vaatimus teorioiden testaamisesta kokeellisesti. Differentiaalilaskenta (calculus) osoittautui elintärkeäksi uusien fysiikan teorioiden kehittämisessä. Seuraavan kahden vuosisadan aikana löydettiin suuri määrä uusia ilmiöitä ja keksittiin uusia teorioita näiden selittämiseksi. Kehitystä tapahtui esimerkiksi seuraavilla aloilla: valo- oppi, äänioppi, magnetismi, sähköoppi ja lämpöoppi. Tähtitieteilijät tekivät yhä tarkempia havaintoja. Tieto maailmankaikkeuden rakenteesta lisääntyi voimakkaasti. Nämä havainnot olivat tärkeitä Newtonin lakien tarkan testaamisen kannalta. Lopulta ne myös paljastivat Newtonin teorioiden rajoitukset.
3 Merkittäviä tähtitieteilijöitä Fredrick William Herschel ( ) Syntyi Saksassa, työskenteli Englannissa siskonsa Carolinen kanssa Löysi Uranuksen 1781, myöhemmin kaksi Uranuksen kuista ja kaksi Saturnuksen kuuta. Luetteloi tähtisumut ja laati ensimmäisen kartan Linnunradasta. Herschelin 12 m:n kaukoputki. Herschelin Linnunradan kartta.
4 Heinrich Wilhelm Matthäus Olbers ( ) Saks. tähtitieteilijä ja lääkäri. Kehitti menetelmän laskea komeettojen ratoja. Löysi asteroidit ja esitti ajatuksen asteroidivyöhykkeestä. Olbersin paradoksi: Jos maailmankaikkeus olisi äärettömän suuri, joka suunnassa taivaalla tulisi näkyä tähti. Taivaan pitäisi olla yhtä kirkas kuin tähden pinta. [Maailmankaikkeuden laajeneminen ja valon punasiirtymä ratkaisivat tämän paradoksin myöhemmin.] Friedrich Wilhelm Bessel ( ) Saks matemaatikko ja tähtitieteilijä. Itseoppinut. Määritti tähden paikat hyvin tarkasti. Käytti ensimmäisenä parallaksia tähden (Cygni 61) etäisyyden määrittämiseen. Osoitti, että Siriuksella on kumppanitähti (Sirius B löytyi myöhemmin). Käytti laskelmissaan Besselin funktioita, jotka oli keksinyt Danielle Bernoulli. Näillä funktiolla on tärkeä rooli monilla fysiikan aloilla, mm. kvanttimekaniikassa.
5 Klassisen mekaniikan kehittelijöitä Newton loi perustan mekaniikan matemaattiselle käsittelylle. Hänen teoriansa tärkeimmät kehittelijät olivatkin lahjakkaita matemaatikkoja. He pystyivät ratkaisemaan yhä monimutkaisempia mekaniikan probleemoja ja soveltamaan mekaniikkaa ja painovoimateoriaa koko aurinkokunnan liikkeiden tarkasteluun. Leonhard Euler ( ), sveitsiläinen Tärkein anti mekaniikalle pienimmän vaikutuksen periaate: systeemi pyrkii tilaan, jossa potentiaalienergia on pienimmillään. (1744)
6 Pienimmän vaikutuksen periaate pohjautui Fermat n periaatteeseen (lyhimmän ajan periaate, the principle of least time). Sen mukaan valo kulkee kahden pisteen välin reittiä, jossa matkaan kuluu lyhin aika. Ei välttämättä suora, koska taitekerroin vaikuttaa asiaan. Voidaan ymmärtää Huygensin aaltoteorian (puhutaan myöhemmin) avulla, ja sen avulla voidaan johtaa Snellin laki. Eulerin saavutukset matematiikassa ovat mittaamattomat. Erityisen tärkeitä fysiikalle ovat mm. variaatiolaskenta (esim. mekaniikka) ja kompleksilukuja koskevat tulokset ja merkinnät.
