Kenguru Student (lukion 2. ja 3.), ratkaisut sivu 1 / 13

Koko: px
Aloita esitys sivulta:

Download "Kenguru Student (lukion 2. ja 3.), ratkaisut sivu 1 / 13"

Transkriptio

1 Kenguru Student (lukion ja ), ratkaisut sivu / pistettä Kuvasta huomataan, että = 44 Kuinka paljon tämän mukaan on ? A) 44 B) 99 C) 444 D) 66 E) 49 Ratkaisu: Kuvan havainnollistuksen mukaan n ensimmäisen parittoman kokonaisluvun summa on n (Tämän voi todistaa myös induktiolla) Siis 7 99 Lukujen summa on sama molemmilla riveillä Mikä luku on *:n paikalla? * A) 00 B) 00 C) 90 D) 990 E) 00 Ratkaisu: Ensimmäisissä kymmenessä sarakkeessa alempi luku on ylempää 0 yksikköä suurempi Jotta summa olisi sama, täytyy viimeisen olla yksikköä pienempi kuin ylempi luku eli 90 Kahden tyhjän kuution pohjien alat ovat dm ja 4 dm Erkki haluaa täyttää suuremman kuution lähdevedellä, jota hän hakee pienemmällä kuutiolla Kuinka monta kertaa hänen täytyy käydä lähteellä? A) kertaa B) 4 kertaa C) 6 kertaa D) 8 kertaa E) 6 kertaa Ratkaisu: Suuren kuution pohjan ala on nelinkertainen, joten sen sivu on 4 -kertainen Siis tilavuus on 8-kertainen 4 Kuinka moni viidellä jaollinen nelinumeroinen luku koostuu vain parittomista numeroista? A) 900 B) 65 C) 50 D) 5 E) 00 Ratkaisu: Viidellä jaollisen luvun viimeinen numero on 5 tai 0, joista vain edellinen on pariton Viimeinen numero on siis 5 Loput numeroa voidaan valita vapaasti viidestä parittomasta numerosta, joten vaihtoehtoja on

2 Kenguru Student (lukion ja ), ratkaisut sivu / 5 Yrityksen toimitusjohtaja sanoi: Jokainen yrityksemme työntekijöistä on ainakin 5 vuotta vanha Myöhemmin kävi ilmi, ettei tämä ollut totta Siis väistämättä A) kaikki yrityksen työntekijät ovat täsmälleen 5-vuotiaita B) kaikki yrityksen työntekijät ovat yli 6-vuotiaita C) kukaan yrityksen työntekijä ei ole vielä 5-vuotias D) joku yrityksen työntekijä on alle 5-vuotias E) joku yrityksen työntekijä on tasan 6-vuotias Ratkaisu: Oikea vastaus on D Formaalisti: : x 5 x : x 5 x : x 5 x 6 Laatikossa on kuvan mukaisesti seitsemän palikkaa Kuinka monta palikkaa täytyy vähintään siirtää liu uttamalla, jotta laatikkoon mahtuisi yksi palikka lisää? A) B) C) 4 D) 5 E) se on mahdotonta Ratkaisu: Kuvan mukaisesti 7 Kuvan kolmion ABC kulma C on suora ja A 60 BMC A) 05 B) 08 C) 0 D) 0 E) 5 Ratkaisu: Tapa Piirretään janalle BC normaali PM Kolmiot BPM ja BCA ovat yhdenmuotoisia (kk), joten P puolittaa janan BC Kolmio BMC on siis tasakylkinen Siis MC = MB = MA, joten kolmio AMC on tasasivuinen Siis kulma CMA 60, joten BMC Tapa Koska kolmio on suorakulmainen, sen hypotenuusa on kolmion ympäri piirretyn ympyrän halkaisija Siis MC = MB = MA, koska ne ovat ympyrän säteitä Siis kolmio AMC on tasasivuinen, joten kulma CMA 60, ja BMC

3 Kenguru Student (lukion ja ), ratkaisut sivu / 8 Mikä seuraavista luvuista voisi olla suorakulmaisen särmiön särmien lukumäärä? A) 00 B) 00 C) 008 D) 009 E) 00 Ratkaisu: Olkoon pohjana toimivassa monikulmiossa n kärkeä, jolloin siinä on myös n sivua Kannessa on siis myös n sivua ja n kärkeä Pohjan ja kannen kärkiä yhdistämään tarvitaan n särmää Yhteensä särmiä on siis n Ainoa kolmella jaollinen luku yllä on 00 9 Kuinka monta kaksinumeroista kokonaislukua on olemassa, joiden ensimmäiselle numerolle x ja toiselle numerolle y pätee x y 0? A) B) C) 6 D) E) ei yhtään Ratkaisu: Koska x 0 ja 0 y, yhtälöllä on vain yksi ratkaisu: x ja y 0 Kuvan neliön sivu on Puoliympyröiden keskipisteet ovat neliön kärjissä ja ne kulkevat kaikki neliön keskipisteen kautta Tummennettujen ympyröiden keskipisteet ovat neliön sivuilla ja ne sivuavat puoliympyröitä Kuinka suuri tummennettu ala on yhteensä? A) 4 B) C) 4 D) E) 4 Ratkaisu: Koska neliön sivu on, sen lävistäjä on ja puoliympyröiden säde siis Tummennettujen ympyröiden säde on puoliympyrän säteen ja neliön sivun puolikkaan erotus, eli Ympyröiden kokonaisala on siis pistettä Luvut 7, 7 ja 6 7 ovat geometrisen lukujonon peräkkäisiä jäseniä Mikä on jonon seuraava jäsen? A) 9 7 B) 7 C) 5 7 D) 0 7 E) Ratkaisu: Jonon suhdeluku on 7 7 Seuraava jäsen on siis

