Suurin yhteinen tekij ja pienin yhteinen jaettava 47

Koko: px
Aloita esitys sivulta:

Download "Suurin yhteinen tekij ja pienin yhteinen jaettava 47"

Transkriptio

1 6 Sis lt 2/18 Luvut Reaaliluvut Reaalilukujoukko 23 Luonnolliset luvut, kokonaisluvut, rationaaliluvut 24 Irrationaaliluvut 25 Desimaaliesitys 26 Rationaali- ja irrationaalilukujen tiheys 27 Algebralliset luvut ja transkendenttiluvut 28 Reaaliluvun itseisarvo 29 Luku Luvun m ritelm 30 Luvun laskeminen alkeellisesti 31 Sarjakehitelmi luvulle 32 Luvun historiaa 33 Neperin luku e Neperin luvun m ritelm 34 Neperin luvun arvon laskeminen 35 Neperin luvun historiaa 36 Summa ja tulo Laskulait 37 Summamerkint 38 Tulomerkint 39 Summamerkinn ll laskeminen 40 Keskiarvo Aritmeettinen keskiarvo 41 Geometrinen keskiarvo 42 Murtoluvut Murtoluvuilla laskeminen 43 Esimerkki murtolukualgebrasta 44 Alkutekij t Alkuluvut 45 Jaollisuuss nn t 46 Suurin yhteinen tekij ja pienin yhteinen jaettava 47 Salakirjoitus 48 Lukuj rjestelm t Kymmenj rjestelm 49 Muut lukuj rjestelm t 50 Esimerkkej lukuj rjestelmist 51 Kompleksiluvut Kompleksitaso 52 Kompleksilukujen yhteen- ja v hennyslasku 53 Kompleksilukujen kertolasku 54 Liittoluku; kompleksilukujen jakolasku 55 Kompleksiluvun napakulma 56 Kiertotekij ; Eulerin kaava 57

2 7 Sis lt 3/18 Potenssit ja polynomit Potenssi Kokonaislukupotenssit 58 Murtopotenssit 59 Irrationaalinen potenssi 60 Negatiivisten ja kompleksilukujen potenssit 61 Juuret Juuret 62 Juurifunktiot 63 Juurifunktion m ritelm n laajennus 64 Polynomit Polynomi 65 Binomikaava 66 Polynomien jakolasku 67 Polynomifunktio 68 Polynomien tekij ihin jako Polynomien alkeellinen tekij ihin jako 69 Reaali- ja kompleksikertoiminen tekij ihin jako 70 Tekij ihin jako polynomin nollakohtien avulla 71 Polynomin nollakohdat ja kertoimet 72

3 8 Sis lt 4/18 Yht l t ja ep yht l t Yht l t Yht l 73 Yht l iden sievent minen 74 Eri tyyppisi yht l it 75 Polynomiyht l t Ensimm isen ja toisen asteen yht l t 76 Korkeampien asteiden yht l t 77 Algebran peruslause 78 Juuriyht l t Juuriyht l n ratkaiseminen 79 Esimerkki juuriyht l n ratkaisusta 80 Itseisarvoyht l t Itseisarvoyht l n ratkaiseminen 81 Itseisarvoyht l n ratkaiseminen 82 tapa 1 Itseisarvoyht l n ratkaiseminen 83 tapa 2 Graanen esitys itseisarvoyht l n ratkaisemisessa 84 Transkendenttiyht l t Transkendenttiyht l t 85 Yht l ryhm t Yht l ryhm 86 Yht l ryhm n ratkaiseminen 87 Esimerkki 1 yht l ryhm n ratkaisemisesta 88 Esimerkki 2 yht l ryhm n ratkaisemisesta 89 Esimerkki 3 yht l ryhm n ratkaisemisesta 90 Esimerkki 4 yht l ryhm n ratkaisemisesta 91 Ep yht l t Ep yht l 92 Ep yht l iden ratkaiseminen 93 Esimerkki 1 ep yht l ist 94 Esimerkki 2 ep yht l ist 95 Esimerkki 3 ep yht l ist 96 Esimerkki 4 ep yht l ist 97 Esimerkki 5 ep yht l ist 98

