Sisällys. T Tietokonegrafiikan perusteet. OpenGL-ohjelmointi 11/2007. Mikä on OpenGL?

Koko: px
Aloita esitys sivulta:

Download "Sisällys. T-111.4300 Tietokonegrafiikan perusteet. OpenGL-ohjelmointi 11/2007. Mikä on OpenGL?"

Transkriptio

1 T Tietokonegrafiikan perusteet OpenGL-ohjelmointi 11/2007 Sisällys Mikä on OpenGL? historia nykytilanne OpenGL:n toiminta Piirtäminen ja matriisit Muuta hyödyllistä kameran sijoittaminen valaistus 1

2 Materiaalia Älä usko assaria, lue kirjoja ja kokeile! Kurssikirjaan (Hearn & Baker) hyvä tutustua OpenGL Programming Guide ja OpenGL Reference Manual erittäin hyviä oppaita, löytyvät myös verkosta: paljon tietoa, jota ei löydy näistä kalvoista Linkkejä verkosta löytyvään materiaaliin kurssin harjoitusten linkkisivuilla: Mikä on OpenGL? Matalan tason 2d- ja 3d-grafiikkakirjasto Pohjautuu SGI:n IRIS GL -kirjastoon 80-luvulta Tuettu kaikilla yleisimmillä käyttöjärjestelmillä Tarkoitettu vuorovaikutteiseen tietokonegrafiikkaan Yleiskäyttöinen, ei pelkkä pelikirjasto! Alun perin C-kielelle Nykyään voidaan käyttää myös Pythonilla, Javalla, Perlillä, C#:lla... Nykyiset versiot Version 2.0 lisäarvo OpenGL Shading Language Versio 2.1 julkaistu

3 OpenGL - kilpailu & tulevaisuus Tärkein kilpailija Microsoftin Direct3D Toimii ainoastaan Windows- ja Xboxympäristöissä Jyräämässä erityisesti peleissä OpenGL:n yli Poikkeuksena Doom 3 Molemmat näytönohjaimeista riippumattomia OpenGL:stä myös mobiililaitteisiin tarkoitettu OpenGL ES -versio OpenGL-apukirjastot OpenGL sisältää kolme erillistä kirjastoa: GL, GLU ja GLUT GL eli varsinainen OpenGL-kirjasto hoitaa ainoastaan renderöinnin GLU (OpenGL Utility Library) tarjoaa projektiofunktioita (esimerkiksi gluperspective, glulookat) GLUT (OpenGL Utility Toolkit) tarjoaa ikkunan hallinnan, fonttien käsittelyn ja erilaisia apufunktioita esimerkiksi yksinkertaisten mallien luomiseen ei virallisesti osa OpenGL-kirjastoa ei käytetä Javassa ikkunoiden luomiseen! 3

4 Mitä OpenGL ei sisällä? Nämä toiminnallisuudet täytyy ohjelmoida itse, tai käyttää valmiita, OpenGL:n päällä toimivia kirjastoja 1. Scene Graphit OpenGL ei sisällä pysyvää tietorakenetta malleista ja niiden sijainneista, joka säilyisi piirtokertojen välissä Tällaista rakennetta kutsutaan nimellä scene graph 2. Mallien lataaminen OpenGL ei osaa ladata kolmiulotteisia malleja tiedostoista 3. Ray Tracing OpenGL ei tue Ray Tracingia, eli kuvan muodostamista valonsäteiden polkuja seuraamalla Ei toteutettavissa OpenGL:llä Kolmion piirtäminen Kolmion piirtäminen OpenGL:ssä: gl.glbegin(gl.gl_triangles) // Yläkärki gl.glvertex3f( 0.0f, 1.0f,0.0f); // Vasen alanurkka gl.glvertex3f(-1.0f,-1.0f,0.0f); // Oikea alanurkka gl.glvertex3f( 1.0f,-1.0f,0.0f); gl.glend(); Polygoni esitetään sarjana verteksejä, Verteksien välille muodostuvat polygonin sivut Monimutkaisemmat kappaleet koostuvat useista polygoneista 4

5 OpenGL-ohjelmien toimintaperiaate OpenGL perustuu välittömään tilaan Kaikki kuviot piirretään uudelleen joka piirtokerralla Vastakohtana pysyvä tila Nykyisillä näytönohjaimilla onnistuu tehokkaasti Ihmissilmä kokee miellyttävänä ruudunpäivitysnopeuden, joka on vähintään 40 kuvaa sekunnissa OpenGL Tilakone 1 OpenGL oikeastaan iso tilakone Sisältää yli 100 tilamuuttujaa Kun tila on asetettu, se on voimassa kunnes sitä muutetaan Tilat asetetaan toisistaan riippumattomasti Funktioita tilojen muuttamiseksi Tilat vaikuttavat näytönohjaimen toimintaan Esimerkiksi aktiivinen väri, tekstuuri ja transformaatiot ovat tilan muutoksia Muita tilan muutoksia: valot, sumu... 5

6 OpenGL Tilakone 2 Tiloja vaihdetaan funktiokutsuilla Komennot vaikuttavat piirrosprosessiin Ei takeita, että lopputulos olisi samanlainen kahdella eri alustalla OpenGL Tilakone 3 6

7 OpenGL-komentojen syntaksi OpenGL-komennot alkavat etuliitteellä gl, jota seuraa komennon nimi Esim glbegin ja glvertex3f OpenGL-vakiot kirjoitetaan isoin kirjaimin alkavat etuliitteellä GL_ Esim GL_LINE_STRIP Yleensä funktioiden nimet kertovat, montako parametria ne ottavat ja mitä tyyppiä ne ovat Esimerkiksi: glvertex2f (2 float-muotoista parametria) glvertex3f (3 float-muotoista parametria) glvertex3i (3 integer-muotoista parametria) Piirtäminen OpenGL:ssä Kymmenen erilaista piirtoprimitiiviä Muut kuviot ja mallit piirretään näitä primitiivejä käyttäen 7