4 Kenguru Student (lukion ja ), ratkaisut sivu 4 / Kuvassa on kaksi samankeskistä ympyrää Jänne AB on pienemmän ympyrän tangentti Laske tummennetun alueen ala, kun AB = 6 A) B) 6 C) 64 D) E) riippuu ympyröiden säteistä Ratkaisu: Olkoon pienen ympyrän säde r ja suuren R Tummennetun alueen A R r R r Toisaalta ala on ympyröiden alojen erotus: AB Pythagoraan lauseen mukaan R r 8 64 Ala on siis 64 Kokonaisluvuille x ja y pätee x = 5y Mikä seuraavista luvuista voi olla summan x + y arvo? A) 0 B) 00 C) 009 D) 008 E) 007 Ratkaisu: Koska luvuilla ja 5 ei ole yhteisiä tekijöitä, täytyy luvun olla y:n tekijä ja luvun 5 olla x:n tekijä Siis x 5k ja y m Toisaalta 5k 5 m, eli m = k Summa on siis muotoa 5k k 7k Annetuista vaihtoehdoista ainoa seitsemällä jaollinen on Iso tasasivuinen kolmio koostuu tasasivuisista pikkukolmioista, joiden jokaisen pinta-ala on cm Mikä on varjostetun kolmion pinta-ala? A) cm B) cm C) cm D) 4 cm E) 5 cm Ratkaisu: Kolmion kukin sivun on eri suunnikkaan lävistäjä, kuten kuvaan on merkitty Kukin sivu puolittaa yhden suunnikkaista, joten kolmion ala on 6 4 puolet suunnikkaiden kokonaisalasta eli pienen kolmion alaa 5 Pussissa on kolmen värisiä palloja: sinisiä, vihreitä ja punaisia, jokaista väriä ainakin yksi pallo Tiedämme, että pussista satunnaisesti poimituista viidestä pallosta ainakin on punaisia ja ainakin on keskenään samaa väriä Kuinka monta sinistä palloa pussissa on? A) B) C) D) 4 E) mahdotonta selvittää ilman lisätietoja Ratkaisu: Koska punaisia palloja on jokaisessa viiden joukossa ainakin, muita värejä on korkeintaan palloa Koska jokaista väriä on ainakin pallo, sinisiä tai vihreitä ei voi olla palloa samaa väriä Koska jokaisessa viiden ryhmässä on ainakin samaa väriä, tämän värin täytyy olla punainen Sinisiä ja vihreitä on siis yhteensä korkeintaan palloa eli kumpaakin yksi Punaisia palloja voi olla kuinka paljon tahansa, kuitenkin ainakin

5 Kenguru Student (lukion ja ), ratkaisut sivu 5 / 6 Noppaa heitetään kolme kertaa Jos kolmannella heitolla saatu luku on kahden edellisen heiton summa, millä todennäköisyydellä luku on esiintynyt sarjassa? A) 6 B) 9 6 C) D) 8 5 E) 7 Ratkaisu: Jokainen sarja on yhtä todennäköinen Ehdot täyttäviä sarjoja ovat,, 4, 45, 56,, 4, 5, 46, 4, 5, 6, 45, 46 ja 56, yhteensä 5 kappaletta Näistä luku esiintyy kahdeksassa 7 Kolmion kannan suuntaiset janat jakavat kolmion kyljet 0:een yhtä pitkään osaan Kuinka monta prosenttia kolmion pinta-alasta on väritetty harmaaksi? A) 4,5% B) 45% C) 46% D) 47,5% E) 50% Ratkaisu: Ylin harmaa kolmio on alkuperäisen kanssa yhdenmuotoinen ja mittakaavaltaan kymmenesosa, siis alaltaan 0, % koko kolmiosta Seuraavan harmaan raidan ala voidaan laskea kahden kolmion alan erotuksena: se on 0, 0, 9% 4% koko kolmion alasta Vastaavasti harmaiden alueiden kokonaisala on 0, 0, 0, 0,5 0, 4 0,7 0,6 0,9 0,8 9% 4% 5% 6% 49% 6% 8% 64% 45% % 8 Jokainen tähti lausekkeessa ***4*5*6*7*8*9*0 korvataan joko merkillä tai Olkoon N suurin mahdollinen tällä tavoin saatu luku Luvun N suurin alkutekijä on A) B) C) 5 D) 7 E) jokin muu luku Ratkaisu: Luku on suurin, kun ensimmäinen merkki on + ja seuraavat kertomerkkejä Tällöin N ei voi olla jaollinen millään luvuista 0, sillä näillä luvuilla jaettaessa jakojäännös on 9 Kolmion sivujen pituudet ovat luonnolliset luvut, x ja y Mikä on kolmion piiri, jos xy 05? A) 5 B) 9 C) 5 D)69 E) 9 Ratkaisu: Jaetaan luku 05 tekijöihinsä: Näistä saadaan sivujen mahdollisiksi pituuksiksi ja 05, ja 5, 5 ja sekä 7 ja 5 Jotta sivuista muodostuisi kolmio, täytyy pisimmän sivun olla lyhyempi kuin kahden lyhyemmän summa Tällaiset sivut ovat vain 7 ja 5 Summa on siis 7 5 5