7 Pierre- Louis Moreau de Maupertuis ( ), ransk. matemaatikko ja fyysikko Tutki valon kulkua väliaineesta toiseen. Oletti väärin, että valo etenee nopeammin tiheässä kuin harvassa aineessa. Otti käyttöön käsitteen vaikutus (action, J): (T = liike- energia) Yleinen kaikkea koskeva periaate on, että tarpeellisen vaikutuksen määrä muutoksen aiheuttamiseksi luonnossa on niin pieni kuin mahdollista. Maupertuis johti Ranskan tiedeakatemian retkikuntaa, joka mittasi Lapissa, Torniojoki- laaksossa tarkasti yhden leveysasteen pituuden. Se oli tärkeä tieto Maan muodon selvittämiseksi.
8 Daniel Bernoulli ( ), sveitsil. Matemaattisen fysiikan alullepanija. Hydrodynamica, Sovelsi mekaniikkaa nesteisiin. Tärkeä tulos: mitä suurempi nesteen nopeus, sitä alhaisempi paine. Bernoullin yhtälö. Käytti energian säilymistä kaiken lähtökohtana. Tutki kaasujen mekaniikkaa. Oletti, että kaasut koostuvat pienistä nopeasti poukkoilevista hiukkasista. Loi perustaa kaasujen kineettiselle teorialle, jonka Boltzmann myöhemmin kehitti. Tutki ääntä ja akustiikkaa. Uskoi intuitiivisesti, että ääntä voidaan kuvata trigonometristen funktioiden avulla. Tämän todisti matemaattisesti myöhemmin Fourier. Bernoullin yhtälö
9 Jean le Rond d Alembert ( ), ranskal. Kehitti Newtonin mekaniikkaa matemaattisesti, otti käyttöön osittaisdifferentiaaliyhtälöt. Halusi eliminoida voiman käsitteen mekaniikasta. Pohti painovoiman kolmen kappaleen ongelmaa. Joseph- Louis Lagrange ( ), ranskal. Teki mekaniikasta matematiikan haaran; analyyttinen mekaniikka. Mekaniikkaa ilman kuvia. Otti käyttöön variaatiolaskennan fysiikan ongelmissa. Ujo ja vaatimaton. Lentävä lause: En tiedä.
10 Lagrangen mekaniikan keskeinen käsite Lagrangen funktio = T V = kineettinen energia potentiaalienergia. Liikeyhtälö saadaan Eulerin- Lagrangen yhtälöstä Tämä yhtälö puolestaan seuraa vaikutusintegraalin minimoinnista. Esimerkiksi hiukkasfyysikot määrittelevät teoriansa konstruoimalla Lagrangen funktion. Lagrangen funktiosta lähtemällä voidaan laskea teorian ennustukset kaikille mitattaville ilmiöille. L = T V = 1 2 µφ µ φ µ φ λφ 4
11 Pierre Simon de Laplace ( ), ranskal. Treatise on Celestia , 5- osainen. Kattava esitys Newtonin jälkeisestä mekaniikasta ja astronomiasta. Tärkein saavutus oli Newtonin painovoimateorian soveltaminen koko aurinkokuntaan. Osoitti aurinkokunnan stabiliteetin. Mekaniikan potentiaaliteoria (konservatiivisille voimille voima on potentiaalifunktion negatiivinen gradientti). Erittäin tärkeä mekaniikassa. Laplacen yhtälöllä on paljon käyttöä fysiikassa. Esitti, että aurinkokunta on syntynyt tähtipölystä (Immanuel Kant oli esittänyt samaa jo aikaisemmin). Minulla ei ole käyttöä sille hypoteesille. Vastaus Napoleonille, joka kysyi miksei L:n kirjassa mainita Jumalaa. Laplace
12 Sir William Rowan Hamilton ( ) Irl. fyysikko ja matemaatikko Otti käyttöön uuden klassisen mekaniikan lähestymistavan (Hamiltonin mekaniikka). Tämä on osoittautunut erittäin hyödylliseksi klassisissa kenttäteorioissa (esim. elektrodynamiikka) ja kvanttimekaniikassa (vrt. Hamiltonin operaattori = energiaoperaattori). Jules Henri Poincaré ( ) Ransk. Matemaatikko, fyysikko ja kilosoki (tieteenkilosokia) Tutki kolmen kappaleen ongelmaa ja päätyi deterministisiin systeemeihin liittyvään kaottisuuteen: mitättömät muutokset alkuehdoissa voivat saamaan systeemin kehittymään täysin eri suuntiin. On pohjana kaaosteorioille (Mikään dynaamista systeemiä kuvaava observaabeli ei saavuta jaksollisesti jotain määrättyä arvoa.) [Kolmen kappaleen ongelman ratkaisi suomalainen Karl Sundman 1912.] Teki Newtonin mekaniikan perusteita koskeneita kriittisiä huomautuksia, esim. osoitti absoluuttisen ajan mahdottomaksi. Oli hyvin lähellä keksiä suppean suhteellisuusteorian, mutta ei arvannut valonnopeuden invariutta. (Einstein arvasi.)
