Tiedonlouhinta 2013/L3 p. 1. Data-avaruus. Olk. muuttujat A 1,...,A k, joiden arvoalueet. Dom(A 1 ),...,Dom(A k ). Silloin D = Dom(A 1 )...
|
|
- Leo Nurminen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luento 3: 1 Yleiset mallinnusperiaatteet ja 2 Riippuvuusanalyysi Yleiset mallinnusperiaatteet 1. Ongelman määrittely datan ja taustateorian ymmärtäminen 2. siprosessointi datan siivous, piirteiden eristys ja valinta 3. Tiedonlouhinta (mallinnus/hahmojen haku) 4. Tulosten luotettavuuden arviointi data-avaruus = kaikki mahdolliset muuttujien arvokombinaatiot hakuavaruus = kaikki mahdolliset annetun formaatin mukaiset mallit/hahmot, jotka datasta voisi johtaa globaalisti ja lokaalisti optimaaliset hakualgoritmit = Ovatko löydetyt mallit/hahmot varmasti parhaita mahdollisia? ylisovittuminen Kuvaako malli liian hyvin syötedatan? 5. Tulosten havainnollinen esitys ja tulkinta Tiedonlouhinta 2013/L3 p. 1 Tiedonlouhinta 2013/L3 p. 2 Parhaan mallin haku datasta ata-avaruus hakualgoritmi Kaikki mahdolliset formaatin mukaiset mallit Olk. muuttujat A 1,...,A k, joiden arvoalueet om(a 1 ),...,om(a k ). Silloin = om(a 1 )... om(a k ) määrittää data-avaruuden. ata avaruus tietty datajoukko Haku avaruus paras malli ko. syötedatasta atan dimensio k Jos kaikki muuttujat diskreettejä, voi kokoa luonnehtia solujen lukumäärällä: = om(a 1 )... om(a k ). Nyt om(a i ) = {a i1,...,a im } = m Jos jatkuvia muuttujia, ei voi laskea solujen lkm:ää! Nyt om(a i ) = [a min,a max ] = a max a min (voi olla ) Huom! Annetut muuttujat määräävät data-avaruuden. Tiedonlouhinta 2013/L3 p. 3 Tiedonlouhinta 2013/L3 p. 4
2 sim. 3-ulotteisen diskreetin datan esitys Hakuavaruus om(b) =14 om() =12 Kattaa kaikki mahdolliset mallit, jotka mallinnusmenetelmän ja data-avaruuden mukaisia ja jotka voi löytää annetulla hakualgoritmilla ata-avaruus (annetut muuttujat ja niiden arvoalueet) määräävät, millaisia malleja voi löytää Samaan mallinnusmenetelmään ( mallinnusparadigmaan, esim. päätöspuut, neuroverkot, riippuvuussäänöt) voi liittyä erilaisia hakualgoritmeja! voivat löytää eri malleja om(a) =12 Koko = 2016 solua. Tiedonlouhinta 2013/L3 p. 5 Tiedonlouhinta 2013/L3 p. 6 simerkki: riippuvuussääntöjen hakuavaruus Binäärimuuttujat R = {A 1,...,A k } ja etsitään säännöt muotoa X A, X R, A X. Hakuavaruus koostuu kaikista mahdollisista säännöistä eli 1. Tutkitaan kaikki mahdolliset R:n osajoukot Y, joiden koko vähintään 2 attribuuttia ( Y 2) R:n potenssijoukko (koko 2 k ) simerkki (jatk.) 2 Jokaisesta osajoukosta Y muodostetaan kaikki mahdolliset säännöt Jos Y = l, voi muodostaa l sääntöä, Y \{A i } A i ( A i Y ). Hakuavaruuden koko on siis k i=2 i (k i) = O(k 2 k ) P(R) = {,A 1,A 2,...,A k,a 1 A 2,A 1 A 3,...,A k 1 A k,a 1 A 2 A 3,...,...,A 1 A 2...A k } i tarvitse tutkia joukkoja,{a 1 },...,{A k }. Tiedonlouhinta 2013/L3 p. 7 Tiedonlouhinta 2013/L3 p. 8