6 Kenguru Student (lukion ja ), ratkaisut sivu 6 / 0 Luonnolliset luvut yhdestä kymmeneen kirjoitetaan taululle kukin 0 kertaa Luokan oppilaat pelaavat seuraavaa peliä: Kukin saa vuorollaan poistaa kaksi lukua ja kirjoittaa taululle luvun, joka on yhden pyyhittyjen lukujen summaa pienempi Peli jatkuu kunnes vain yksi luku on jäljellä Mikä se on? A) alle 440 B) 45 C) 460 D) 488 E) yli 500 Ratkaisu: Lukujen summa alussa on Aina kun kaksi lukua korvataan yhdellä, kokonaissumma vähenee yhdellä 99 poiston jälkeen summa on siis pistettä Kuinka monta suorakulmaista kolmiota voidaan muodostaa tietyn säännöllisen 4-kulmion kärkiä yhdistämällä? A) 4 B) 84 C) 88 D) 98 E) 68 Ratkaisu: Säännöllisen monikulmion ympäri voidaan piirtää ympyrä Muodostuvan suorakulmaisen kolmion kärjet ovat siis tällä samalla ympyrällä Kehäkulmalauseen mukaan kolmion hypotenuusan täytyy olla ympyrän halkaisija (sillä suoraa kehäkulmaa vastaava keskuskulma on oikokulma) Kolmiota piirrettäessä tulee siis ensin valita hypotenuusan päätepisteiksi pisteet, jotka ovat vastakkaisilla puolilla 4-kulmiota Tämä voidaan tehdä 7 tavalla Kolmas piste voi olla mikä tahansa jäljellä olevista pisteistä (kehäkulmalauseen nojalla muodostuva kulma on aina suora) Näitä pisteitä on Kolmioita on siis henkilöä osallistui juoksukilpailuun, ja kaikki tulivat eri aikaan maaliin Jokaiselta kysyttiin, miten he sijoittuivat ja jokainen vastasi luvun väliltä 00 Vastausten summa oli 4000 Mikä on pienin mahdollinen määrä vääriä vastauksia? A) 9 B) 0 C) D) E) Ratkaisu: Jos vastaukset olisivat oikeita, summa olisi Vastaukset ovat siis keskimäärin liian pieniä Tämä 050 sijan vajaus saavutetaan pienimmällä mahdollisella virheiden määrällä, kun kaikki kilpailijat viimeisestä n viimeiseen kilpailijaan vastaavat tulleensa n ensimmäiseksi Tällöin vajaus on n n 050 Tästä ratkaistuna n 99n 00 0 n n, Ilman laskinta on kätevintä päätellä, että jos n = 0, saadaan Koska = 05, tarvitaan vielä lisää huijareita Seuraava sijaluvun sanonut on voinut olla 89 sijaa alempana = 6, eli joukkoon kuuluu vielä vähintään yksi huijari Väärin vastanneita on siis vähintään

7 Kenguru Student (lukion ja ), ratkaisut sivu 7 / Mikä on lausekkeen arvo, kun tiedetään, että? A) B) C) 048 D) 4096 E) Ratkaisu: Muokataan osoittajan sulkulauseketta vihjeen mukaisesti kertomalla se ykkösellä (muodossa ) ja hyödyntämällä muistikaavoja = = Tulos on siis Mikä seuraavista on yhtälön x x y y 4 kuvaaja? x, kun x 0 Ratkaisu: Itseisarvon määritelmä: x x kun x 0 Tason neljänneksessä x 0 ja y 0, jolloin yhtälö saa muodon 0 4, ei kuvaajan pisteitä siellä Tason neljänneksessä x 0 ja y 0; yhtälö saa muodon 4x 4 eli x Kuvaaja on pystysuora suora Tason neljänneksessä x 0 ja y 0 ; yhtälö saa muodon x y Kuvaaja on yksikköympyrän kaari Tason 4 neljänneksessä x 0 ja y 0 ; yhtälö saa muodon 4y 4 eli y Kuvaaja on vaakasuora suora Oikea vastaus on siis A (Huom koordinaattiakselit on käsitelty neljännesten ja yhteydessä)

8 Kenguru Student (lukion ja ), ratkaisut sivu 8 / 5 Nauha on taitettu kolmasti kuvan mukaisesti Laske kulma, kun 70 A) 40 B) 0 C) 0 D) 0 E) 00 Ratkaisu: ensimmäisen taitoksen jälkeen on syntynyt seuraavia kulmia, missä 80 (Kulmat ovat yhtäsuuria, koska ne syntyvät yhdensuuntaisten suorien leikatessa) Toisen taitoksen jälkeen kulma siirtyy kolmion sisään kuvan mukaisesti Samankohtainen kulma löytyy alempaa, kärkenään A Suoran AB vasemmalle puolelle jää oikokulma, joka koostuu osista 80 Siis 80 Nyt tarkastellaan pystyyn piirretyn katkoviivan vasemmalle puolelle jäävää oikokulmaa: eli