8 Yksinkertainen OpenGL-ohjelma public void display(gldrawable drawable) { GL gl = drawable.getgl(); gl.glclearcolor(0.0f, 0.0f, 0.0f, 0.0f); gl.glclear(gl.gl_color_buffer_bit); gl.glortho(-1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f); gl.glcolor3f(1.0f, 1.0f, 1.0f); gl.glbegin(gl.gl_polygon); gl.glvertex2f(-0.5f, -0.5f); gl.glvertex2f(-0.5f, 0.5f); gl.glvertex2f( 0.5f, 0.5f); gl.glvertex2f( 0.5f, -0.5f); gl.glend(); } gl.glflush(); Pohjautuu OpenGL Programming Guide -esimerkkiin OpenGL koordinaatistot OpenGL:ssä verteksit saadaan ruudulle sopivaan muotoon kolmella affiinimuunnoksella Kaikki 3d-muunnokset ovat affiinimuunnoksia Voidaan laskea homogeenisillä 4x4 matriiseilla Verteksin muuntaminen: 8

9 Matriisipinot 1 Matriiseilla määritellään Translaatiot Rotaatiot Skaalaukset Kallistukset (skew) Matriisipino sisältää sarjan muunnosmatriiseja Pinon päällimmäinen matriisi on käytössä oleva matriisi Matriisi lisätään pinoon glpushmatrix()-komennolla Päällimmäinen matriisi poistetaan pinosta glpopmatrix()-komennolla Tyhjää matriisia kutsutaan identiteettimatriisiksi ja sen voi ladata glloadidentity()-komennolla Matriisipinot 2 OpenGL:ssä on kolme matriisipinoa Katselumatriisit (GL_MODELVIEW) Projektiomatriisit (GL_PROJECTION) Tekstuurimatriisit (GL_TEXTURE) Aktiivista matriisipinoa vaihdetaan seuraavasti: glmatrixmode(gl_modelview); glmatrixmode(gl_projection); Objektien asettelu ja käsittely tapahtuu modelview-pinossa 9

10 3d-muunnokset 1 Kappaleiden saaminen oikeille paikoilleen onnistuu 3d-muunnosten avulla: glrotatef( ) kääntää kuvioita gltranslatef( ) siirtää piirrettävää kuviota. glscalef( ) muuttaa kuvion kokoa. Muunnoksilla muutetaan koordinaatistoa, ei kappaletta Vastaavat Modelview-matriisin ja sopivan muunnosmatriisin tuloa Esim muunnosmatriisi pisteiden kääntämiseksi y-akselin ympäri: 3d-muunnokset 2 1. Talleta ensin nykyinen matriisi pinoon glpushmatrix-komennolla 2. Tee tarvittavat muunnokset Järjestyksellä on väliä! 3. Piirrä objekti 4. Palauta edellinen matriisi glpopmatrixkomennolla 10

11 Muunnosten järjestys glrotatef(pi/4,0,0,1); gltranslatef(5,0,0); drawcar(); gltranslatef(5,0,0); glrotatef(pi/4,0,0,1); drawcar(); Perustuu Jeff Chastinen esimerkkiin: 11

12 12

13 Translaatio Translaatio Translaatio 13

14 Rotaatio Translaatio Translaatio 14

15 Translaatio Translaatio Translaatio2 Translaatio 15

16 Translaatio 16

17 Valaistus 1 Valaistu ja valaisematon pallo: Valaistus 2 Valaistus otettava erikseen käyttöön: glenable(gl_lighting); Jokainen valonlähde otettava erikseen käyttöön glenable(gl_light0); Kolmenlaisia valoja: Pointlight pistevalo, säteilee joka suuntaan Spotlight valokeila, säteet rajatussa kulmassa Directional light äärettömän kaukana oleva pistevalo Spotlightin leveyden määrittää GL_SPOT_CUTOFF -parametri 17

18 Valaistus 3 Valonlähteen paikka määritellään GL_POSITIONparametrin avulla Jos paikkamuuttujan viimeinen arvo on 0, valonlähde on suunnattu valo suunnattu valo on äärettömän kaukana float[] light_position = new float[] { 1.0f, 1.0f, 1.0f, 0.0f }; gl.gllightfv(gl.gl_light0, GL.GL_POSITION, light_position); Valaistus 4 Valonlähteen ominaisuuksia muutetaan gllightfvmetodin avulla, esim: float[] lightdiffuse = new float[] {1.0f, 1.0f, 1.0f, 1.0f}; gl.gllightfv(gl.gl_light0, GL.GL_DIFFUSE, lightdiffuse); Lisää valaistusoppia OpenGL Programming Guidessa: 18

19 Sävytys 1 (shading) Pinnan polygonien varjostusta OpenGL:ssä kaksi tapaa täyttää polygoni: GL_FLAT polygoni täytetään tasaisella värillä, joka on yhden verteksin väri GL_SMOOTH Gouraud-sävytys verteksien värit interpoloidaan polygonin sisäpuolisille pisteille Valitaan glshademodel()-metodilla Ruudun tyhjentäminen Ruudun tyhjennys OpenGL:ssä: glclear(gl_color_buffer_bit GL_DEPTH_BUFFER_BIT); Tyhjentää sekä väri- ja syvyyspuskurin Ruuduntyhjennysvärin muuttaminen: glclearcolor(0.0f, 0.0f, 0.0f, 0.0f); 19

20 Kameran sijoittaminen Helpoin tapa sijoittaa kamera on käyttää glu-kirjaston glulookat()-metodia: eye-koordinaatit määrittävät kameran sijainnin center-koordinaatit pisteen, johon kamera katsoo up-koordinaatit ylöspäin osoittavan vektorin glulookat(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz); Geometriset primitiivit GLUT-kirjastosta löytyy metodit yleisimpien geometristen primitiivien piirtämiseen Erityisesti hyötyä yksinkertaisissa testiohjelmissa Kuution piirtäminen: glutsolidcube(1.0f); Muita GLUT-kirjastosta löytyviä primitiivinpiirtometodeja: glutsolidsphere(), glutsolidicosahedron(), glutsolidtorus() 20

T Tietokonegrafiikan perusteet. OpenGL-ohjelmointi

T Tietokonegrafiikan perusteet. OpenGL-ohjelmointi T-111.4300 Tietokonegrafiikan perusteet OpenGL-ohjelmointi Id Softwaren huhtikuussa 2004 julkaisema Doom 3 -peli käyttää OpenGL-kirjastoa. Sisällys Mikä on OpenGL? historia nykytilanne OpenGL:n toiminta

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

Tietokonegrafiikka. Jyry Suvilehto T Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014

Tietokonegrafiikka. Jyry Suvilehto T Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014 Tietokonegrafiikka Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014 1. Sovellusalueita 2. Rasterigrafiikkaa 3. Vektorigrafiikkaa 4. 3D-grafiikkaa 1. Säteenheitto

Lisätiedot

Esimerkkejä. OpenGL ohjelma. OpenGL tilakone. Geometriset primitiivit. Hyvät ja huonot polygonit. OpenGL Pipeline. Rasterointi

Esimerkkejä. OpenGL ohjelma. OpenGL tilakone. Geometriset primitiivit. Hyvät ja huonot polygonit. OpenGL Pipeline. Rasterointi Tietokonegrafiikka / perusteet Ako/T-111.300/301 4 ov / 2 ov OpenGL 1 Yleistä harjoituksista OpenGL:n toiminta Primitiivit Kuvapuskurit Koordinaatistot ja projisointi Transformaatiot ja matriisit Valaistus

Lisätiedot

T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka

T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka Timo Tossavainen Mediatekniikan laitos, Aalto-yliopiston perustieteiden korkeakoulu Timo.Tossavainen@tkk.fi 25.3.2011 Sisältö Historiaa

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf

Lisätiedot

OpenGL:n perusteet - Osa 2: 3D grafiikka

OpenGL:n perusteet - Osa 2: 3D grafiikka OpenGL:n perusteet - Osa 2: 3D grafiikka OpenGL on käyttöjärjestelmäriippumaton kirjasto 2D- ja 3D-grafiikan piirtoon. Tämä artikkelisarja opettaa sinulle 3D-grafiikan perusteet OpenGL:ää käyttäen. Esimerkeissä

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Visualisoinnin perusteet

Visualisoinnin perusteet 1 / 12 Digitaalisen arkkitehtuurin yksikkö Aalto-yliopisto Visualisoinnin perusteet Mitä on renderöinti? 2 / 12 3D-mallista voidaan generoida näkymiä tietokoneen avulla. Yleensä perspektiivikuva Valon

Lisätiedot

Tilanhallintatekniikat

Tilanhallintatekniikat Tilanhallintatekniikat 3D grafiikkamoottoreissa Moottori on projektin osa joka vastaa tiettyjen toiminnallisuuksien hallinnasta hallitsee kaikki vastuualueen datat suorittaa kaikki tehtäväalueen toiminnot

Lisätiedot

6. Harjoitusjakso II. Vinkkejä ja ohjeita

6. Harjoitusjakso II. Vinkkejä ja ohjeita 6. Harjoitusjakso II Seuraavaksi harjoitellaan algebrallisten syötteiden, komentojen ja funktioiden käyttöä GeoGebrassa. Tarjolla on ensimmäisen harjoittelujakson tapaan kahden tasoisia harjoituksia: perustaso

Lisätiedot

Peilaus pisteen ja suoran suhteen Pythonin Turtle moduulilla

Peilaus pisteen ja suoran suhteen Pythonin Turtle moduulilla Peilaus pisteen ja suoran suhteen Pythonin Turtle moduulilla ALKUHARJOITUS Kynän ja paperin avulla peilaaminen koordinaatistossa a) Peilaa pisteen (0,0) suhteen koordinaatistossa sijaitseva - neliö, jonka

Lisätiedot

Luento 7: 3D katselu. Sisältö

Luento 7: 3D katselu. Sisältö Tietokonegrafiikka / perusteet Tik-.3/3 4 ov / 2 ov Luento 7: 3D katselu Lauri Savioja /4 3D katselu / Sisältö Koorinaattimuunnokset Kameran ja maailmankoorinaatiston yhteys Perspektiivi 3D katselu / 2

Lisätiedot

JAVA on ohjelmointikieli, mikä on kieliopiltaan hyvin samankaltainen, jopa identtinen mm. C++

JAVA on ohjelmointikieli, mikä on kieliopiltaan hyvin samankaltainen, jopa identtinen mm. C++ JAVA alkeet JAVA on ohjelmointikieli, mikä on kieliopiltaan hyvin samankaltainen, jopa identtinen mm. C++ ja Javascriptin kanssa. Huom! JAVA ja JavaScript eivät silti ole sama asia, eivätkä edes sukulaiskieliä.

Lisätiedot

AS-0.1103 C-ohjelmoinnin peruskurssi 2013: C-kieli käytännössä ja erot Pythoniin

AS-0.1103 C-ohjelmoinnin peruskurssi 2013: C-kieli käytännössä ja erot Pythoniin AS-0.1103 C-ohjelmoinnin peruskurssi 2013: C-kieli käytännössä ja erot Pythoniin Raimo Nikkilä Aalto-yliopiston sähkötekniikan korkeakoulu - Automaation tietotekniikan tutkimusryhmä 17. tammikuuta 2013

Lisätiedot

http://info.edu.turku.fi/mato/

http://info.edu.turku.fi/mato/ Matemaattisia VALOja Vapaita avoimen lähdekoodin ohjelmia matematiikan opettamiseen ja muuhun matemaattiseen käyttöön. http://info.edu.turku.fi/mato/ LaTeX ja Texmaker LaTeX on ladontaohjelmisto, joka

Lisätiedot

Luento 10: Näkyvyystarkastelut ja varjot. Sisältö

Luento 10: Näkyvyystarkastelut ja varjot. Sisältö Tietokonegrafiikka / perusteet T-111.300/301 4 ov / 2 ov Luento 10: Näkyvyystarkastelut ja varjot Marko Myllymaa / Lauri Savioja 10/04 Näkyvyystarkastelut ja varjot / 1 Näkyvyystarkastelu Solurenderöinti

Lisätiedot

815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 5 Vastaukset

815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 5 Vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 5 Vastaukset Harjoituksen aiheena ovat aliohjelmat ja abstraktit tietotyypit sekä olio-ohjelmointi. Tehtävät tehdään C-, C++- ja Java-kielillä.

Lisätiedot

Jypelin käyttöohjeet» Miten voin liittää törmäyksiin tapahtumia?

Jypelin käyttöohjeet» Miten voin liittää törmäyksiin tapahtumia? Muilla kielillä: English Suomi Jypelin käyttöohjeet» Miten voin liittää törmäyksiin tapahtumia? Kun kaksi fysiikkaoliota törmää toisiinsa, syntyy törmäystapahtuma. Nämä tapahtumat voidaan ottaa kiinni

Lisätiedot

Pong-peli, vaihe Aliohjelman tekeminen. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 3/7. Tämän vaiheen aikana

Pong-peli, vaihe Aliohjelman tekeminen. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 3/7. Tämän vaiheen aikana Muilla kielillä: English Suomi Pong-peli, vaihe 3 Tämä on Pong-pelin tutoriaalin osa 3/7. Tämän vaiheen aikana Jaetaan ohjelma pienempiin palasiin (aliohjelmiin) Lisätään peliin maila (jota ei voi vielä

Lisätiedot

T-76.115 Tietojenkäsittelyopin ohjelmatyö. Testisarja Ray tracing. Tietokonegrafiikka-algoritmien visualisointi. Testisarja Ray tracing

T-76.115 Tietojenkäsittelyopin ohjelmatyö. Testisarja Ray tracing. Tietokonegrafiikka-algoritmien visualisointi. Testisarja Ray tracing T-76.115 Tietojenkäsittelyopin ohjelmatyö Sisältö Keimo-visualisointijärjestelmän Ray tracing - visualisaation testisarja. Sarja sisältää testitapaukset ja testilokit Päivämäärä 13.4.2003 Projektiryhmä

Lisätiedot

GeoGebra-harjoituksia malu-opettajille

GeoGebra-harjoituksia malu-opettajille GeoGebra-harjoituksia malu-opettajille 1. Ohjelman kielen vaihtaminen Mikäli ohjelma ei syystä tai toisesta avaudu toivomallasi kielellä, voit vaihtaa ohjelman käyttöliittymän kielen seuraavasti: 2. Fonttikoon

Lisätiedot

Palauta jokainen funktio-tiedosto. Esitä myös funktiot vastauspaperissasi.

Palauta jokainen funktio-tiedosto. Esitä myös funktiot vastauspaperissasi. Tehtävä 1 Kirjoita neljä eri funktiota (1/2 pistettä/funktio): 1. Funktio T tra saa herätteenä 3x1-kokoisen paikkavektorin p. Se palauttaa 4x4 muunnosmatriisin, johon sijoitettu p:n koordinaattien mukainen

Lisätiedot

Sisältö. Luento 1: Transformaatiot (2D) 1. Koordinaattimuunnokset. Muunnokset (jatkuu) 2. Perustransformaatiot. Perustransformaatiot (jatkuu)

Sisältö. Luento 1: Transformaatiot (2D) 1. Koordinaattimuunnokset. Muunnokset (jatkuu) 2. Perustransformaatiot. Perustransformaatiot (jatkuu) Sisältö ietokonegrafiikka / perusteet Ako/-.3/3 4 ov / 2 ov Perustransformaatiot ransformaatioiden hdistäminen Muunnosmatriisit Laskennallisia näkökohtia Luento : ransformaatiot (2D) Marko Mllmaa 6/4 2D

Lisätiedot

2. Lisää Java-ohjelmoinnin alkeita. Muuttuja ja viittausmuuttuja (1/4) Muuttuja ja viittausmuuttuja (2/4)

2. Lisää Java-ohjelmoinnin alkeita. Muuttuja ja viittausmuuttuja (1/4) Muuttuja ja viittausmuuttuja (2/4) 2. Lisää Java-ohjelmoinnin alkeita Muuttuja ja viittausmuuttuja Vakio ja literaalivakio Sijoituslause Syötteen lukeminen ja Scanner-luokka 1 Muuttuja ja viittausmuuttuja (1/4) Edellä mainittiin, että String-tietotyyppi

Lisätiedot

Luento 6: Tulostusprimitiivien toteutus

Luento 6: Tulostusprimitiivien toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Tulostusprimitiivien toteutus Lauri Savioja 11/07 Primitiivien toteutus / 1 ntialiasointi Fill-algoritmit Point-in-polygon Sisältö Primitiivien toteutus