3 Hakuavaruus (jatk.) Mallin hyvyysmitta Jos binäärimuuttujat R = {A 1,...,A k } ja luokkamuuttuja. Millainen olisi kaikkien mahdollisten päätöspuiden joukko? Tiedonlouhinta 2013/L3 p. 9 Tarvitaan jokin hyvyysmitta M, joka kertoo mallin hyvyyden. esim. miten monta alkiota luokittelee oikein, miten vahva tai merkitsevä riippuvuus on, miten tiheä klusteri on tms. yleensä pyrkii heijastamaan myös sitä, miten hyvin malli yleistyy mallin muodostusdatan ulkopuolelle (ts. että hahmo pätee oikeasti tai malli toimii tulevaisuudessa) Jos malli paranee, kun M kasvaa, on M hyvyyden mukaan kasvava (esim. luokittelun accuracy, χ 2 -mitta) muuten taas hyvyyden mukaan vähenevä (esim. luokitteluvirhe, p-arvot) Tiedonlouhinta 2013/L3 p. 10 Hakuongelma: 2 variaatiota Hakualgoritmin optimaalisuus? Annettu mallinnusmenetelmä, data ja hyvyysmitta M. 1. Luettelointiongelma (enumeration problem): tsi kaikki riittävän hyvät mallit (annettu jokin M:n raja-arvo). 2. Optimointiongelma (optimization problem): tsi K parasta mallia (ML:ssä yleensä K = 1) Loppujen lopuksi ei suurta eroa! Käyttäjä ei halua tulokseksi tuhansia (saati miljoonia) hahmoja! Globaalisti optimaalinen, jos palauttaa parhaat K mallia hakuavaruudesta Takuu: datasta ei mahdollista löytää näitä parempia annetun muotoisia malleja. Lokaalisti optimaalinen: Löydetyt mallit parhaita jossain hakuavaruuden osassa, mutta eivät välttämättä koko hakuavaruudessa. algoritmi ei tutki koko avaruutta, vaan valikoi tutkittavan alueen heuristisesti algoritmi voi juuttua lokaaliin optimiin Keskitytään optimointiongelmaan Tiedonlouhinta 2013/L3 p. 11 Tiedonlouhinta 2013/L3 p. 12
4 Heuristiikka Intuitiivisesti: apumenetelmä tai periaate, jota soveltamalla ongelma ratkeaa nopeammin mutta tulokset silti melko hyviä/useimmiten hyviä. yleensä ovat alioptimaalisia (suboptimal) eli eivät takaa globaalia optimia (parhaan mallin löytymistä) sim. ahne heuristiikka (greedy heuristic): detään haussa sillä hetkellä parhaalta näyttävään suuntaan. Tyypillistä ihmisille! Tyyliin Väsyttää ja masentaa, hirveästi rästitöitä, paras pitää lökeripäivä. (optimoi mielihyvää lyhyellä tähtäimellä) joskus heuristiikan virheellisyys merkitsee vain hidasta hakua, ei oikeiden tulosten hukkaamista (riippuu mihin heuristiikkaa käytetään) Tiedonlouhinta 2013/L3 p. 13 simerkki: Luokittelusääntöjen hakuavaruus Olk. R = {A,B,,,} ja luokka-attribuutti F. Hakuavaruus P(R) voidaan esittää luettelointipuuna (enumeration tree). B A B Tiedonlouhinta 2013/L3 p. 14 Parhaan säännön ahne haku Jos tasoittain haku ylhäältä alas ja ahne haku tuottaisi B F :n. Tutkisi vain 9 solmua 32:sta, mutta voi mennä metsään! B A B Varoituksen sana! Aina menetelmää/sen hakualgoritmia valitessasi päile alioptimaalista heuristiikkaa! Ota selvää, mikä heuristiikka on ja milloin se voi hukata parhaat mallit. Miten todennäköistä on, että saadaan huonoja tuloksia? Hälytyskellojen paras soida, jos kuulet sanan ahne heuristiikka (vaikka joskus harvoin turha hälytys) Ongelma: Menetelmien kehittäjät eivät mielellään kerro, ettei menetelmä ole globaalisti optimaalinen... Tiedonlouhinta 2013/L3 p. 15 Tiedonlouhinta 2013/L3 p. 16