9 Kenguru Student (lukion ja ), ratkaisut sivu 9 / 6 Funktio f on määritelty positiivisten reaalilukujen joukossa ja jokaiselle x > 0 pätee 00 f x f 5x x Laske f 6 A) 99 B) C) 009 D) 0 E) 9 00 Ratkaisu: Sijoitetaan muuttujan x paikalle luvut 6 ja 5 Saadaan yhtälöpari: 6 00 f 6 f 56 6 f 6 f 5 0 f f 6 f f 5 f 55 f Lattialaatoitus koostuu kahden kokoisista neliöistä kuvan mukaisesti Suurempien laattojen sivu on a, pienempien b Kuvan katkoviivojen välinen kulma on 0 Selvitä suhde a : b A) : B) : C) D) : E) : Ratkaisu: : Tarkastellaan kuvan mukaista suorakulmaista kolmiota ABC Sen hypotenuusa on AC a b (huomaa toinen suorakulmainen kolmio, jonka kateetit ovat a ja b) Jana CD pituus on a b Koska AB on pikkuneliön halkaisijan suuntainen, se on 45 kulmassa neliön sivuihin Siis a b BD BC x

10 Kenguru Student (lukion ja ), ratkaisut sivu 0 / Koska katkoviivojen välinen kulma on 0, a b x sin 0 a b a b a 4ab b 0 AC a b Kun viimeinen yhtälö jaetaan puolittain luvulla b, saadaan a a 4 0 Merkitään kysyttyä suhdetta a t, jolloin saadaan b b b t 4t t Koska a > b, oikea vastaus saadaan plusmerkillä ja siis a: b : 8 Neliöjuurilauseke 0,444 kirjoitetaan päättymättömänä desimaalilukuna 00kpl Mikä on 00 numero desimaalipilkun jälkeen? A) B) C) 4 D) 6 E) 8 Luku 4 0, 4, joten kysytylle neliöjuurilausekkeelle pätee 9 0,444 = kpl 9 Koska , niin ,666 0,444 0,6, 00 00kpl joten 00 desimaali on 6

11 Kenguru Student (lukion ja ), ratkaisut sivu / 9 Kuvan viivakoodissa on vuorotellen mustia ja valkoisia raitoja Viivakoodi alkaa aina mustalla ja päättyy mustaa raitaan Sekä mustien että valkoisten raitojen leveys on tai Koko viivakoodin leveys on Koodia luetaan aina vasemmalta oikealle Kuinka monta erilaista koodia on mahdollista muodostaa? A) 4 B) C) 66 D) E) 6 Ratkaisu: Tapa : Jos ajatellaan, että viivan leveys on aina niin viivakoodissa voi olla enintään kaksi samanväristä viivaa peräkkäin, sitten viivan väri vaihtuu Ensimmäinen viiva vasemmalta on aina musta, samoin viiva oikealla Kuvassa on hahmoteltu kaikki vaihtoehdot kuudelle ensimmäiselle viivalle Tutkitaan, miten n:nnen viivan väri määräytyy: n =, viiva on musta n =, viiva voi olla musta tai valkoinen n > Huomataan, että viiva voi olla musta, jos viiva n- on valkoinen tai jos viiva n- on valkoinen Vastaavasti, jos viiva n- on musta tai viiva n- on musta, viiva n voi olla valkoinen Merkitään mustaan päättyvien vaihtoehtojen määrää sarakkeessa n a n ja valkoiseen päättyvien vaihtoehtojen määrää b n Saadaan jonot (a n ) a =, a =, a n =b n- +b n- kun n> (b n ) b =0, b =, b n =a n- +a n-, kun n> viivakoodin sarake mustaan päättyvät vaihtoehdot a n valkoiseen päättyvät vaihtoehdot b n Huom: jono a n + b n = (b n- + b n- ) + (a n- +a n-s ) = (a n- + b n- ) + (a n-s + b n- ) alkaa,,, 5, 8, ja on tästä eteenpäin Fibonaccin jono Ehto viimeisessä sarakkeessa on musta viiva rajaa kuitenkin viimeisestä termistä pois kaikki valkoiseen päättyvät vaihtoehdot

12 Kenguru Student (lukion ja ), ratkaisut sivu / Tapa : Jos aletaan piirtää kaaviota sallituista värivaihtoehdoista viivoille 7 oikealta vasemmalle, saadaan sama kuva kuin Tapa :ssä, mutta peilikuvana Nyt voidaan tarkastella, kuinka monta vaihtoehtoa on jatkaa sarakkeesta 6 sarakkeeseen 7 jokaisessa tapauksessa erikseen Viereisen kuvan katkoviiva esittää kohtaa, jonka suhteen viivakoodin vasemman puolen vaihtoehdot voidaan peilata oikean puolen vaihtoehdoiksi Ylimmästä valkoisesta viivasta on kuvassa vedetty nuolet kaikkiin mahdollisiin jatkokohtiin (6 nuolta) Kun lasketaan kaikki yhdistelmämahdollisuudet yhteen, saadaan 6 eri viivakoodia Vastaus: 6