13 Mekaniikan kolme esitystapaa
14 Amalie Emmy Noether ( ) Saks. matemaatikko Sovelsi abstraktia algebraa Lagrangen mekaniikkaan Keksi Noetherin lauseen, joka liittää luonnossa havaittavat säilymislait (esim. energian ja sähkövarauksen säilyminen) Lagrangen funktion matemaattisiin symmetrioihin. Tätä periaatetta hyödynnetään konstruoitaessa uusia teorioita.
Derivaatta 1/6 Sisältö ESITIEDOT: reaalifunktiot, funktion raja-arvo
Derivaatta 1/6 Sisältö Derivaatan määritelmä funktio Olkoon kiinteä tarkastelupiste. Reaalimuuttujan reaaliarvoisen funktion f deri- (reaali-) vaatta tässä pisteessä merkitään f () voidaan luonnetia kadella
Klassisen mekaniikan historiasta
Torstai 4.9.2014 1/18 Klassisen mekaniikan historiasta Nikolaus Kopernikus (puolalainen pappi 1473-1543): aurinkokeskeinen maailmankuva Johannes Kepler (saksalainen tähtitieteilijä 1571-1630): planeettojen
Teoreetikon kuva. maailmankaikkeudesta
Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson
Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken
Lataa Fysiikka - Hannu Karttunen. Lataa
Lataa Fysiikka - Hannu Karttunen Lataa Kirjailija: Hannu Karttunen ISBN: 9789525329322 Sivumäärä: 133 Formaatti: PDF Tiedoston koko: 39.85 Mb Fysiikka on jaoteltu oppikirjoissa perinteisesti sellaisiin
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN
Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,
Fysiikan historia kevät 2011 Luento 5
Fysiikan historia kevät 2011 Luento 5 Newtonin edeltäjiä Rene Descartes (1596-1650) ransk. filosofi, matemaatikko ja fyysikko Halusi selittää maailman rationaalisesti. Yhtä mieltä Galilein kanssa: matematiikka
Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
53714 Klassinen mekaniikka syyslukukausi 2010
53714 Klassinen mekaniikka syyslukukausi 2010 Luennot: Luennoitsija: Kurssin kotisivu: ma & to 10-12 (E204) Rami Vainio, Rami.Vainio@helsinki.fi http://theory.physics.helsinki.fi/~klmek/ Harjoitukset:
Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto
Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn
W el = W = 1 2 kx2 1
7.2 Elastinen potentiaalienergia Paitsi gravitaatioon, myös materiaalien deformaatioon (muodonmuutoksiin) liittyy systeemin rakenneosasten keskinäisiin paikkoihin liittyvää potentiaalienergiaa Elastinen
infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
Tiede ja usko KIRKKO JA KAUPUNKI 27.2.1980
Tiede ja usko Jokaisen kristityn samoin kuin jokaisen tiedemiehenkin velvollisuus on katsoa totuuteen ja pysyä siinä, julistaa professori Kaarle Kurki-Suonio. Tieteen ja uskon rajankäynti on ollut kahden
Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia
Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat
Aikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
Maailmankaikkeuden syntynäkemys (nykykäsitys 2016)
Maailmankaikkeuden syntynäkemys (nykykäsitys 2016) Kvanttimeri - Kvanttimaailma väreilee (= kvanttifluktuaatiot eli kvanttiheilahtelut) sattumalta suuri energia (tyhjiöenergia)
5.13 Planetaarinen liike, ympyräradat
5.13 Planetaarinen liike, ympyräradat Muistellaan menneitä Jo peruskoulussa lienee opetettu tämä Newtonin gravitaatiolaki kahden kappaleen välisestä gravitaatiovoimasta: Tässä yhtälössä G on gravitaatiovakio
Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta
8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin
Kitkavoimat. Ol. N massapisteen systeemi ja suoraan nopeuteen verrannollinen kitkavoima: k x v 2. i,x + ky v 2. i,y + kz v 2. vi F = i. r i.