5 Mallin ylisovittuminen (overfitting) Intuitiivisesti: Malli/hahmo h kuvaa mallinnettavan datan d liian yksityiskohtaisesti, mukaan lukien satunnaisvaihtelun, eikä siksi yleisty d:n ulkopuolelle. Täsmällisemmin: h ylisovittunut, jos h s.e. M(h,d) > M(h,d) mutta M true (h) < M true (h ), missä M true on mallin oikea hyvyys. Oikeaa hyvyyttä M true ei voi mitata! Koetettava arvioida heuristisesti. Oletus: M hyvyyden mukaan kasvava (jos ei, niin vaihda > ja <) Tiedonlouhinta 2013/L3 p. 17 Occamin partaveitsi periaate Tärkeä havainto: Ylisovittuminen edellyttää monimutkaista mallia. monimutkaisella mallilla voi kuvata yksityiskohdat tarkka kuvaus mutta harvoille (tai vain yhdelle) datajoukoille yksinkertaisella mallilla ei voi kuvata kaikkia yksityiskohtia kuvaa ylimalkaisemmin mutta useampia datajoukkoja ylisovittumista voi estää kontrolloimalla mallin monimutkaisuutta! = Occamin partaveitsi (Occam s Razor) periaate: (Yhtä hyvistä) malleista suosi yksinkertaisinta. tai rankaise monimutkaisuudesta Tiedonlouhinta 2013/L3 p. 18 Alisovittuminen (underfitting) simerkki: Päätöspuun ylisovittuminen Intuitio: Jos malli on liian yksinkertainen, se kuvaa minkä tahansa datan liian ylimalkaisesti. Helppo havaita! Hyvyysmitta saa huonon arvon myös opetusdatassa. Huom! Jos data oikeasti satunnaista, ei siitä voi muodostaa parempaa mallia! Tiedonlouhinta 2013/L3 p. 19 Tiedonlouhinta 2013/L3 p. 20
6 Mallin monimutkaisuus suhteutettava datan määrään! Perusperiaate: mitä enemmän datarivejä, sitä monimutkaisemman mallin voi muodostaa. Peukalosääntö: oltava vähintään 5 10 datariviä jokaista malliparametria kohden Jos jokin hahmo esiintyy < 5 rivillä, ei mitään takeita, etteikö sattumaa Jos vähän dataa, käytettävä yksinkertaisia mallinnusmenetelmiä ja etsittävä yksinkertaisia malleja. Mallin monimutkaisuus vs. datan määrä Poikkeus: tukivektorikoneet (support vector machines, SVM) hyviä välttämään ylisovittumisen, ainakin teoriassa (käytännössä valittava malliparametrit huolella!) Tiedonlouhinta 2013/L3 p. 21 Tiedonlouhinta 2013/L3 p. 22 Tilastollisten riippuvuuksien analyysi Tilastollinen riippuvuus: Monta tulkintaa! Tilastollisen riippuuden määritelmä/tulkinnat Riippuvuussääntöjen haku kategorisesta (tai diskretoidusta) datasta Riippuvuuksien haku numeerisesta datasta kskursio: Bayesläinen riippuvuuksien mallinnus (Bayes-verkoilla) Määritelmä: Tapahtumat X ja Y ovat tilastollisesti riippumattomia, jos P(XY) = P(X)P(Y). Mutta: Milloin muuttujat tai muuttuja-arvokombinaatiot ovat tilastollisesti riippuvia? (termi korrelaatio viittaa yleensä kahden numeerisen muuttujan väliseen lineaariseen riippuvuuteen, mutta käytetään väljästi) Tiedonlouhinta 2013/L3 p. 23 Tiedonlouhinta 2013/L3 p. 24