13 Kenguru Student (lukion ja ), ratkaisut sivu / 0 Suorakulmaisen kolmion kateetilta valitaan piste P ja toiselta kateetilta piste Q Piirretään pisteistä P ja Q hypotenuusaa vastaan kohtisuorat janat, jotka leikkaavat hypotenuusan pisteissä K ja H Jos kateettien pituudet ovat a ja b, mikä on summan KP PQ QH pienin mahdollinen arvo? A) a b B) ab ab C) a b a b D) a b a b E) a b ab Ratkaisu: Peilataan kuvio molempien kateettien suhteen, jolloin syntyy neljäkäs: Nyt murtoviivan KPQH sijasta voidaan tarkastella yhtä pitkää murtoviivaa KPQ H, joka yhdistää neljäkkään vastakkaiset sivut Koska sivut ovat yhdensuuntaiset, murtoviiva on lyhyin, kun se on suora ja kohtisuorassa alkuperäistä hypotenuusaa vastaan Tällaisia lyhyimpiä reittejä on äärettömän monta Niiden pituus on neljäkkään sivujen välinen etäisyys Se saadaan laskettua tarkastelemalla suorakulmaisen kolmion hypotenuusan vastaista korkeusjanaa h Kolmion ala on ab h a b ja toisaalta, joten h a ab b ja lyhyin reitti on h ab a b

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Kenguru 2015 Student (lukiosarja)

Kenguru 2015 Student (lukiosarja) sivu 1 / 9 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Geometriaa kuvauksin. Siirto eli translaatio

Geometriaa kuvauksin. Siirto eli translaatio Geometriaa kuvauksin Siirto eli translaatio Janan AB kuva on jana A B ja ABB A on suunnikas. Suora kuvautuu itsensä kanssa yhdensuuntaiseksi suoraksi. Kulmat säilyvät. Kuva ja alkukuva ovat yhtenevät.

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot

15. Suorakulmaisen kolmion geometria

15. Suorakulmaisen kolmion geometria 15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.

Lisätiedot

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,

Lisätiedot

Kenguru 2014 Junior sivu 1 / 15 (lukion 1. vuosikurssi) RATKAISUT

Kenguru 2014 Junior sivu 1 / 15 (lukion 1. vuosikurssi) RATKAISUT Kenguru 2014 Junior sivu 1 / 15 3 pistettä 1. Kenguru-kilpailu on joka vuosi maaliskuun kolmantena torstaina. Mikä on ensimmäinen mahdollinen päivä kilpailulle? (A) 14.3. (B) 15.3. (C) 20.3. (D) 21.3.

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

Kenguru 2010, Benjamin, ratkaisut sivu 1 / 9

Kenguru 2010, Benjamin, ratkaisut sivu 1 / 9 Kenguru 2010, Benjamin, ratkaisut sivu 1 / 9 3 pistettä 1. Kun tiedetään, että + + 6 = + + +, mikä luku voidaan sijoittaa kolmion paikalle? A) 2 B) 3 C) 4 D) 5 E) 6 Ratkaisu: Kun poistetaan kummaltakin

Lisätiedot

KERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o.

KERTAUSHARJOITUKSIA KULMA. 316. a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o. KERTAUSHARJOITUKSIA KULMA 45 l 6. a) Samankohtaisista kulmista 80( 80456) 08 b) Kolmion kulmien summa on ( 80) 80 6 l 5 80 :( 5) 6 Kysytty kulma 80 8067 Vastaus: a) 08 o b) 7 o 7. Kulmien summa on ( )

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Kenguru 2015 Student Ratkaisut

Kenguru 2015 Student Ratkaisut sivu 1 / 16 3 pistettä 1. Mistä kuviosta on väritetty puolet? (A) (B) (C) (D) (E) 2. Mikä seuraavista luvuista on lähinnä lukua 20,15 51,02? (A) 10 (B) 100 (C) 1 000 (D) 10 000 (E) 100 000 Ratkaisu: 20,15

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

sanat nimet kätensä toimia toistaa ymmärtänyt

sanat nimet kätensä toimia toistaa ymmärtänyt AISTIVÄLINEET Aistivaikutelmat, joita lapsi saa, ja joita hän on jo koko olemassaolonsa aikana varastoinut, eivät pelkästään riitä, kun lapsi on rakentamassa älyään. Ne ovat tiedostamattomia, eikä lapsi

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Kenguru 2014 Cadet (8. ja 9. luokka)

Kenguru 2014 Cadet (8. ja 9. luokka) sivu 1 / 13 3 pistettä 1. Kauppias Koikkalainen on maalannut liikkeensä ikkunaan kukkakuvion. Miltä kukkakuvio näyttää ikkunan toiselta puolelta katsottuna? (A) (B) (C) (D) (E) Vasen ja oikea vaihtuvat

Lisätiedot

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen? YLIOPPILASTUTKINTO- LAUTAKUNTA 3.3.0 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

Kenguru 2011 Benjamin (6. ja 7. luokka)

Kenguru 2011 Benjamin (6. ja 7. luokka) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua

Lisätiedot

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain.

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain. OSA 3: GEOMETRIAA Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Kokoa neljästä alla olevasta palasesta M kirjain. G. GEOMETRIAA Hannu ja

Lisätiedot

x 2 1+x 2 2 = (x 1 +x 2 ) 2 2x 1 x 2 = a 2 2( a 2) = a 2 +2a+4 = a 2 +2a+4 = (a+1) 2 +3 3. Edellisessä epäyhtälössä on yhtäsuuruus, kun a = 1.

x 2 1+x 2 2 = (x 1 +x 2 ) 2 2x 1 x 2 = a 2 2( a 2) = a 2 +2a+4 = a 2 +2a+4 = (a+1) 2 +3 3. Edellisessä epäyhtälössä on yhtäsuuruus, kun a = 1. Pythagoraan polku 5.4.008 RATKAISUT. Määritä se a, jolla yhtälön x + ax a = 0 ratkaisujen neliöden summa on pienin. Kun. asteen termin kerroin on, niin ratkaisujen summa on. asteen termin kertoimen vastaluku