4 9 Sis lt 5/18 Funktio Funktiok site Funktiok sitteen m rittely 99 Esimerkkej funktioista 100 Surjektio, injektio, bijektio 101 Yhdistetty funktio 102 K nteisfunktio 103 Funktion kuvaaja 104 Reaalifunktiot Reaalifunktion k site; alkeisfunktiot 105 Funktion kasvavuus ja v henevyys 106 Funktion jaksollisuus; parillisuus ja parittomuus 107 Reaalifunktion k nteisfunktio 108 K nteisfunktion kuvaaja 109

5 10 Sis lt 6/18 Alkeisfunktiot Rationaalifunktiot Rationaalifunktion lauseke 110 Asymptootit 111 Eksponenttifunktio Eksponenttifunktion m rittely ja perusominaisuudet 112 Yleisen eksponenttifunktion lausuminen Neperin luvun avulla 113 Eksponenttifunktio sovelluksissa 114 Logaritmifunktio Logaritmifunktion m rittely 115 Logaritmin laskus nn t 116 Eksponentti- ja logaritmiyht l t 117 Logaritmifunktion historiaa 118 Trigonometriset funktiot Trigonometriset funktiot suorakulmaisessa kolmiossa 119 Trigonometristen funktioiden t rke t arvot 120 Trigonometristen funktioiden yleinen m rittely 121 Trigonomteristen funktioiden perusominaisuudet 122 Trigonometristen funktioiden merkkikaaviot 123 Trigonometristen funktioiden kuvaajat 124 Trigonometristen funktioiden historiaa 125 Trigonometrian kaavat Ulkoa muistettavat peruskaavat 126 Helposti johdettavat kaavat 127 Trigonometristen funktioiden lausuminen toistensa avulla 128 Trigonometriset yht l t 129 Esimerkki 1 trigonometrisesta yht l st 130 Esimerkki 2 trigonometrisesta yht l st 131 Arcus-funktiot Arcus-funktioiden m ritelm t 132 Arcus-funktioiden kuvaajat; p haarat ja sivuhaarat 133 Arcus-funktioita koskevia kaavoja 134 Hyperbelifunktiot Hyperbelifunktioiden m rittely 135 Ketjuk yr ja katenoidi 136 Hyperbelifunktiot ja trigonometriset funktiot 137 Hyperboliset kaavat 138 Area-funktiot Area-funktioiden m ritelm t 139 Area-funktioiden kuvaajat 140 Area-funktioiden lausuminen logaritmin avulla 141

6 11 Sis lt 7/18 Lukujonon ja funktion raja-arvo Lukujonot Lukujonon k site 142 Eksplisiittisesti ja rekursiivisesti m ritellyt lukujonot 143 Aritmeettinen ja geometrinen jono 144 Lukujonon raja-arvo Esimerkki lukujonon raja-arvosta 145 Lukujonon raja-arvon m ritelm 146 Lukujonon suppeneminen ja hajaantuminen; raja-arvo Lukujonon raja-arvon laskeminen 148 Esimerkkej lukujonojen raja-arvoista 149 Lukujonojen standardiraja-arvoja 150 Alaraja-arvo ja yl raja-arvo 151 Sarjat Sarjan k site ja suppeneminen 152 Esimerkki 1 sarjoista 153 Esimerkki 2 sarjoista 154 Geometrinen sarja 155 Funktion raja-arvo Esimerkki funktion raja-arvosta 156 Funktion raja-arvon m ritelm 157 Toispuoliset raja-arvot; raja-arvo 1 ja raja-arvo rett myydess 158 Funktioiden raja-arvon laskeminen 159 Esimerkkej funktioiden raja-arvoista 160 Funktioiden standardiraja-arvoja 161 Funktion jatkuvuus Jatkuvuuden m ritelm 162 Esimerkkej funktioiden ep jatkuvuuksista: hyppyep jatkuvuus 163 Lis esimerkkej funktioiden ep jatkuvuuksista 164