7 Tilastollinen riippuvuus: Monta tulkintaa! Tilastollinen riippuvuus: 3 tulkintaa Tilastollinen riippuvuus edellyttää siis että P(XY) P(X)P(Y). Mutta: pieni poikkeama P(X)P(Y):stä johtuu todennäköisesti sattumasta! Miten arvioida, onko riippuvuus aitoa? Mitat riippuvuuden voimakkuuden ja merkitsevyyden arviointiin. Jos A ja B binäärimuuttujia, riittää tutkia yhtä arvokombinaatiota: P(A = 1B = 1) P(A = 1)P(B = 1) a {0,1} b {0,1}P(A = ab = b) P(A = a)p(b = b). ntä jos A ja B moniarvoisia muuttujia? muuttuja- ja arvoperustaiset tulkinnat Miten määritellä kolmen muuttujan, A, B ja, välinen riippuvuus? ainakin 3 vaihtoehtoista tulkintaa. Tiedonlouhinta 2013/L3 p. 25 Olk. A,B, binäärisiä. Merk. A (A = 0) ja A (A = 1) 1. Riippuvuussääntö AB : oltava δ = P(AB) P(AB)P() > 0 ja δ riittävän suuri. 2. Kokonaistodennäköisyysmalli: Lasketaan δ 1 = P(AB) P(AB)P(), δ 2 = P(A B) P(A B)P(), δ 3 = P( AB) P( AB)P() ja δ 4 = P( A B) P( A B)P(). Jos δ 1 = δ 2 = δ 3 = δ 4 = 0, ei ainakaan riippuvuutta. Muuten päätellään jollain laskukaavalla d i :stä (i = 1,...,4) 3. AB on korreloiva joukko jos ρ = P(AB) P(A)P(B)P() 0 ja ρ riittävän suuri. (Yl. olt. ρ > 0 eli positiivinen riippuvuus) Tiedonlouhinta 2013/L3 p Riippuvuussäännöt 1. Riippuvuussäännöt: simerkkejä Yleisessä muodossa X A = a, X R, A R\X ja a {0,1}. Yleensä ei siis sallita negaatioita ehto-osassa X (ei esim. A 1 A 3 A 5. Helppo kiertää: luo uudet binäärimuuttujat negaatioille! (esim. A i = B 2i ja A i = B 2i+1 ) X A i (tai X A i = 1) merkitsee positiivista riippuvuutta (P(XA i ) > P(X)P(A i )) X A i (tai X A i = 0) merkitsee negatiivista riippuvuutta X:n ja A i :n välillä (P(XA i ) < P(X)P(A i ) eli P(X A i ) > P(X)P( A i )) Tiedonlouhinta 2013/L3 p. 27 korkea LL ateroskleroosi korkea HL ateroskleroosi tupakoi ateroskleroosi paljon tupakkaa alzheimer kahvi, ei tupakoi ateroskleroosi kohtuudella alkoholia sydänsairaus miestyypin kaljuus -> sydänsairaus Apo-e4 -> aivoinfarkti Apo-e4, kohtuudella alkoholia alzheimer Apo-e4, kohtuudella tupakkaa alzheimer ABA1-R219K alzheimer ABA1-R219K, nainen alzheimer Tiedonlouhinta 2013/L3 p. 28
8 1. Riippuvuussäännöt 2. Kokonaistodennäköisyysmalli lokaaleja hahmoja, eivät globaaleja malleja erittäin tehokkaat algoritmit! (silti globaalisti optimaalisia) tuhansille tai jopa kymmenille tuhansille binäärimuuttujille (riippuu datan jakaumasta, miten tehokkaita) ei-binäärimuuttujat edellyttävät binärisointia esittävät kokonaistodennäköisyysjakauman P(A 1 = a 1...A k = a k ), a i {0,1} globaaleja malleja paljon raskaampia oppia esivalittava joukko hyviä muuttujia, silti vain lokaalisti optimaalisia voi esittää havainnollisesti Bayes-verkkona Tiedonlouhinta 2013/L3 p. 29 Tiedonlouhinta 2013/L3 p Kokonaistodennäköisyysmalli: simerkki 3. Korreloiva joukko Yleisessä muodossa X R, missä P(X) > Π Ai XP(A i ) Lähde: Jiang. et al. Learning genetic epistasis using