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Kenguru 2012 Benjamin sivu 1 / 13 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2012 Benjamin sivu 1 / 13 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2012 Benjamin sivu 1 / 13 Oikeat vastaukset on alleviivattu ja lihavoitu. 3 pistettä 1. Pasi aikoo maalata seinälle iskulauseen ELÄKÖÖN KENGURU. Hän haluaa maalata eri kirjaimet aina eri väreillä,

Lisätiedot

Kenguru Écolier (4. ja 5. luokka) sivu 1/5

Kenguru Écolier (4. ja 5. luokka) sivu 1/5 Kenguru Écolier (4. ja 5. luokka) sivu 1/5 3 pisteen tehtävät 1. Miettisen perhe syö 3 ateriaa päivässä. Kuinka monta ateriaa he syövät viikon aikana? A) 7 B) 18 C) 21 D) 28 E) 37 2. Aikuisten pääsylippu

Lisätiedot

Laudatur 3. Opettajan aineisto. Geometria MAA3. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava

Laudatur 3. Opettajan aineisto. Geometria MAA3. Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola. Helsingissä Kustannusosakeyhtiö Otava Laudatur Geometria MAA Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava SISÄLLYS Ratkaisut kirjan tehtäviin... Kokeita.... painos 006 Tekijät

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Matematiikan ilmiöiden tutkiminen GeoGebran avulla

Matematiikan ilmiöiden tutkiminen GeoGebran avulla Johdatus GeoGebraan Matematiikan ilmiöiden tutkiminen GeoGebran avulla Harjoitus 1B. Konstruoi tasakylkinen kolmio ABC, jonka kyljen pituus on 5. Vihje: käytä Kiinteä jana työvälinettä kahdesti. Ota kolmion

Lisätiedot

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi

MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi MAB 9 kertaus MAB 1 Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi Kertolaskussa osoittajat ja nimittäjät kerrotaan keskenään Jakolasku lasketaan kertomalla

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3 : http://users.metropolia.fi/~pasitr/2014-2015/ti00aa43-3004/kt/03/ratkaisut/ Tehtävä 1. (1 piste) Tee ohjelma K03T01.cpp, jossa ohjelmalle syötetään kokonaisluku. Jos kokonaisluku on positiivinen, niin

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

MATEMATIIKKA PAOJ2 Harjoitustehtävät

MATEMATIIKKA PAOJ2 Harjoitustehtävät MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )

Lisätiedot

I Geometrian rakentaminen pisteestä lähtien

I Geometrian rakentaminen pisteestä lähtien I Geometrian rakentaminen pisteestä lähtien Koko geometrian voidaan ajatella koostuvan pisteistä. a) Matemaattinen piste on sellainen, millä EI OLE LAINKAAN ULOTTUVUUKSIA. Oppilaita voi johdatella pisteen

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Kenguru 2015 Benjamin (6. ja 7. luokka)

Kenguru 2015 Benjamin (6. ja 7. luokka) sivu 1 / 12 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

AVOIN MATEMATIIKKA 8 lk. Osio 3: Tasogeometriaa

AVOIN MATEMATIIKKA 8 lk. Osio 3: Tasogeometriaa Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA 8 lk. Osio 3: Tasogeometriaa Sisältö on lisensoitu avoimella CC BY 3.0 -lisenssillä. 1 Osio 3: Tasogeometriaa 1. Yhtenevät ja yhdenmuotoiset kuviot...

Lisätiedot

AVOIN MATEMATIIKKA 7 lk. Osio 2: Kuvioiden luokittelua ja pinta-aloja

AVOIN MATEMATIIKKA 7 lk. Osio 2: Kuvioiden luokittelua ja pinta-aloja Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA 7 lk. Osio 2: Kuvioiden luokittelua ja pinta-aloja Sisältö on lisensoitu avoimella CC BY 3.0 -lisenssillä. 1 Osio 2: Kuvioiden luokittelua ja pinta-aloja

Lisätiedot

TEHTÄVÄVINKKEJÄ MATEMATIKKAAN

TEHTÄVÄVINKKEJÄ MATEMATIKKAAN Viinikankatu 49a, 33800 TAMPERE Puh (03) 380 5300, Fax (03) 380 5353 E-mail: myynti@tevella.fi, www.tevella.fi TEHTÄVÄVINKKEJÄ MATEMATIKKAAN I LOOGISET PALAT 1) Laita kaikki LOOGISET PALAT eteesi työpöydälle.