7 12 Sis lt 8/18 Derivaatta Derivaatta Derivaatan m ritelm 165 Derivoituvuus 166 Dierentiaali 167 Korkeammat derivaatat 168 Esimerkkej derivaatan laskemisesta erotusosam r n raja-arvona 169 Derivaatan historiaa 170 Derivointis nn t Summan, vakiokerrannaisen, tulon ja osam r n derivaatta 171 Yhdistetyn funktion derivaatta 172 K nteisfunktion derivointi 173 Implisiittinen derivointi 174 Alkeisfunktioiden derivaatat Luettelo derivaatoista 175 Derivaattojen johtamisesta: standardiraja-arvojen k ytt 176 Derivaattojen johtamisesta: k nteisfunktiot 177 Maksimit ja minimit Funktion kasvavuus ja v henevyys; paikalliset riarvot 178 riarvon laadun tutkiminen 179 Absoluuttinen maksimi ja minimi 180 Esimerkki 1 maksimien ja minimien laskemisesta 181 Esimerkki 2 maksimien ja minimien laskemisesta 182 K yr n kuperuus K yr n kuperuus 183 K nnepiste 184 Nopeus ja kiihtyvyys Hetkellinen nopeus ja kiihtyvyys 185 Esimerkki nopeuden laskemisesta 186 Newtonin iteraatio Newtonin iteraatiomenetelm n idea 187 Newtonin iteraation kaavat 188 Esimerkki Newtonin iteraatiosta 189 Vaihtoehtoinen tapa johtaa iteraatiokaavat 190 Dierentiaaliyht l t Dierentiaaliyht l n k site 191 Esimerkki 1 dierentiaaliyht l ist 192 Esimerkki 2 dierentiaaliyht l ist 193

8 13 Sis lt 9/18 Integraali Integraalifunktio Integraalifunktion k site 194 Suoria integrointikaavoja I 195 Suoria integrointikaavoja II 196 Integraalifunktion jatkuvuudesta 197 M r tty integraali M r tyn integraalin m rittely 198 Esimerkki 1 Riemannin summasta 199 Esimerkki 2 Riemannin summasta 200 M r tyn integraalin ja integraalifunktion yhteys 201 M r tyn integraalin laskus nn t 202 Esimerkkej m r tyn integraalin laskemisesta 203 Ympyr n alan laskeminen integroimalla 204 M r tyn integraalin historiaa 205 Integroimistekniikkaa Sijoitusmenettely 206 Esimerkkej sijoitusmenettelyst I 207 Esimerkkej sijoitusmenettelyst II 208 Osittaisintegrointi 209 Esimerkkej osittaisintegroinnista 210 Pinta-alojen ja tilavuuksien laskeminen Tasoalueen pinta-ala 211 Esimerkki pinta-alan laskemisesta 212 Tilavuuden laskeminen 213 Esimerkki tilavuuden laskemisesta 214 Py r hdyspinnan ala 215 Esimerkki py r hdyspinnan alan laskemisesta 216 Massakeskipiste Massakeskipisteen m rittely 217 Esimerkki massakeskipisteen laskemisesta 218 Hitausmomentti Hitausmomentin m rittely 219 Esimerkki hitausmomentin laskemisesta 220

9 14 Sis lt 10/18 Geometrian perusk sitteet Geometria Geometrian synty 221 Paralleeliaksiooma; erilaisia geometrioita 222 Euklidinen ja ep euklidinen geometria 223 Projektiivinen geometria 224 Koordinaatistot Koordinaatiston ja koordinaattien k site 225 Suorakulmainen koordinaatisto tasossa 226 Suorakulmainen koordinaatisto avaruudessa 227 Tason napakoordinaatisto 228 Lieri koordinaatit 229 Pallokoordinaatit 230 Vektori Vektorik site 231 Vektorien yhteenlasku ja skalaarilla kertominen 232 Vektorit koordinaatistossa 233 Vektorialgebra Skalaaritulo 234 Vektorin komponentti 235 Vektoritulo 236 Vektoritulon laskeminen 237 Kolmitulot 238 Determinantti Determinantti 239 Piste Pisteen identiointi 240 Pisteen paikkavektori erilaisissa koordinaatistoissa 241 Kahden pisteen et isyys 242 Suora Suora geometrisena perusk sitteen 243 Suoran vektoriesitys 244 Suoran yht l 245 Suoran kulmakerroin 246 Kulmakertoimen laskeminen 247 Taso Taso geometrisena perusk sitteen 248 Tason vektoriesitys 249 Tason yht l 250 Koordinaattiakseleiden ja -tasojen suuntaiset tasot 251 Suora kolmiulotteisessa avaruudessa 252