Bayesian network scoring criteria, Bioinformatics 12: Tiedonlouhinta 2013/L3 p. 31 kätevä kun ei selkeää säännön seurausosaa esim. esiintymisdata (ocurrence data) ata: kasvilistoja eri havaintopaikoista. Hahmo: lajit jotka esiintyvät poikkeuksellisen usein yhdessä. monia heuristisia hahmoja ja niille hakualgoritmeja, mutta vähän hyviä (tilastollisesti mielekkäitä) Älä sekoita säännöllisiin joukkoihin (frequent sets)! Koostuu riittävän usein yhdessä esiintyvistä attribuuteista, joiden välillä ei välttämättä tilastollista riippuvuutta. Tiedonlouhinta 2013/L3 p. 32
Tiedonlouhinta (kl 2013) Tiedonlouhinta 2013/L1 p. 1
Tiedonlouhinta (kl 2013) 000000 000000 000000 000000 000000 000000 111111 111111 111111 111111 111111 111111 000 000 000 000 000 000 111 111 111 111 111 111 01 00 00 11 11 0 0 1 1 00 00 11 11 00 00 00
Riippuvuussäännöt. Luento 4. Riippuvuuden vahvuus: Tavallisimmat mitat. Muuttuja- vs. arvoperustainen tulkinta
Luento 4 Riippuvuussäännöt (tarkemmin) Riippuvuuksien haku numeerisesta datasta Ekskursiona Bayes-verkot Riippuvuussäännöt Muuttuja- ja arvoperustainen tulkinta Riippuvuuden vahvuuden ja merkityksellisyyden
Globaali optimonti haastaa lokaalit menetelmät: luotettavampia riippuvuuksia tehosta tinkimättä
Tietojenkäsittelytiede 34 (Huhtikuu 2012) sivut 6 16 Toimittaja: Jorma Tarhio c kirjoittaja(t) Globaali optimonti haastaa lokaalit menetelmät: luotettavampia riippuvuuksia tehosta tinkimättä Wilhelmiina
Esimerkkejä vaativuusluokista
Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään
Tiedonlouhinta (kl 2013) Kurssin kuvaus. Esitiedot. Kurssin arvostelu
Tiedonlouhinta (kl 2013) Kurssin kuvaus 00 11 00 11 00 11 01 01 01 01 11000 111 11000 111 00 11 joko kandidaatti- tai maisteritason valinnainen kurssi Toteutus pääasiassa ongelmalähtöisesti (tiedonlouhintaprosessin
Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa Linkkikeskukset ja auktoriteetit (hubs and authorities) -algoritmi
Kurssin loppuosa Diskreettejä menetelmiä laajojen 0-1 datajoukkojen analyysiin Kattavat joukot ja niiden etsintä tasoittaisella algoritmilla Relevanttien sivujen etsintä verkosta: satunnaiskulut verkossa
HAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
Ongelmien ja menetelmien tyypittelyä. Käyttötarkoituksia. Konsistentti ja epäkonsistentti data. Esimerkki: Deterministinen luokittelu
Luento 5: Luokittelu Määritelmä Käyttötarkoitukset Ongelmien ja luokittelijoiden tyypittely auttaa valitsemaan oikean menetelmän Tärkeimmät menetelmät Päätöspuut ja luokittelusäännöt Bayes-luokittelijat
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen
1. TILASTOLLINEN HAHMONTUNNISTUS
1. TILASTOLLINEN HAHMONTUNNISTUS Tilastollisissa hahmontunnistusmenetelmissä piirteitä tarkastellaan tilastollisina muuttujina Luokittelussa käytetään hyväksi seuraavia tietoja: luokkien a priori tn:iä,
Harjoitus 6 ( )
Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.