Lisätiedot

Smart Board lukion lyhyen matematiikan opetuksessa

Smart Board lukion lyhyen matematiikan opetuksessa Smart Board lukion lyhyen matematiikan opetuksessa Haasteita opettajalle lukion lyhyen matematiikan opetuksessa ovat havainnollistaminen ja riittämätön aika. Oppitunnin aikana opettaja joutuu usein palamaan

Lisätiedot

x 2 + y 2 = 2z y 2 + z 2 = 2x z 2 + x 2 = 2y a + n 1 n a a + 1 a +. On myös helppo tarkastaa, että ratkaisut toteuttavat yhtälön.

x 2 + y 2 = 2z y 2 + z 2 = 2x z 2 + x 2 = 2y a + n 1 n a a + 1 a +. On myös helppo tarkastaa, että ratkaisut toteuttavat yhtälön. Kotitehtävät joulukuu 20 Helpopi sarja 1. Ratkaise yhtälöryhä x 2 + y 2 = 2z y 2 + z 2 = 2x z 2 + x 2 = 2y reaaliluvuilla x y ja z. Ratkaisu. Jokainen luvuista on puolet kahden neliön suasta ja siten välttäättä

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 4.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 4.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka 4..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

Harjoitustehtävät, joulukuu 2013, (ehkä vähän) vaativammat

Harjoitustehtävät, joulukuu 2013, (ehkä vähän) vaativammat Harjoitustehtävät, joulukuu 013, (ehkä vähän) vaativammat Ratkaisuja 1. Viisinumeroinen luku a679b on jaollinen 7:lla. Määritä a ja b. Ratkaisu. Luvun on oltava jaollinen 8:lla ja 9:llä. Koska luku on

Lisätiedot

Kenguru 2012 Ecolier sivu 1 / 9 (4. ja 5. luokka) Ratkaisut. yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2012 Ecolier sivu 1 / 9 (4. ja 5. luokka) Ratkaisut. yhteistyössä Pakilan ala-asteen kanssa Kenguru 2012 Ecolier sivu 1 / 9 OIKEAT VASTAUKSET ON ALLEVIIVATTU JA LIHAVOITU. NELJÄN JA VIIDEN PISTEEN TEHTÄVISSÄ ON KIRJOITETTU MYÖS PERUSTELU. 3 pistettä 1. Ilja värittää ruudukosta ruudut A2, B1,

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

2. Polynomien jakamisesta tekijöihin

2. Polynomien jakamisesta tekijöihin Imaginaariluvut mielikuvitustako Koska yhtälön x 2 x 1=0 diskriminantti on negatiivinen, ei yhtälöllä ole reaalilukuratkaisua Tästä taas seuraa, että yhtälöä vastaava paraabeli y=x 2 x 1 ei leikkaa y-akselia

Lisätiedot

Klassisen ja geometrisen todennäköisyyden harjoituksia

Klassisen ja geometrisen todennäköisyyden harjoituksia MAB5: Todennäköisyyden lähtökohdat Harjoitustehtävät Klassisen ja geometrisen todennäköisyyden harjoituksia 3.1 Heität tavallista noppaa. Millä todennäköisyydellä a) saat kuutosen? b) saat ykkösen? c)

Lisätiedot

Kokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten?

Kokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten? Miten opit parhaiten? Valmistaudu täydellisesti lääkiksen pääsykokeeseen! n Voit harjoitella kotoa käsin huippusuositulla Mafynetti-ohjelmalla. Mukaan kuuluu 4 täysimittaista harjoituskoetta!! n Harjoittelu

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

Klassisen ja geometrisen todennäköisyyden harjoituksia

Klassisen ja geometrisen todennäköisyyden harjoituksia MAB5: Todennäköisyyden lähtökohdat Klassisen ja geometrisen todennäköisyyden harjoituksia 3.1 Heität tavallista noppaa. Millä todennäköisyydellä a) saat kuutosen? b) saat ykkösen? c) saat parittoman pisteluvun?

Lisätiedot

9. Harjoitusjakso III

9. Harjoitusjakso III 9. Harjoitusjakso III Seuraavaksi harjoitellaan kuvien ja tekstin lisäämistä piirtoalueelle. Tarjolla on aikaisempien harjoittelujaksojen tapaan kahden tasoisia harjoituksia: perustaso ja edistynyt taso.

Lisätiedot

AVOIN MATEMATIIKKA 9 lk. Osio 2: Trigonometriaa ja geometrian tietojen syventämistä

AVOIN MATEMATIIKKA 9 lk. Osio 2: Trigonometriaa ja geometrian tietojen syventämistä Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA 9 lk. Osio : Trigonometriaa ja geometrian tietojen syventämistä Sisältö on lisensoitu avoimella CC BY.0 -lisenssillä. 1 Osio : Trigonometriaa ja geometrian

Lisätiedot

2.3. Lausekkeen arvo tasoalueessa

2.3. Lausekkeen arvo tasoalueessa Monissa käytännön tilanteissa, joiden kaltaisista kappaleessa Epäyhtälöryhmistä puhuttiin, tärkeämpää kuin yleinen mahdollisten ratkaisujen etsiminen, on löytää tavalla tai toisella jotkin tavoitteet täyttävät

Lisätiedot

Suora. Hannu Lehto. Lahden Lyseon lukio

Suora. Hannu Lehto. Lahden Lyseon lukio Suora Hannu Lehto Lahden Lyseon lukio Suuntavektori Normaalivektori Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 2 / 12 Esimerkki Suuntavektori Normaalivektori Tarkastellaan suoraa y = 2 3 x 1. kulmakerroin

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Lukion. Calculus. Kertauskirja. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava TEHTÄVIÄ KURSSIEN MAA1 10 YDINAIHEISTA RATKAISUINEEN

Lukion. Calculus. Kertauskirja. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava TEHTÄVIÄ KURSSIEN MAA1 10 YDINAIHEISTA RATKAISUINEEN Calculus Lukion MAA Kertauskirja Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava TEHTÄVIÄ KURSSIEN MAA 0 YDINAIHEISTA RATKAISUINEEN Pitkä matematiikka Kertauskirja Tehtäväsarjat ja niiden ratkaisut Tehtäväsarjoja