10 15 Sis lt 11/18 Geometriset probleemat Geometriset probleemat Geometristen probleemojen tyypit 253 Geometristen probleemojen ratkaisumenetelm t 254 Synteettist geometriaa Esimerkki 1 synteettisest geometriasta 255 Esimerkki 2 synteettisest geometriasta 256 Analyyttista geometriaa Esimerkki 1 analyyttisest geometriasta 257 Esimerkki 2 analyyttisest geometriasta 258 Vektorigeometriaa Esimerkki 1 vektorigeometriasta 259 Esimerkki 2 vektorigeometriasta 260 Esimerkki 3 vektorigeometriasta 261 Algebralliset menetelm t geometriassa Esimerkki 1 algebrallisista menetelmist geometriassa 262 Esimerkki 2 algebrallisista menetelmist geometriassa 263 Esimerkki 3 algebrallisista menetelmist geometriassa 264

11 16 Sis lt 12/18 Kulma, kolmio, monikulmio ja -tahokas Kulma Tasokulma 265 Kulman mittaaminen 266 Avaruuskulma 267 Diedrikulma 268 Kolmio Kolmio: perusominaisuudet 269 Tasakylkinen, tasasivuinen, suorakulmainen kolmio 270 Kolmioiden yhtenevyys 271 Yhtenevyyslauseet I 272 Yhtenevyyslauseet II 273 Kolmioiden yhdenmuotoisuus 274 Yhdenmuotoisuuslauseet 275 Kulmanpuolittajat ja keskijanat 276 Korkeusjanat ja keskinormaalit 277 Sinilause ja kosinilause 278 Sini- ja kosinilauseen todistamisesta 279 Pythagoraan lause Pythagoraan lause 280 Muistikolmiot 281 Pythagoraan lauseen historiaa 282 Monikulmiot Monikulmio 283 Avaruusmonikulmio 284 S nn lliset monikulmiot 285 S nn llisten monikulmioiden laskemisesta 286 Laatoituksista 287 Monitahokkaat Monitahokas 288 S nn lliset monitahokkaat 289 Symmetrisist monitahokkaista 290 S nn llisi monitahokkaita on vain viisi 291

12 17 Sis lt 13/18 K yr t ja pinnat K yr Tasok yr 292 Parametriesityksen muodostaminen 293 Avaruusk yr 294 K yr n tangentti 295 Pinta Pinnan esitysmuodot 296 Esimerkkej pintojen parametriesityksist 297 Ympyr Ympyr ja sen yht l 298 Ympyr n parametriesitys 299 Sektori ja segmentti 300 Keh kulma 301 Tangenttikulma 302 Pisteen potenssi 303 Pallo Pallon yht l 304 Pallon tasoleikkaukset 305 Geodeettiset viivat; pallokolmiot 306 Kartio ja lieri Kartio 307 Katkaistu kartio 308 Lieri 309 Toisen asteen k yr t Toisen asteen k yr 310 Ellipsi 311 Hyperbeli 312 Liittohyperbeli ja asymptootit 313 Paraabeli 314 Kartioleikkaukset 315 Kartioleikkausten napakoordinaattiyht l t 316 Toisen asteen pinnat Toisen asteen pinta 317 Ellipsoidi 318 Hyperboloidit 319 Paraboloidit 320 Lieri t 321

13 18 Sis lt 14/18 Tangentti ja normaali, geometriset kuvaukset Tangentti ja normaali Sekantti ja tangentti 322 Tangenttitaso 323 Normaali 324 Projektio 325 Geometriset kuvaukset Geometrinen kuvaus 326 Euklidiset kuvaukset: siirto ja kierto 327 Euklidiset kuvaukset: peilaus ja skaalaus 328 Projektiokuvaukset 329 Aksonometria; perspektiivikuvat 330 Mandelbrotin joukko 331 Mandelbrotin joukon kuva 332

14 19 Sis lt 15/18 Pinta-aloja ja tilavuuksia Pinta-aloja ja tilavuuksia Laskemisesta ja m rittelyst 333 Tasokuviot 334 Kappaleet I 335 Kappaleet II 336