Algoritmit 2. Luento 12 To Timo Männikkö
Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien
Tietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1
T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi
Harjoitus 6 ( )
Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
Joukot. Georg Cantor ( )
Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista
Algoritmit 2. Luento 12 Ke Timo Männikkö
Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit
T Luonnollisten kielten tilastollinen käsittely
T-61.281 Luonnollisten kielten tilastollinen käsittely Vastaukset 3, ti 11.2.2003, 16:15-18:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa
TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)
JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
Malliratkaisut Demot
Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten
Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä
Algoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
Kieli merkitys ja logiikka. 2: Helpot ja monimutkaiset. Luento 2. Monimutkaiset ongelmat. Monimutkaiset ongelmat
Luento 2. Kieli merkitys ja logiikka 2: Helpot ja monimutkaiset Helpot ja monimutkaiset ongelmat Tehtävä: etsi säkillinen rahaa talosta, jossa on monta huonetta. Ratkaisu: täydellinen haku käy huoneet
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
Mat Lineaarinen ohjelmointi
Mat-.4 Lineaarinen ohjelmointi..7 Luento 7 Duaalisimple ja herkkyysanalyysi (kirja 4.5, 5., 5.5-5.6) Lineaarinen ohjelmointi - Syksy 7 / Duaalisimple Herkkyysanalyysi Luentorunko Parametrinen ohjelmointi
Tietorakenteet ja algoritmit - syksy 2015 1
Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä
Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin
Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:
Ryhmäfaktorianalyysi neurotiedesovelluksissa (Valmiin työn esittely) Sami Remes Ohjaaja: TkT Arto Klami Valvoja: Prof.
Ryhmäfaktorianalyysi neurotiedesovelluksissa (Valmiin työn esittely) Sami Remes 11.06.2012 Ohjaaja: TkT Arto Klami Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1
35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,
Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
Kandidaatintutkielman aineistonhankinta ja analyysi
Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi
Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).
Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156
pitkittäisaineistoissa
Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf
4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen
4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus
TIEA341 Funktio-ohjelmointi 1, kevät 2008
TIEA34 Funktio-ohjelmointi, kevät 2008 Luento 3 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 2. tammikuuta 2008 Ydin-Haskell: Syntaksi Lausekkeita (e) ovat: nimettömät funktiot: \x
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
Vektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
Korrelaatiokerroin. Hanna Heikkinen. Matemaattisten tieteiden laitos. 23. toukokuuta 2012
Korrelaatiokerroin Hanna Heikkinen 23. toukokuuta 2012 Matemaattisten tieteiden laitos Esimerkki 1: opiskelijoiden ja heidän äitiensä pituuksien sirontakuvio, n = 61 tyttären pituus (cm) 155 160 165 170
Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)
Tehtävä 1 Päättele resoluutiolla seuraavista klausuulijoukoista. a. {{p 0 }, {p 1 }, { p 0, p 2 }, {p 1, p 2, p 3 }, { p 2, p 3 }, {p 3 }}, b. {{ p 0, p 2 }, {p 0, p 1 }, {{ p 1, p 2 }, { p 2 }}, c. {{p
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
Matematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
1. Tilastollinen malli??
1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen
Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Itse arvioidun terveydentilan ja sukupuolen välinen riippuvuustarkastelu. Jyväskyläläiset 75-vuotiaat miehet ja naiset vuonna 1989.
Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]
Johdatus tekoälyyn Luento 6.10.2011: Koneoppiminen Patrik Hoyer [ Kysykää ja kommentoikaa luennon aikana! ] Koneoppiminen? Määritelmä: kone = tietokone, tietokoneohjelma oppiminen = ongelmanratkaisukyvyn
Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.
Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.