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 7. Kombinatoriikka 7.1 Johdanto Kombinatoriikka tutkii seuraavan kaltaisia kysymyksiä: Kuinka monella tavalla jokin toiminto voidaan suorittaa? Kuinka monta tietynlaista

Lisätiedot

Pong-peli, vaihe Koordinaatistosta. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 2/7. Tämän vaiheen aikana

Pong-peli, vaihe Koordinaatistosta. Muilla kielillä: English Suomi. Tämä on Pong-pelin tutoriaalin osa 2/7. Tämän vaiheen aikana Muilla kielillä: English Suomi Pong-peli, vaihe 2 Tämä on Pong-pelin tutoriaalin osa 2/7. Tämän vaiheen aikana Laitetaan pallo liikkeelle Tehdään kentälle reunat Vaihdetaan kentän taustaväri Zoomataan

Lisätiedot

Harjoitus Bones ja Skin

Harjoitus Bones ja Skin LIITE 3 1(6) Harjoitus Bones ja Skin Harjoituksessa käsiteltävät asiat: Yksinkertaisen jalan luominen sylinteristä Luurangon luominen ja sen tekeminen toimivaksi raajaksi Luurangon yhdistäminen jalka-objektiin

Lisätiedot

Scratch ohjeita. Perusteet

Scratch ohjeita. Perusteet Perusteet Scratch ohjeita Scratch on graafinen ohjelmointiympäristö koodauksen opetteluun. Se soveltuu hyvin alakouluista yläkouluunkin asti, sillä Scratchin käyttömahdollisuudet ovat monipuoliset. Scratch

Lisätiedot

Metodit. Metodien määrittely. Metodin parametrit ja paluuarvo. Metodien suorittaminen eli kutsuminen. Metodien kuormittaminen

Metodit. Metodien määrittely. Metodin parametrit ja paluuarvo. Metodien suorittaminen eli kutsuminen. Metodien kuormittaminen Metodit Metodien määrittely Metodin parametrit ja paluuarvo Metodien suorittaminen eli kutsuminen Metodien kuormittaminen 1 Mikä on metodi? Metodi on luokan sisällä oleva yhteenkuuluvien toimintojen kokonaisuus

Lisätiedot

9. Harjoitusjakso III

9. Harjoitusjakso III 9. Harjoitusjakso III Seuraavaksi harjoitellaan kuvien ja tekstin lisäämistä piirtoalueelle. Tarjolla on aikaisempien harjoittelujaksojen tapaan kahden tasoisia harjoituksia: perustaso ja edistynyt taso.

Lisätiedot

7. Kuvien lisääminen piirtoalueelle

7. Kuvien lisääminen piirtoalueelle 7. Kuvien lisääminen piirtoalueelle Harjoitus 13: Symmetristen kuvioiden tutkiminen Takaisin koulun penkille... Avaa dynaaminen työtiedosto H13_symmetria.html. Se löytyy Työpöydälle luomastasi kansiosta

Lisätiedot

JUnit ja EasyMock (TilaustenKäsittely)

JUnit ja EasyMock (TilaustenKäsittely) OHJELMISTOJEN TESTAUS JA HALLINTA Syksy 2015 / Auvo Häkkinen JUnit ja EasyMock (TilaustenKäsittely) Tehtävässä tarvittava koodi löytyy osoitteella http://users.metropolia.fi/~hakka/oth/mockesimerkki.zip

Lisätiedot

3. Harjoitusjakso I. Vinkkejä ja ohjeita

3. Harjoitusjakso I. Vinkkejä ja ohjeita 3. Harjoitusjakso I Tämä ensimmäinen harjoitusjakso sisältää kaksi perustason (a ja b) ja kaksi edistyneen tason (c ja d) harjoitusta. Kaikki neljä harjoitusta liittyvät geometrisiin konstruktioihin. Perustason

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

Johdatus Ohjelmointiin

Johdatus Ohjelmointiin Johdatus Ohjelmointiin Syksy 2006 Viikko 2 13.9. - 14.9. Tällä viikolla käsiteltävät asiat Peruskäsitteitä Kiintoarvot Tiedon tulostus Yksinkertaiset laskutoimitukset Muuttujat Tiedon syöttäminen Hyvin

Lisätiedot

Tietotekniikan valintakoe

Tietotekniikan valintakoe Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan

Lisätiedot

Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8

Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Piirtoalue ja algebraikkuna Piirtoalueelle piirretään työvälinepalkista löytyvillä työvälineillä

Lisätiedot

Solidity älysopimus ohjelmointi. Sopimus suuntautunut ohjelmointi

Solidity älysopimus ohjelmointi. Sopimus suuntautunut ohjelmointi Solidity älysopimus ohjelmointi Sopimus suuntautunut ohjelmointi Merkle puu Kertausta eiliseltä Solidity on korkean tason älysopimus ohjelmointikieli Muistuttaa olio-ohjelmointia Javalla Sopimuskoodi on

Lisätiedot

Harjoitus 2: Oppijan aktivointi (15.3.2016)

Harjoitus 2: Oppijan aktivointi (15.3.2016) Harjoitus 2: Oppijan aktivointi (15.3.2016) Tietokoneavusteinen opetus -kurssilla opetetaan Adobe Flash CS6:n käyttämistä neljänä kertana: 11.3.2016, 15.3.2016, 18.3.2016 ja 1.4.2016. Harjoituskerroilla

Lisätiedot

TIES471 Reaaliaikainen renderöinti

TIES471 Reaaliaikainen renderöinti TIES471 Reaaliaikainen renderöinti Kotitehtävä 2.3.3 Muistin kaistanleveys Koko kaistanleveyden kustannus: B = d * Zr + o(d) * (Z w + C w + T r ) Lisätään vielä tekstuuri välimuisti (texture cache) vaikutus

Lisätiedot

OpenOffice.org Impress 3.1.0

OpenOffice.org Impress 3.1.0 OpenOffice.org Impress 3.1.0 Sisällysluettelo 1 Esityksen luominen...1 2 Dian rakenne...2 3 Dian lisääminen, poistaminen, siirtäminen ja kopioiminen...3 4 Diojen koon muuttaminen...3 5 Pohjatyylisivut...4

Lisätiedot

20. Javan omat luokat 20.1

20. Javan omat luokat 20.1 20. Javan omat luokat 20.1 Sisällys Application Programming Interface (API). Pakkaukset. Merkkijonoluokka String. Math-luokka. Kääreluokat. 20.2 Java API Java-kielen Application Programming Interface (API)

Lisätiedot

Sisällys. 20. Javan omat luokat. Java API. Pakkaukset. java\lang

Sisällys. 20. Javan omat luokat. Java API. Pakkaukset. java\lang Sisällys 20. Javan omat luokat Application Programming Interface (API). Pakkaukset. Merkkijonoluokka String. Math-luokka. Kääreluokat. 20.1 20.2 Java API Java-kielen Application Programming Interface (API)

Lisätiedot

1 Funktiot, suurin (max), pienin (min) ja keskiarvo

1 Funktiot, suurin (max), pienin (min) ja keskiarvo 1 Funktiot, suurin (max), pienin (min) ja keskiarvo 1. Avaa uusi työkirja 2. Tallenna työkirja nimellä perusfunktiot. 3. Kirjoita seuraava taulukko 4. Muista taulukon kirjoitusjärjestys - Ensin kirjoitetaan

Lisätiedot

Pedacode Pikaopas. Java-kehitysympäristön pystyttäminen

Pedacode Pikaopas. Java-kehitysympäristön pystyttäminen Pedacode Pikaopas Java-kehitysympäristön pystyttäminen Pikaoppaan sisältö Pikaoppaassa kuvataan, miten Windowstyöasemalle asennetaan Java-ohjelmoinnissa tarvittavat työkalut, minkälaisia konfigurointeja

Lisätiedot

TIES471 Reaaliaikainen renderöinti

TIES471 Reaaliaikainen renderöinti TIES471 Reaaliaikainen renderöinti 5.1 Valonlähteet Yksinkertaisin valolähde on pistemäinen valo (point light), joka säteilee joka suuntaan annetulla voimakkuudella ja värillä. Suunnattu valo (directional

Lisätiedot

3. Vasemman reunan resurssiselaimen Omiin resursseihin luodaan uusi Handmade -niminen kansio.

3. Vasemman reunan resurssiselaimen Omiin resursseihin luodaan uusi Handmade -niminen kansio. ActivInspire JATKO AINEISTON TUOTTAMINEN Uuden aineiston tekemisen alkua helpottaa etukäteen tehty suunnitelma (tekstit, kuvat, videot, linkit) miellekarttaa hyödyntäen. Valmista aineistoa voi muokata

Lisätiedot

Geodeettisen laitoksen koordinaattimuunnospalvelu

Geodeettisen laitoksen koordinaattimuunnospalvelu Geodeettisen laitoksen koordinaattimuunnospalvelu Janne Kovanen Geodeettinen laitos 10.3.2010 Koordinaattimuunnospalvelusta lyhyesti Ilmainen palvelu on ollut tarjolla syksystä 2008 lähtien. Web-sovellus

Lisätiedot

3D-Maailman tuottaminen

3D-Maailman tuottaminen hyväksymispäivä arvosana arvostelija 3D-Maailman tuottaminen Eero Sääksvuori Helsinki 11.12.2017 Seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET

Lisätiedot

Olio-ohjelmointi Javalla

Olio-ohjelmointi Javalla 1 Olio-ohjelmointi Javalla Olio-ohjelmointi Luokka Attribuutit Konstruktori Olion luominen Metodit Olion kopiointi Staattinen attribuutti ja metodi Yksinkertainen ohjelmaluokka Ohjelmaluokka 1 Olio-ohjelmointi

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja tietokonetekniikan laitos. Harjoitustyö 4: Cache, osa 2

TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja tietokonetekniikan laitos. Harjoitustyö 4: Cache, osa 2 TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja tietokonetekniikan laitos TKT-3200 Tietokonetekniikka I Harjoitustyö 4: Cache, osa 2.. 2010 Ryhmä Nimi Op.num. 1 Valmistautuminen Cache-työn toisessa osassa

Lisätiedot

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41

Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41 MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A

Lisätiedot

Luento 6: Piilopinnat ja Näkyvyys

Luento 6: Piilopinnat ja Näkyvyys Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Piilopinnat ja Näkyvyys Janne Kontkanen Geometrinen mallinnus / 1 Johdanto Piilopintojen poisto-ongelma Syntyy kuvattaessa 3-ulotteista maailmaa 2-ulotteisella

Lisätiedot

4. Luokan testaus ja käyttö olion kautta 4.1

4. Luokan testaus ja käyttö olion kautta 4.1 4. Luokan testaus ja käyttö olion kautta 4.1 Olion luominen luokasta Java-kielessä olio määritellään joko luokan edustajaksi tai taulukoksi. Olio on joukko keskusmuistissa olevia tietoja. Oliota käsitellään

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014

Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014 Ohjelmoinnin jatkokurssi, kurssikoe 28.4.2014 Kirjoita jokaiseen palauttamaasi konseptiin kurssin nimi, kokeen päivämäärä, oma nimi ja opiskelijanumero. Vastaa kaikkiin tehtäviin omille konsepteilleen.

Lisätiedot

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 Vastaa kolmeen tehtävistä 1-4 ja tehtävään 5. 1. Selitä lyhyesti mitä seuraavat termit tarkoittavat tai minkä ongelman algoritmi ratkaisee

Lisätiedot

Tasogeometriaa GeoGebran piirtoalue ja työvälineet

Tasogeometriaa GeoGebran piirtoalue ja työvälineet Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ (ja MITTAA) a) jana toinen jana, jonka pituus on 3 b) kulma toinen kulma, jonka

Lisätiedot

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2 8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason

Lisätiedot

Jypelin käyttöohjeet» Ruutukentän luominen

Jypelin käyttöohjeet» Ruutukentän luominen Jypelin käyttöohjeet» Ruutukentän luominen Pelissä kentän (Level) voi luoda tekstitiedostoon "piirretyn" mallin mukaisesti. Tällöin puhutaan, että tehdään ns. ruutukenttä, sillä tekstitiedostossa jokainen

Lisätiedot

Sovelmat. Janne Käki

Sovelmat. Janne Käki Sovelmat Janne Käki 24.11.2006 Sovellus extends JFrame public static void main(string[] args), joka tyypillisesti vain luo kehysluokan ilmentymän luontimetodi Sovelma extends JApplet ei main-metodia, ei

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 28.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 28.2.2011 1 / 46 Ohjelmointiprojektin vaiheet 1. Määrittely 2. Ohjelman suunnittelu (ohjelman rakenne ja ohjelman

Lisätiedot

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1 Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,

Lisätiedot

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A. Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 20. huhtikuuta 2018 Vastaa kaikkiin tehtäviin. Tee kukin tehtävä omalle konseptiarkille. Noudata ohjelmointitehtävissä kurssin koodauskäytänteitä.

Lisätiedot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot 5. Grafiikkaliukuhihna: () geometriset operaatiot Johdanto Grafiikkaliukuhihnan tarkoitus on kuvata kolmiulotteisen kohdeavaruuden kuva kaksiulotteiseen kuva eli nättöavaruuteen. aikka kolmiulotteisiakin

Lisätiedot

T harjoitustyö, kevät 2012

T harjoitustyö, kevät 2012 T-110.4100 harjoitustyö, kevät 2012 Kurssiassistentit T-110.4100@tkk.fi Tietotekniikan laitos Perustieteiden korkeakoulu Aalto-yliopisto 31.1.2012 Yleistä Kurssin osasuoritteita ovat kaksi osatenttiä,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2009 1 / 28 Puhelinluettelo, koodi def lue_puhelinnumerot(): print "Anna lisattavat nimet ja numerot." print

Lisätiedot

Graikka yleisesti tietokonepeleissä

Graikka yleisesti tietokonepeleissä Graikka yleisesti tietokonepeleissä Mikko Heilimo Helsinki 22.2.2006 Seminaaritutkielma HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Lisätiedot

Demokoodaus Linuxilla, tapaus Eternity

Demokoodaus Linuxilla, tapaus Eternity Demokoodaus Linuxilla, tapaus Eternity Tuomo Sipola tuomo.sipola@iki.fi Linkin lanit 9.4.2010 Tuomo Sipola tuomo.sipola@iki.fi () Demokoodaus Linuxilla, tapaus Eternity Linkin lanit 9.4.2010 1 / 17 Sisältö

Lisätiedot

Rubikin kuutio ja ryhmät. Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos

Rubikin kuutio ja ryhmät. Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos Rubikin kuutio ja ryhmät Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos Kehittäjä unkarilainen Erno Rubik kuvanveistäjä ja arkkitehtuurin professori 1974 Halusi leikkiä geometrisilla

Lisätiedot

Johdatus ohjelmointiin

Johdatus ohjelmointiin Johdatus ohjelmointiin EXAM tentin liitetiedostojen lataaminen, käyttäminen ja palauttaminen Kerro mahdolliset puutteet tai parannusehdotukset: pietari.heino@tut.fi Tällä sivulla on selitetty lyhyesti

Lisätiedot

Harjoitus Morphing. Ilmeiden luonti

Harjoitus Morphing. Ilmeiden luonti LIITE 1 1(5) Harjoitus Morphing Harjoituksessa käsiteltävät asiat: Objektien kopioiminen Editoitavan polygonin muokkaaminen Morph-modifier käyttö ilmeiden luomiseen Lyhyen animaation luonti set key- toimintoa

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä /+^2 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen / +^2 Kopioi molemmat matematiikka-alueet ja liiku alueen sisällä

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 17.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 17.2.2010 1 / 41 Sanakirja Monissa sovelluksissa on tallennettava rakenteeseen avain arvo-pareja. Myöhemmin rakenteesta

Lisätiedot

4. Lausekielinen ohjelmointi 4.1

4. Lausekielinen ohjelmointi 4.1 4. Lausekielinen ohjelmointi 4.1 Sisällys Konekieli, symbolinen konekieli ja lausekieli. Lausekielestä konekieleksi: - Lähdekoodi, tekstitiedosto ja tekstieditorit. - Kääntäminen ja tulkinta. - Kääntäminen,

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

Avaruuden muunnokset Jukka Liukkonen 24. joulukuuta 2009

Avaruuden muunnokset Jukka Liukkonen 24. joulukuuta 2009 Avaruuden muunnokset Jukka Liukkonen 24. joulukuuta 2009 Sisältö 1 Johdanto 1 2 Vektorilaskennan kertaus 3 2.1 Vektorit koordinaatistossa........................... 7 3 Siirto 9 3.1 Siirto koordinaatistossa.............................