15 20 Sis lt 16/18 Diskreetti matematiikkaa Joukko-oppi Joukon k site 337 Osajoukko 338 Joukkoalgebraa 339 Reaalilukujoukon v lit 340 Logiikka Formaali logiikka 341 Propositiologiikka 342 Esimerkki: ep suora todistus 343 Predikaattilogiikka 344 Logiikka ja matematiikka 345 Matemaattinen induktio Induktion periaate 346 Esimerkki matemaattisesta induktiosta 347 Lukum r n laskeminen Samapituisten merkkijonojen lukum r I 348 Samapituisten merkkijonojen lukum r II 349 Joukon osajoukkojen lukum r 350 J rjestysten eli permutaatioiden lukum r 351 J rjestettyjen osajonojen lukum r 352 p-alkioisten osajoukkojen eli kombinaatioiden lukum r 353 Toisiaan leikkaavien joukkojen alkioiden lukum r 354 Binomi- ja multinomikertoimet Kertoma 355 Binomikertoimet 356 Pascalin kolmio 357 Multinomikertoimet 358

16 21 Sis lt 17/18 Todenn k isyys Todenn k isyyslaskenta Todenn k isyyslaskennan perusk sitteet 359 Todenn k isyysfunktio P 360 Esimerkkej kombinatorisesta todenn k isyyslaskennasta 361 Ehdollinen todenn k isyys 362 Tapahtumien riippumattomuus 363 Stokastinen muuttuja 364 Todenn k isyyslaskennan historiaa 365 Todenn k isyysjakaumat Diskreetit jakaumat 366 Jatkuvat jakaumat 367 Kertym funktio 368 Jakauman tunnusluvut 369 Normaalijakauma 370 Tilastomatematiikka Tilastodata 371 Tilastodatan esitt minen 372 Datan tunnusluvut 373 Matemaattinen tilastotiede 374 Estimointi 375 Tilastollinen testaus 376 Korrelaatio 377 Korrelaatiokerroin 378

17 22 Sis lt 18/18 Matematiikka tieteen Matematiikan merkinn t Yleist matematiikan merkinn ist 379 Kreikkalaiset kirjaimet 380 Matematiikka Matematiikan osa-alueet 381 Mathematical Reviews -lehden ylimm n tason ryhm jako 382 Matematiikan varhaishistoria 383 Matematiikan historia renessanssiajasta l htien 384 Matemaatikot Vanha aika, ennen Kristusta 385 Vanha aika, j lkeen Kristuksen 386 Keskiaika luku luvun alkupuoli luvun puoliv li luvun loppupuoli 391 Valistusaika (1700-luku) 392 Ranskan vallankumouksen ja Napoleonin aika luvun puoliv li luvun loppupuoli 395 Vuosisadan vaihde luvun alku luvun puoliv li 398 Kirjallisuutta 399

Sisältö 1/18 Hakemisto

Sisältö 1/18 Hakemisto Sisältö 1/18 Hakemisto Sisällön pääryhmät Luvut Potenssit ja polynomit Yhtälöt ja epäyhtälöt Funktio Alkeisfunktiot Lukujonon ja funktion raja-arvo Derivaatta Integraali Geometrian peruskäsitteet Geometriset

Lisätiedot

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat

EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden

Lisätiedot

MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä

MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Luonnos pitkän matematiikan opetussuunnitelmaksi. Pitkän matematiikan pakollinen oppimäärä

Luonnos pitkän matematiikan opetussuunnitelmaksi. Pitkän matematiikan pakollinen oppimäärä Luonnos pitkän matematiikan opetussuunnitelmaksi 2016 Kaikille lukiolaisille yhteisen johdantokurssin sisältö on luonnoksessa määritelty varsin yksityiskohtaisesti. Kurssin on annettava realistinen kuva

Lisätiedot

Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän

Lisätiedot

5.6.2 Matematiikan pitkä oppimäärä

5.6.2 Matematiikan pitkä oppimäärä 5.6.2 Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle ammatillisten ja korkeakouluopintojen edellyttämät matemaattiset valmiudet sekä matemaattinen