Tekoäly ja koneoppiminen metsävaratiedon apuna
Tekoäly ja koneoppiminen metsävaratiedon apuna Arbonaut Oy ja LUT University 26. marraskuuta 2018 Metsätieteen päivä 2018 Koneoppimisen kohteena ovat lukujen sijasta jakaumat Esimerkki 1 Koneoppimisessa
Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely)
Implementation of Selected Metaheuristics to the Travelling Salesman Problem (valmiin työn esittely) Jari Hast xx.12.2013 Ohjaaja: Harri Ehtamo Valvoja: Hari Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)
R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n
Rottien hyvinvointiin ja stressiin vaikuttavat tekijät
Rottien hyvinvointiin ja stressiin vaikuttavat tekijät Tiedonlouhinnan harjoitustyö Juha Mehtonen jmehtone@student.uef.fi Joni Mönttinen jmontti@cs.joensuu.fi i YLEISKUVAUS AIHEESTA (JONI MÖNTTINEN) Tutkimuksen
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.
Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.
Johdatus tn-laskentaan perjantai 17.2.2012
Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
pitkittäisaineistoissa
Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon
Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi
Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 5.-7.11.2008. 1 Tällä viikolla Sisältösuunnitelma: Ennustamisstrategioista Koneoppimismenetelmiä: k-nn (luokittelu
Regressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
jens 1 matti Etäisyydet 1: 1.1 2: 1.4 3: 1.8 4: 2.0 5: 3.0 6: 3.6 7: 4.0 zetor
T-1.81 Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ti 8.4., 1:1-18: Klusterointi, Konekääntäminen. Versio 1. 1. Kuvaan 1 on piirretty klusteroinnit käyttäen annettuja algoritmeja. Sanojen
Y ja
1 Funktiot ja raja-arvot Y100 27.10.2008 ja 29.10.2008 Aki Hagelin aki.hagelin@helsinki.fi Department of Psychology / Cognitive Science University of Helsinki 2 Funktiot (Lue Häsä & Kortesharju sivut 4-9)
Algoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:
Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs
JOHDATUS TEKOÄLYYN LUENTO 4.
2009 CBS INTERACTIVE JOHDATUS TEKOÄLYYN LUENTO 4. TODENNÄKÖISYYSMALLINNUS II: BAYESIN KAAVA TEEMU ROOS Marvin Minsky Father of Artificial Intelligence, 1927 2016 PINGVIINI(tweety) :- true. Wulffmorgenthaler
Poikkeavuuksien havainnointi (palvelinlokeista)
Poikkeavuuksien havainnointi (palvelinlokeista) TIES326 Tietoturva 2.11.2011 Antti Juvonen Sisältö IDS-järjestelmistä Datan kerääminen ja esiprosessointi Analysointi Esimerkki Lokidatan rakenne Esikäsittely,
Mat Lineaarinen ohjelmointi
Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään
Vektorien virittämä aliavaruus
Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään
Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
Algoritmit 1. Luento 12 Ke Timo Männikkö
Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.
Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä?
Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? 2013-2014 Lasse Lensu 2 Ongelma 2: Milloin ongelmat muuttuvat oikeasti hankaliksi? 2013-2014 Lasse Lensu 3 Ongelma 3: Miten hankalia ongelmia
Ongelma(t): Miten merkkijonoja voidaan hakea tehokkaasti? Millaisia hakuongelmia liittyy bioinformatiikkaan?
Ongelma(t): Miten merkkijonoja voidaan hakea tehokkaasti? Millaisia hakuongelmia liittyy bioinformatiikkaan? 2012-2013 Lasse Lensu 2 Ihmisen, eläinten ja kasvien hyvinvoinnin kannalta nykyaikaiset mittaus-,
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
Reaalilukuvälit, leikkaus ja unioni (1/2)
Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut
Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät
Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa
Kanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä?
Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? 2012-2013 Lasse Lensu 2 Ongelma 2: Milloin ongelmat muuttuvat oikeasti hankaliksi? 2012-2013 Lasse Lensu 3 Ongelma 3: Miten hankalia ongelmia
Monitavoiteoptimointi
Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa
Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat
1 Tukivektoriluokittelija Tukivektorikoneeseen (support vector machine) perustuva luoikittelija on tilastollisen koneoppimisen teoriaan perustuva lineaarinen luokittelija. Perusajatus on sovittaa kahden
Numeeriset menetelmät
Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b
Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin