Core Drilling of Deep Borehole 0 l-ka43 at Olkiluoto in [urajoki 2006

Koko: px
Aloita esitys sivulta:

Download "Core Drilling of Deep Borehole 0 l-ka43 at Olkiluoto in [urajoki 2006"

Transkriptio

1 .POSIVA Working Report Core Drilling of Deep Borehole 0 l-ka43 at Olkiluoto in [urajoki 2006 Risto Niinimaki December 2006 POSIVA OY Fl OlKILUOTO, FINLAND Tel. +35&-2-& Fax +35& 2 &

2 Working Report Core Drilling of Oeep Borehole 0 l-kr43 at Olkiluoto in furajoki 2006 Risto Niinimaki Suomen Malmi Oy December 2006 Base maps: National Land Survey, permission 41 /MYY/06 Working Reports contain information on work in progress or pending completion. The conclusions and viewpoints presented in the report are those of author(s) and do not necessarily coincide with those of Posiva.

3 TEKIJA ORGANISAATIO SUOMEN MALMI OY PL 10 Juvan teollisuuskatu ESPOO TILAAJA POSNAOY OLKILUOTO TILAAJAN YHDYSHENKILO FM Antti Mustonen Posiva Oy URAKOITSIJAN YHDYSHENKILO FM Tauno Rautio Smoy RAPORTTI WORKING REPORT CORE DRILLING OF DEEP BOREHOLE OL-KR43 AT OLKILUOTO IN EURAJOKI 2006 TEKIJA Risto Niinimaki Geologi TARKASTAJA Tauno Rautio Paageologi

4 CORE DRILLING OF DEEP BOREHOLE OL-KR43 AT OLKILUOTO IN EURAJOKI 2006 ABSTRACT Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled m and m deep boreholes with a diameter of 75.7 mm at Olkiluoto in July - October The identification numbers of the boreholes are OL KR43 and OL-KR43B, respectively. A set of monitoring measurements and samplings from the drilling and returning water was carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded. The drill rig was computer controlled and during drilling the computer recorded drilling parameters. The objective of all these measurements was to obtain more information about bedrock and groundwater properties. Sodium fluorescein was used as a label agent in the drilling water. The total volumes of the used drilling and flushing water were 1103 m 3 and 16 m 3 in boreholes OL-KR43 and OL-KR43B, respectively. Measured volumes of the returning water were 916m 3 in borehole OL-KR43 and 13m 3 in borehole OL-KR43B. The deviation of the boreholes was measured with the deviation measuring instruments EMS and Maxibor. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 131 MPa, the average Young's Modulus is 37 GPa and the average Poisson's ratio is The main rock types are veined gneiss, diatexitic gneiss, tonalitic-granodioriticgranitic gneiss and pegmatite granite. The average fracture frequency is 1.6 pes/m in borehole OL-KR43 and 1.5 pes/m in borehole OL-KR43B. The average RQD values were 96.2% and 97.7 o/o. In borehole OL-KR43 24 fractured zones and in borehole OL KR43B one fractured zone were penetrated during drilling work. Keywords: core drilling, borehole, veined gneiss, diatexitic gneiss, tonalitic-granodioriticgranitic gneiss and pegmatite granite, fracture, monitoring measurements, elastic parameters, deviation surveys