Kitkavoimat Ol. N massapisteen systeemi ja suoraan nopeuteen verrannollinen kitkavoima: F (f ) i = k x v i,x ê x k y v i,y ê y k z v i,z ê z Otetaan käyttöön Rayleigh n dissipaatiofunktio N F = 1 2 i=1
Teoreettisen fysiikan tulevaisuuden näkymiä
Teoreettisen fysiikan tulevaisuuden näkymiä Tämä on teoreettisen fysiikan professori Erkki Thunebergin virkaanastujaisesitelmä, jonka hän piti Oulun yliopistossa 8.11.2001. Esitys on omistettu professori
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
Fysiikan kurssit suositellaan suoritettavaksi numerojärjestyksessä. Poikkeuksena kurssit 10-14, joista tarkemmin alla.
Fysiikan kurssit suositellaan suoritettavaksi numerojärjestyksessä Poikkeuksena kurssit 10-14, joista tarkemmin alla Jos et ole varma, voitko valita jonkin fysiikan kurssin, ota yhteyttä lehtori Antti
Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.
FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin
Likimääräisratkaisut ja regularisaatio
Luku 3 Likimääräisratkaisut ja regularisaatio Käytännön inversio-ongelmissa annettu data y ei aina ole tarkkaa, vaan sisältää häiriöitä. Tuntemattomasta x on annettu häiriöinen data y F (x + }{{}}{{} ε.
9 Analyysin nopea kehitys 1700-luvulla
9 ANALYYSIN NOPEA KEHITYS 700-LUVULLA 58 9 Analyysin nopea kehitys 700-luvulla Infinitesimaalilaskennan keksiminen sysäsi matemaattisen analyysin erittäin nopeaan kehitykseen. Uusia menetelmiä käytettiin
FYSA2031 Potentiaalikuoppa
FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali
9. Kitkaton virtaus ja potentiaaliteoria. KJR-C2003 Virtausmekaniikan perusteet
9. Kitkaton virtaus ja potentiaaliteoria KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten ja millä edellytyksillä virtausongelmaa voidaan yksinkertaistaa? Motivointi: Navier-Stokes yhtälöiden ratkaiseminen
Kvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri
Kvanttimekaniikka: Luento 2 Mar$kainen Jani- Petri Assarointimainos Fyssa tarvitsee assareita Noin 30 euroa tun$+ lisiä tyypillises$ n. 4h/viikko, muba voi olla enemmän/vähemmän Opintosuoritukset+ lyhyt
dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl
Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.
KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai 26.5.2017 8:00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin.
Syventävien opintojen seminaari
Syventävien opintojen seminaari Sisällys 1 2 3 4 Johdanto Kvanttikenttäteorioiden statistinen fysiikka on relevanttia monella fysiikan alalla Kiinteän olomuodon fysiikka (elektronisysteemit) Kosmologia
Pimeän energian metsästys satelliittihavainnoin
Pimeän energian metsästys satelliittihavainnoin Avaruusrekka, Kumpulan pysäkki 04.10.2012 Peter Johansson Matemaattis-luonnontieteellinen tiedekunta / Peter Johansson/ Avaruusrekka 04.10.2012 13/08/14
Erityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
PARADIGMOJEN VERTAILUPERUSTEET. Avril Styrman Luonnonfilosofian seura
PARADIGMOJEN VERTAILUPERUSTEET Avril Styrman Luonnonfilosofian seura 17.2.2015 KokonaisHede Koostuu paradigmoista Tieteen edistystä voidaan siten tarkastella prosessina missä paradigmat kehinyvät ja vaihtuvat
Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1
Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä
S U H T E E L L I S U U S T E O R I AN P Ä Ä P I I R T E I T Ä (ks. esim. http://www.kotiposti.net/ajnieminen/sutek.pdf). 1. a) Suppeamman suhteellisuusteorian perusolettamukset (Einsteinin suppeampi suhteellisuusteoria
PHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
Suhteellisuusteorian vajavuudesta
Suhteellisuusteorian vajavuudesta Isa-Av ain Totuuden talosta House of Truth http://www.houseoftruth.education Sisältö 1 Newtonin lait 2 2 Supermassiiviset mustat aukot 2 3 Suhteellisuusteorian perusta
5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua
Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi
MS-C1080 Algebran perusrakenteet (5 op)
MS-C1080 Algebran perusrakenteet (5 op) Luennot: Camilla Hollanti Harjoitukset: Niko Väisänen, Amaro Barreal etunimi.sukunimi@aalto.fi Kevät 2015 1 / 11 Kurssin sisältö Kurssimateriaali: Metsänkylä Näätänen,
Aika empiirisenä käsitteenä. FT Matias Slavov Filosofian yliopistonopettaja Jyväskylän yliopisto
Aika empiirisenä käsitteenä FT Matias Slavov Filosofian yliopistonopettaja Jyväskylän yliopisto Luonnonfilosofian seuran kokous 7.3.2017 Esitelmän kysymys ja tavoite: Pääkysymys: Onko aika empiirinen käsite?
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
Luento 9: Potentiaalienergia
Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta
nopeusvektoria säädettäessä. kuvaruudulla olevien kappaleiden
1 2 Ohjelman perusidea on varsin yksinkertainen. Kyseessä on tietokonepeli, jossa pelaaja pyrkii lähettämään kuvaruudulle ilmestyviä planeettoja radoilleen siten, että ne eivät törmäile virtuaalisessa
6 TARKASTELU. 6.1 Vastaukset tutkimusongelmiin
173 6 TARKASTELU Hahmottavassa lähestymistavassa (H-ryhmä) käsitteen muodostamisen lähtökohtana ovat havainnot ja kokeet, mallintavassa (M-ryhmä) käsitteet, teoriat sekä teoreettiset mallit. Edellinen
Lataa Suhteellisuusteoriaa runoilijoille - Kari Enqvist. Lataa
Lataa Suhteellisuusteoriaa runoilijoille - Kari Enqvist Lataa Kirjailija: Kari Enqvist ISBN: 9789510402641 Sivumäärä: 211 Formaatti: PDF Tiedoston koko: 32.53 Mb Einstein keksi suhteellisuusteorian, mutta
4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos 1917: Einstein sovelsi yleistä suhteellisuusteoriaa koko maailmankaikkeuteen Linnunradan eli maailmankaikkeuden
Tähtitieteen historiaa
Tähtitiede Sisältö: Tähtitieteen historia Kokeellisen tiedonhankinnan menetelmät Perusteoriat Alkuräjähdysteoria Gravitaatiolaki Suhteellisuusteoria Alkuaineiden syntymekanismit Tähtitieteen käsitteitä
Lataa Maailmanviiva - Jukka Maalampi. Lataa
Lataa Maailmanviiva - Jukka Maalampi Lataa Kirjailija: Jukka Maalampi ISBN: 9789525329513 Sivumäärä: 221 Formaatti: PDF Tiedoston koko: 28.94 Mb Sata vuotta sitten Albert Einstein ilmestyi kuin tyhjästä
Osittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos
Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita
Perusvuorovaikutukset. Tapio Hansson
Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria
Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
Epäyhtenäisyys fysiikan haasteena
Epäyhtenäisyys fysiikan haasteena Avril Styrman Luonnonfilosofian seuran teemailta Fysiikan tehtävä 18.9.2018 Sisältö Lyhyt historia: miten fysiikan nykyiseen?lanteeseen on saavu@u Sisältö Lyhyt historia:
3.6 Feynman s formulation of quantum mechanics
3.6 Feynman s formulation of quantum mechanics Course MAT-66000: Quantum mechanics and the particles of nature Ilkka Kylänpää Tampere University of Technology 14.10.2010 Sisältö Johdattelua Klassinen action
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
Lataa Maailmankaikkeus pähkinänkuoressa - Stephen Hawking. Lataa
Lataa Maailmankaikkeus pähkinänkuoressa - Stephen Hawking Lataa Kirjailija: Stephen Hawking ISBN: 9789510284001 Sivumäärä: 215 Formaatti: PDF Tiedoston koko: 16.67 Mb Stephen Hawkingin menestysteos Ajan
PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)
PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit
Fysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
Fysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa?
Fysiikan maailmankuva 2015 Luento 8 Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa? Ajan nuoli Aika on mukana fysiikassa niinkuin jokapäiväisessä
Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
Valomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.
Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin
Kant Arvostelmia. Informaatioajan Filosofian kurssin essee. Otto Opiskelija 65041E
Kant Arvostelmia Informaatioajan Filosofian kurssin essee Otto Opiskelija 65041E David Humen radikaalit näkemykset kausaaliudesta ja siitä johdetut ajatukset metafysiikan olemuksesta (tai pikemminkin olemattomuudesta)
Matematikka ja maailmankuva Matemaattis-luonnontieteellisten alojen akateemiset MAL 13.12.2013 Tapio Markkanen
Matematikka ja maailmankuva Matemaattis-luonnontieteellisten alojen akateemiset MAL 13.12.2013 Tapio Markkanen Maa on pallo Sacrobosco, 1550 Maan muodon vaikutus varjon muotoon kuunpimennyksessä Kuva Petrus
P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN
MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN Matematiikka ja matematiikan soveltaminen, 4 osp Pakollinen tutkinnon osa osaa tehdä peruslaskutoimitukset, toteuttaa mittayksiköiden muunnokset ja soveltaa talousmatematiikkaa
FYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
Analyyttinen mekaniikka
Maanantai 1.9.2014 1/17 Analyyttinen mekaniikka Luennoitsija: Niko Jokela Syyslukukausi 2014 4h/vko luentoja+2h/vko harjoituksia Maanantai 1.9.2014 2/17 Yleistä Luennot ma & to klo 10-12 (E204) sekä viikoilla
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
Kuva Suomen päätieverkko 1 Moottoritiet on merkitty karttaan vihreällä, muut valtatiet punaisella ja kantatiet keltaisella värillä.
POHDIN projekti TIEVERKKO Tieverkon etäisyyksien minimointi ja esimerkiksi maakaapeleiden kokonaismäärän minimointi sekä ylipäätään äärellisen pistejoukon yhdistäminen reitityksillä toisiinsa niin, että
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
Symmetriat ja säilymislait
Symmetriat ja säilymislait Onni Veteläinen 2437668 LuK-tutkielma Fysiikan laitos Oulun yliopisto Kevät 2017 Sisältö Johdanto 1 1 Symmetriat ja säilymislait klassisessa mekaniikassa 2 1.1 Liikemäärän säilyminen......................