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Sisällys. 12. Näppäimistöltä lukeminen. Yleistä. Yleistä 12.1 12.2 12.3 12.4

Sisällys. 12. Näppäimistöltä lukeminen. Yleistä. Yleistä 12.1 12.2 12.3 12.4 Sisällys 12. Näppäimistöltä lukeminen Arvojen lukeminen näppäimistöltä yleisesti. Arvojen lukeminen näppäimistöltä Java-kielessä.. Luetun arvon tarkistaminen. Tietovirrat ja ohjausmerkit. Scanner-luokka.

Lisätiedot

Lataa Geometristen kuvien värittäminen - Sympsionics Design. Lataa

Lataa Geometristen kuvien värittäminen - Sympsionics Design. Lataa Lataa Geometristen kuvien värittäminen - Sympsionics Design Lataa Kirjailija: Sympsionics Design ISBN: 9789526787824 Sivumäärä: 59 Formaatti: PDF Tiedoston koko: 29.30 Mb Kirja sisältää runsaasti ohjeita

Lisätiedot

2. Aloitus -välilehti, leikepöytä- ja fontti -ryhmät

2. Aloitus -välilehti, leikepöytä- ja fontti -ryhmät 2. Aloitus -välilehti, leikepöytä- ja fontti -ryhmät Aloitus -välilehdelle on sijoitettu eniten käytetyt muotoiluihin liittyvät komennot. Välilehti sisältää viisi eri ryhmää, johon komennot on sijoitettu

Lisätiedot

P e d a c o d e ohjelmointikoulutus verkossa

P e d a c o d e ohjelmointikoulutus verkossa P e d a c o d e ohjelmointikoulutus verkossa Java-kielen perusteet Teoria ja ohjelmointitehtävät Java-kielen perusteet 3 YLEISKATSAUS KURSSIN SISÄLTÖIHIN 10 JAVA-KIELEN PERUSTEET 10 OPISKELUN ALOITTAMINEN

Lisätiedot

POHDIN - projekti. Funktio. Vektoriarvoinen funktio

POHDIN - projekti. Funktio. Vektoriarvoinen funktio POHDIN - projekti Funktio Funktio f joukosta A joukkoon B tarkoittaa sääntöä, joka liittää jokaiseen joukon A alkioon jonkin alkion joukosta B. Yleensä merkitään f : A B. Usein käytetään sanaa kuvaus synonyymina

Lisätiedot

FOTONETTI BOOK CREATOR

FOTONETTI BOOK CREATOR F O T O N E T T I O Y FOTONETTI BOOK CREATOR 6 2012 Kemintie 6 95420 Tornio puhelin: 050-555 6500 pro/kirja: 050-555 6580 www.fotonetti.fi Ohjelman asentaminen 1 Hae ohjelma koneellesi osoitteesta http://www.fotonetti.fi/kuvakirjatilaa

Lisätiedot

ELM GROUP 04. Teemu Laakso Henrik Talarmo

ELM GROUP 04. Teemu Laakso Henrik Talarmo ELM GROUP 04 Teemu Laakso Henrik Talarmo 23. marraskuuta 2017 Sisältö 1 Johdanto 1 2 Ominaisuuksia 2 2.1 Muuttujat ja tietorakenteet...................... 2 2.2 Funktiot................................

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

9. Kappale -ryhmä - Kappalemuotoilut

9. Kappale -ryhmä - Kappalemuotoilut 9. Kappale -ryhmä - Kappalemuotoilut Aloitus -välilehdellä Kappale -ryhmästä löytyvät kaikki kappalemuotoilut. Huomaa, että kappalemuotoilut ovat aina voimassa seuraavaan kappalemerkkiin asti. Kappalemerkki

Lisätiedot

INTERNETSELAIMEN ASETUKSET. Kuinka saan parhaan irti selaimesta

INTERNETSELAIMEN ASETUKSET. Kuinka saan parhaan irti selaimesta INTERNETSELAIMEN ASETUKSET Kuinka saan parhaan irti selaimesta ASETUKSET YLEISESTI Asetuksilla taataan, että Selaimen ulkoasu on toivotunlainen Kirjaimen ja kuvien koko Pop-up -ikkunoiden käsittely Joissakin

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 7. huhtikuuta 2017 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille. Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

TIETOKONEEN ASETUKSILLA PARANNAT KÄYTETTÄVYYTTÄ

TIETOKONEEN ASETUKSILLA PARANNAT KÄYTETTÄVYYTTÄ TIETOKONEEN ASETUKSILLA PARANNAT KÄYTETTÄVYYTTÄ Windows XP-käyttöjärjestelmän asetuksilla sekä Word-asetuksilla voit vaikuttaa tietokoneen näytön ulkoasuun, selkeyteen ja helppokäyttöisyyteen.. 1) ASETUKSET

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

WINDOWS 10 -kurssi. petri.kiiskinen@wellamo-opisto.fi

WINDOWS 10 -kurssi. petri.kiiskinen@wellamo-opisto.fi WINDOWS 10 -kurssi petri.kiiskinen@wellamo-opisto.fi Yleistä kurssista Keskiviikkoisin 9.9. 30.9. (15 oppituntia) 16:45 20:00 (viimeinen kerta 16:45 19:15) Puolivälissä 15 minuutin kahvitauko Materiaali

Lisätiedot

Valitse ruudun yläosassa oleva painike Download Scilab.

Valitse ruudun yläosassa oleva painike Download Scilab. Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

origo III neljännes D

origo III neljännes D Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä

Lisätiedot

7. Näytölle tulostaminen 7.1

7. Näytölle tulostaminen 7.1 7. Näytölle tulostaminen 7.1 Sisällys System.out.println- ja System.out.print-operaatiot. Tulostus erikoismerkeillä. Edistyneempää tulosteiden muotoilua. 7.2 Tulostusoperaatiot System.out.println-operaatio

Lisätiedot