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Matematiikan pitkä oppimäärä

Matematiikan pitkä oppimäärä Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän

Lisätiedot

Geogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen

Geogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen Geogebra -koulutus Ohjelmistojen pedagoginen hyödyntäminen Geogebra Ilmainen dynaaminen matematiikkaohjelmisto osoitteessa http://www.geogebra.org Geogebra-sovellusversion voi asentaa tietokoneilla ja

Lisätiedot

Päättöarvioinnin kriteerit arvosanalle hyvä (8)

Päättöarvioinnin kriteerit arvosanalle hyvä (8) Tavoitteet Jokaisella oppilaalla on peruskoulun aikana mahdollisuus hankkia matemaattiset perustiedot ja -taidot, jotka antavat valmiuden luovaan matemaattiseen ajatteluun ja taitojen soveltamiseen eri

Lisätiedot

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku

3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku 5.6 Matematiikka Perusopetus Opetuksen tavoitteet Matematiikan opetuksen tavoitteena on, että aikuisopiskelija oppii ymmärtämään matemaattisten käsitteiden ja sääntöjen merkityksen sekä oppii näkemään

Lisätiedot

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen. 5.6. Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija

Lisätiedot

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet

MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet MATEMATIIKKA VL.7-9 7.LUOKKA Opetuksen tavoitteet Tavoitteisiin liittyvät sisältöalueet Laaja-alainen osaaminen Merkitys, arvot ja asenteet T1 vahvistaa oppilaan motivaatiota, myönteistä minäkuvaa ja itseluottamusta

Lisätiedot

Lyhyt matematematiikka. Matematiikan yhteinen opintokokonaisuus

Lyhyt matematematiikka. Matematiikan yhteinen opintokokonaisuus Matematiikan yhteinen opintokokonaisuus Matematiikan yhteisen opintokokonaisuuden tehtävänä on herättää opiskelijan kiinnostus matematiikkaa kohtaan muun muassa tutustuttamalla hänet matematiikan moninaiseen

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

Ehdotus vuonna 2016 voimaan astuvaksi pitkän matematiikan opetussuunnitelmaksi

Ehdotus vuonna 2016 voimaan astuvaksi pitkän matematiikan opetussuunnitelmaksi Ehdotus vuonna 2016 voimaan astuvaksi pitkän matematiikan opetussuunnitelmaksi Yhteisen johdantokurssin on annettava realistinen kuva pitkän matematiikan sisältöjen käsitteellisyystasosta. Myös lyhyen

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

PITKÄ MATEMATIIKKA. Pakolliset kurssit

PITKÄ MATEMATIIKKA. Pakolliset kurssit 13 PITKÄ MATEMATIIKKA Suoritusohje: Pakolliset kurssit suoritetaan numerojärjestyksessä, poikkeuksena kurssi MAA6, jonka voi suorittaa jo kurssin MAA2 jälkeen. Syventävien kurssien suoritusjärjestys mainitaan

Lisätiedot

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla 7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen

Lisätiedot

Reaaliluvut 1/7 Sisältö ESITIEDOT:

Reaaliluvut 1/7 Sisältö ESITIEDOT: Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:

Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: 9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Matematiikka. Matematiikan pitkä oppimäärä. Pakolliset kurssit

Matematiikka. Matematiikan pitkä oppimäärä. Pakolliset kurssit Matematiikka Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa.

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa.

MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

Matematiikan lyhyen oppimäärän opetuksen tavoitteena on, että opiskelija

Matematiikan lyhyen oppimäärän opetuksen tavoitteena on, että opiskelija 1 7.4. Matematiikka 7.4.1. Matematiikka, lyhyt oppimäärä Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen

Lisätiedot

Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS

Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS Matematiikka tarjoaa välineitä johdonmukaisen ja täsmällisen ajattelun edistämiseen, avaruuden hahmottamiseen sekä käytännön ja

Lisätiedot

Kurssit MAA1 MAA14 ja MAB1- MAB9 arvostellaan numeroarvosanalla Soveltava kurssi MAA 15 arvostellaan suoritettu / hylätty.

Kurssit MAA1 MAA14 ja MAB1- MAB9 arvostellaan numeroarvosanalla Soveltava kurssi MAA 15 arvostellaan suoritettu / hylätty. MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen

Lisätiedot

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan

Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan Oppiaineen nimi: MATEMATIIKKA 7-9 Vuosiluokat Opetuksen tavoite Sisältöalueet Laaja-alainen osaaminen Arvioinnin kohteet oppiaineessa Hyvä/arvosanan kahdeksan osaaminen Merkitys, arvot ja asenteet 7 Ei

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Osa 1 Pekka Salmi 18. syyskuuta 2015 Pekka Salmi FUNK 18. syyskuuta 2015 1 / 65 Yleistä Luennot: ma 1214, pe 1012 Luennoitsija: Pekka Salmi, M229 (kahden viikon

Lisätiedot

Funktiot ja raja-arvo P, 5op

Funktiot ja raja-arvo P, 5op Funktiot ja raja-arvo 800119P, 5op Pekka Salmi 15. syyskuuta 2017 Pekka Salmi FUNK 15. syyskuuta 2017 1 / 122 Yleistä Luennot: ke 810, to 1214 (ensi viikosta lähtien) Luennoitsija: Pekka Salmi, MA327 Laskupäivä:

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

Algoritmit C++ Kauko Kolehmainen

Algoritmit C++ Kauko Kolehmainen Algoritmit C++ Kauko Kolehmainen Algoritmit - C++ Kirjoittanut Taitto Kansi Kustantaja Kauko Kolehmainen Kauko Kolehmainen Frank Chaumont Oy Edita Ab IT Press PL 760 00043 EDITA Sähköpostiosoite Internet

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

5.6.3 Matematiikan lyhyt oppimäärä

5.6.3 Matematiikan lyhyt oppimäärä 5.6.3 Matematiikan lyhyt oppimäärä Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo

1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo 1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA

OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA OPS OPPIMISTAVOITTEET JA OPETUKSEN MATEMATIIKKA 2013 2014 MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä

Lisätiedot

6.4 Matematiikka. Arviointi

6.4 Matematiikka. Arviointi 6.4 Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Sillä on merkittävä tai ratkaiseva rooli muun muassa tieteissä,

Lisätiedot

6.4 Matematiikka. Arviointi

6.4 Matematiikka. Arviointi 6.4 Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Sillä on merkittävä tai ratkaiseva rooli muun muassa tieteissä,

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

Matematiikka. Aineen kuvaus

Matematiikka. Aineen kuvaus Matematiikka Aineen kuvaus Matematiikkaa lähestytään peruskäsitteistä: määrä, muoto ja jatkuva muutos. Matematiikka sovelluksineen palvelee lähes kaikkia eri oppiaineita ja eri elämän- alueita. Matematiikan

Lisätiedot

3.6 Matematiikka. Esimerkkien ja sovellustehtävien avulla kestävän kehityksen näkökulma tulee esille kursseissa MAA6 ja MAA8 sekä MAB3 ja MAB5.

3.6 Matematiikka. Esimerkkien ja sovellustehtävien avulla kestävän kehityksen näkökulma tulee esille kursseissa MAA6 ja MAA8 sekä MAB3 ja MAB5. 3.6 Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Nykyisen huipputeknologian saavuttamisessa ja kehittämisessä

Lisätiedot

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.

Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen. Luku 1 Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija

Lisätiedot

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun 13. elokuuta 2015 Miksi matikkaa Erityisen tärkeää teknillisillä ja luonnontieteellisillä aloilla Ohjelmointi ja tietojenkäsittelytiede Lääketieteellinen

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Reaalifunktiot 1/5 Sisältö ESITIEDOT: funktiokäsite

Reaalifunktiot 1/5 Sisältö ESITIEDOT: funktiokäsite Reaalifunktiot 1/5 Sisältö ESITIEDOT: funktiokäsite Hakemisto KATSO MYÖS: potenssi, juuret, polnomit, rationaalifunktiot, eksponenttifunktio, logaritmifunktio, trigonometriset funktiot, arcusfunktiot,

Lisätiedot

Hakemisto 1/23 Sisältö A B C D E F G H I J Ka Kl Ko Kä L M N O Pa Pl Po Pä R S T U V W Y Ä