Fysiikan matemaattiset menetelmät II
Fysiikan matemaattiset menetelmät II Christofer Cronström Fysikaalisten tieteiden laitos, teoreettisen fysiikan osasto Helsingin yliopisto 9. tammikuuta 2006 i Esipuhe Tämä teos perustuu useana vuonna
Hiukkasfysiikkaa teoreetikon näkökulmasta
Hiukkasfysiikkaa teoreetikon näkökulmasta @ CERN Risto Paatelainen CERN Theory Department KUINKA PÄÄDYIN CERN:IIN Opinnot: 2006-2011 FM, Teoreettinen hiukkasfysiikka, Jyväskylän yliopisto 2011-2014 PhD,
Lataa Mustat aukot - BBC:n Reith-luennot - Stephen Hawking. Lataa
Lataa Mustat aukot - BBC:n Reith-luennot - Stephen Hawking Lataa Kirjailija: Stephen Hawking ISBN: 9789510424148 Sivumäärä: 100 sivua Formaatti: PDF Tiedoston koko: 35.10 Mb Mustat aukot ovat avain maailmankaikkeuden
PHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 6.11. ja tiistai 7.11. Pohdintaa Mitä tai mikä ominaisuus lämpömittarilla
Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita
Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska
Ikiliikkujat. Onko mikään mahdotonta? Näitä on yritetty tai ainakin tutkittu
Ikiliikkujat Ikiliikkujat Onko mikään mahdotonta? Näitä on yritetty tai ainakin tutkittu Ikiliikkuja Alkemia: kemiallisin keinoin ja viisasten kiveä käyttäen epäjalot metallit kullaksi (transmutaatio)
hyvä osaaminen. osaamisensa tunnistamista kuvaamaan omaa osaamistaan
MERKITYS, ARVOT JA ASENTEET FYSIIKKA 8 T2 Oppilas asettaa itselleen tavoitteita sekä työskentelee pitkäjänteisesti. Oppilas harjoittelee kuvaamaan omaa osaamistaan. T3 Oppilas ymmärtää lämpöilmiöiden tuntemisen
Suhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää
3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :
Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan
Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään
MS-C1080 Algebran perusrakenteet (5 op)
MS-C1080 Algebran perusrakenteet (5 op) Luennot: Camilla Hollanti Harjoitukset: Ferdinand Blomqvist etunimi.sukunimi@aalto.fi Kevät 2017 NB: All the relevant info can be found in English on MyCourses,
Useita oskillaattoreita yleinen tarkastelu
Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat
INSINÖÖRIN NÄKÖKULMA FYSIIKAN TEHTÄVÄÄN. Heikki Sipilä LF-Seura
INSINÖÖRIN NÄKÖKULMA FYSIIKAN TEHTÄVÄÄN Heikki Sipilä LF-Seura 18.9.2018 Sisältö Henkilökohtaista taustaa Insinööri ja fysiikka Dimensioanalyysi insinöörin menetelmänä Esimerkki havainnon ja teorian yhdistämisestä
FYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 16. lokakuuta 2013 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
BM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.
Suhteellisuusteoria. Jouko Nieminen Tampereen Teknillinen Yliopisto Fysiikan laitos
Suhteellisuusteoria Jouko Nieminen Tampereen Teknillinen Yliopisto Fysiikan laitos Ketkä pohjustivat modernin fysiikan? Rømer 1676 Ampere Fizeau 1849 Young 1800 Faraday Michelson 1878 Maxwell 1873 Hertz
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima
Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum
Linnunradan rakenne 53925, 5 op, syksy 2016 D116 Physicum Luento 4: Stellaaristatistiikka, 03/10/2016 Peter Johansson/ Linnunradan rakenne Luento 4 03/10/16 1 Tällä luennolla käsitellään 1. Tähtien jakauma
1.4. VIRIAALITEOREEMA
1.4. VIRIAALITEOREEMA Vaikka N-kappaleen ongelman yleistä ratkaisua ei tunneta, on olemassa eräitä tärkeitä yleisiä tuloksia Jos systeemi on stabiili, eli paikat ja nopeudet eivät kasva rajatta kineettisen
1 Tieteellinen esitystapa, yksiköt ja dimensiot
1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen
Fysikaaliset tieteet. Minkälaisia opintokokonaisuuksia saa fysiikasta? Miksi ja miten tehdä fysiikasta sivuaine?
Fysikaaliset tieteet Minkälaisia opintokokonaisuuksia saa fysiikasta? Miksi ja miten tehdä fysiikasta sivuaine? Oletko fysiikan opiskelija? Tässä olevia kokonaisuuksia ei tarjota sinulle aivan tälläisenään.
Keskeisvoimat. Huom. r voi olla vektori eli f eri suuri eri suuntiin!
Keskeisvoimat Huom. r voi olla vektori eli f eri suuri eri suuntiin! Historiallinen ja tärkeä esimerkki on planeetan liike Auringon ympäri. Se on 2 kappaleen ongelma, joka voidaan aina redusoida keskeisliikkeeksi