Lisätiedot

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva 4 Jatkuva jakauma Edellä määriteltiin diskreetiksi satunnaismuuttujaksi sellainen, joka voi saada vain (hyppäyksittäin) erillisiä arvoja. Jatkuva satunnaismuuttuja voi saada mitä hyvänsä arvoja yleensä

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Analyyttistä geometriaa kilpailutehtävien kautta

Analyyttistä geometriaa kilpailutehtävien kautta nalyyttistä geometriaa kilailutehtävien kautta Jouni Seänen. 4. 04 Johdanto. Joskus kehäkulmalauseeseen kyllästyy ja haluaa ratkaista geometrian tehtävän algebrallisesti. Tässä monisteessa esitetään tarkoitukseen

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

Tasapainotehta via vaakamallin avulla

Tasapainotehta via vaakamallin avulla Tasapainotehta via vaakamallin avulla Aihepiiri Luokka-aste Kesto Tarvittavat materiaalit / välineet Asiasanat Lausekkeet ja yhtälöt 7.-8. luokka 20 30 minuuttia Piirtoheitin, 2 kalvoa, erimuotoisia paloja

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Euroopan tyttöjen matematiikkaolympialaiset Antalyassa, Turkissa, 10. 16.4.2014

Euroopan tyttöjen matematiikkaolympialaiset Antalyassa, Turkissa, 10. 16.4.2014 Solmu 3/2014 1 Euroopan tyttöjen matematiikkaolympialaiset Antalyassa, Turkissa, 10. 16.4.2014 Anne-Maria Ernvall-Hytönen Matematiikan ja tilastotieteen laitos, Helsingin yliopisto Mirjam Kauppila Matematiikan

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

Pohjoismaisten matematiikkakilpailujen tehtävät ja ratkaisut 1995 2015

Pohjoismaisten matematiikkakilpailujen tehtävät ja ratkaisut 1995 2015 Pohjoismaisten matematiikkakilpailujen tehtävät ja ratkaisut 995 05 Tehtävät 9. Pohjoismainen matematiikkakilpailu, 5.3.995 995.. Olkoon AB O-keskisen ympyrän halkaisija. Valitaan ympyrän kehältä pistec

Lisätiedot

ALHAMBRA. Muuri Seralji Puutarha Holvikäytävä Paviljonki Asuinrakennus Torni Rakennuksen nimi Hinta

ALHAMBRA. Muuri Seralji Puutarha Holvikäytävä Paviljonki Asuinrakennus Torni Rakennuksen nimi Hinta ALHAMBRA Parhaat rakennusmestarit kaikkialta Euroopasta ja Arabiasta haluavat näyttää taitonsa. Palkkaa sopivimmat työjoukot ja varmista, että sinulla on aina tarpeeksi oikeaa valuuttaa. Sillä kaikkia

Lisätiedot

MFKA-Kustannus MAOL-Palvelu. Matematiikan välineitä

MFKA-Kustannus MAOL-Palvelu. Matematiikan välineitä MFKA-Kustannus MAOL-Palvelu Matematiikan välineitä Toiminnallinen matematiikka Kymmenjärjestelmä - sarja 1 JW0141 100 keltaista yksikköä 10 vihreätä sauvaa 10 sinistä levyä 1 punainen kuutio Kymmenjärjestelmä

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Sijoitusmenetelmä. 1.2. Yhtälöpari

Sijoitusmenetelmä. 1.2. Yhtälöpari MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat

Lisätiedot

Ratkaisut 3. 9. Järjestys (D) ei ole mahdollinen, koska silloin sihteeri olisi saanut en-

Ratkaisut 3. 9. Järjestys (D) ei ole mahdollinen, koska silloin sihteeri olisi saanut en- Ratkaisut 3 1. Summasta saa siten parillisen, että kaksi parillista tai kaksi paritonta lukua lasketaan yhteen. Ensimmäisen kertolaskun tulos sisältää tekijän 18 ja on siis parillinen, joten toisen kertolaskun

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

1.2 Yhtälön avulla ratkaistavat probleemat

1.2 Yhtälön avulla ratkaistavat probleemat 1.2 Yhtälön avulla ratkaistavat probleemat Kun matemaattista probleemaa lähdetään ratkaisemaan yhtälöä hyväksi käyttäen, tilanne on vaikeampi kuin ratkaistaessa yhtälöä mekaanisesti. Nyt on näet itse laadittava

Lisätiedot

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10 Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä

Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä Anne-Maria Ernvall-Hytönen 14. tammikuuta 2011 Sisältö 1 Jaollisuus, alkuluvut, ynnä muut perustavanlaatuiset asiat 2 1.1 Lukujen tekijöiden

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 kevät 2014 Talousmatematiikan perusteet Matti Laaksonen, (Matemaattiset tieteet / Vaasan yliopisto) Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi Opettajan kotisivu: http://lipas.uwasa.fi/

Lisätiedot

MAS- linjan matematiikan kurssit

MAS- linjan matematiikan kurssit Muutokset Vantaankosken koulun Matemaattis-luonnontieteellisen linjan (MAS) opetussuunnitelmaan lukuvuonna 2012 2013 aloittavista 7. luokista alkaen Kurssisisällöt ja -ajoitus ovat muuttuneet matematiikan

Lisätiedot