Hakemisto 1/23 Sisältö A B C D E F G H I J Ka Kl Ko Kä L M N O Pa Pl Po Pä R S T U V W Y Ä Hakemisto 1/23 Sisältö A Abel Abel (polynomiyhtälöt) additiivisuus (integraalin) Ahlfors (kompleksiluvut) aikasarja akseli (ellipsin) akseli (hyperbelin) akseli (paraabelin) aksiooma aksiooma aksonometria

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste, Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

ja sitten. Kosketuskynä on upotettuna laskimen päädyssä ja ponnahtaa esiin, kun sitä hieman painetaan sisäänpäin.

ja sitten. Kosketuskynä on upotettuna laskimen päädyssä ja ponnahtaa esiin, kun sitä hieman painetaan sisäänpäin. Contents 1. Aloitus... 8 1.1 Päävalikko... 8 1.2 Jaettu näyttö sekä vedä ja pudota -toiminto... 9 1.3 Vaakanäyttö... 11 1.4 Asetukset... 11 1.5 Virtuaalinäppäimistö... 12 1.6 Luettelo... 13 2. Peruslaskenta...

Lisätiedot

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen 4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f

Lisätiedot

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Kompleksianalyysi Funktiot

Kompleksianalyysi Funktiot Kompleksianalyysi Funktiot Jukka Kemppainen Mathematics Division Kompleksimuuttujan funktio Aloitetaan funktion määritelmällä. Määr. 1 Kompleksimuuttujan funktio f : C C on sääntö, joka liittää joukkoon

Lisätiedot

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2. MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset

Lisätiedot

Lukiotason matematiikan tietosanakirja

Lukiotason matematiikan tietosanakirja niinkuin matematiikka Simo K. Kivelä Lukiotason matematiikan tietosanakirja Versio 1.12 / 10.08.2000 Simo K. Kivelä Riikka Nurmiainen TKK 1998 2005 Taustat 1/1 Lukiotason matematiikan tietosanakirja M

Lisätiedot

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi MAB 9 kertaus MAB 1 Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi Kertolaskussa osoittajat ja nimittäjät kerrotaan keskenään Jakolasku lasketaan kertomalla

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena

Lisätiedot

Kompleksiluvut Kompleksitaso

Kompleksiluvut Kompleksitaso . Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen

Lisätiedot

Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville

Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Tutki GeoGebralla Näkymät->Geometria a) Kuinka suuria ovat kolmion kulmat, jos sen sivut ovat 5, 7 ja 9. Vihje: Aloita kolmion piirtäminen yhdestä

Lisätiedot

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5? Funktio. a) Mikä on funktion f (x) = x + lähtöjoukko eli määrittelyjoukko, kun 0 x 5? b) Mikä on funktion f (x) = x + maalijoukko eli arvojoukko? c) Selitä, mikä on funktion nollakohta. Anna esimerkki.

Lisätiedot

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo?

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo? Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos Matlab-tehtäviä, käyrän sovitus -e Differentiaali- ja integraalilaskenta 1. Laske integraali 2π cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti.

Lisätiedot

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

MATEMATIIKKA/Vuosiluokat 7-9

MATEMATIIKKA/Vuosiluokat 7-9 MATEMATIIKKA/Vuosiluokat 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matema ikan opetuksen tehtävänä on vahvistaa matemaa sta yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden

Lisätiedot

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot Trigonometrian kaavat 1/6 Sisältö Ulkoa muistettavat peruskaavat Trigonometrisia funktioita koskevia kaavoja on paljon. Seuraavassa esitetään tärkeimmät ja lyhyet ohjeet niiden muistamiseen. Varsinaisesti

Lisätiedot

Kevään 2011 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä /

Kevään 2011 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä / Kevään 0 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä / 8.7.0 a) b) c) a) Tehtävä Yhtälö ratkaistaan yleensä Solve-funktiolla: Solve x 3 x, x x 4 Joissakin tapauksissa

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9

Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9 Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen

Lisätiedot

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin: Määrittelyjoukot Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:, 0 ; log, > 0 ;, 0 (parilliset juuret) ; tan, π + nπ Potenssisäännöt Ole tarkkana kantaluvun kanssa 3 3

Lisätiedot

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13 Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen

Lisätiedot