5 REIAN OL-KR43 SYVAKAIRAUS EURAJOEN OLKILUODOSSA 2006 TIIVISTELMA Posiva Oy jatti valtioneuvostolle vuonna 1999 periaatepaatoshakemuksen, jolla se haki lupaa valita Eurajoen Olkiluoto kaytetyn ydinpolttoaineen loppusijoituslaitoksen rakennuspaikaksi. Joulukuussa 2000 valtioneuvosto teki asiasta myonteisen paatoksen. Toukokuussa 2001 eduskunta vahvisti valtioneuvoston paatoksen. Periaatepaatoshakemuksen mukaisesti paikkatutkimukset keskitetaan Olkiluotoon. Paikkatutkimuksiin liittyen Suomen Malmi Oy (Smoy) kairasi heina - lokakuun 2006 valisena aikana 1000,26 m ja 45,01 m syvyiset reiat OL-KR43 ja OL-KR43B Eurajoen Olkiluodossa. Kairatuilla rei'illa OL-KR43 ja OL-KR43B hankittiin tietoa alueen luoteisosasta. Reikien halkaisija on 75,7 mm. Kairauksien aikana suoritettiin tarkkailumittauksia lisainformaation saamiseksi kallio-olosuhteista. Mittauksia olivat veden sahkonjohtokyvyn mittaus ja huuhteluveden seka palautuvan veden maaran mittaus. Tyossa kaytettiin automatisoitua mikroprosessoriohjattua kairauskonetta, josta saatu tieto tallennettiin. Kairauksiin kaytettiin kokonaisuudessaan natriumfluoresiinilla merkittya huuhteluvetta reialla OL KR43 noin 1103 m 3 ja reialla OL-KR43B noin 16 m 3 Tyon aikana vetta palautui maaramittarin kautta noin 916 m 3 reiasta OL-KR43 ja noin 13 m 3 reiasta OL-KR43B. Reikien taipumat mitattiin EMS ja Maxibor -laitteilla. Kallionaytteista maaritettiin yksiaksiaalinen puristusmurtolujuus, kimmomoduli ja Poissonin luku. Yksiaksiaalinen puristusmurtolujuus oli keskimaarin noin 131 MPa, kimmomoduli oli keskimaarin noin 37 GPa ja Poissonin luku 0,19. Paakivilajeina esiintyvat suonigneissi, diatekstiittinen gneissi, tonaliitti-granodioriitti-graniittigneissi ja pegmatiittigraniitti. Kallion rakoluku on reiassa OL-KR43 keskimaarin 1,6 kpl/m ja reiassa OL-KR43B 1,5 kpllm. Vastaavasti RQD-luku on reiassa OL-KR43 keskimaarin 96,2 % ja reiassa OL-KR43B 97,7 %. Rikkonaisia tihearakoisia osuuksia lavistettiin 24 kappaletta reiassa OL-KR43 ja yksi reiassa OL-KR43B. Avainsanat: kairaus, kairanreika, suonignetsst, diatekstiittinen gnetsst, tonaliittigranodioriitti-graniittigneissi, pegmatiittigraniitti, rako, tarkkailumittaukset, muodonmuutosominaisuudet, taipumamittaus

6 1 CORE DRILLING OF DEEP BOREHOLE OL-KR43 AT OLKILUOTO IN EURAJOKI 2006 ABSTRACT TIIVISTELMA CONTENTS 1 1. INTRODUCTION 1.1 Background 1.2 Scope of the work DRILLING WORK AND TECHNICAL DETAILS OF THE BOREHOLE 2.1 Diamond core drilling 2.2 Deviation surveys 2.3 Location and deviation measurements 2.4 Construction of the upper part of the borehole MONITORING MEASUREMENTS 3.1 Monitoring measurements during drilling work 3.2 Drilling water and the use of label agent 3.3 Quantities and label agent concentration of drilling and returning water 3.4 Groundwater level in the borehole 3.5 Electric conductivity of drilling and returning water 3.6 Drill cuttings yield 3.7 The result of MWD -measurements 3.8 Flushing of the borehole ENGINEERING GEOLOGY 4.1 Engineering geological logging 4.2 The effects of drilling to the sample quality 4.3 Rock quality 4.4 Fracturing 4.5 Core orientation 4.6 Core discing ROCK MECHANICS 5.1 Rock mechanical field tests on core samples 5.2 Strength and elastic properties SUMMARY REFERENCES 41

7 2 8. APPENDICES 8.1 List of core boxes 8.2 Lifts 8.3 Deviation surveys, list, Maxibor 8.4 Deviation surveys, graphic, Maxibor 8.5 Deviation surveys, list, EMS 8.6 Deviation surveys, graphic, EMS 8.7 Construction of upper part of borehole 8.8 Drilling water samples 8.9 Returning water samples 8.10 Ground water level during flush pumping 8.11 Electric conductivity of returning water 8.12 Petrographical description 8.13 Degree of weathering 8.14 Foliation 8.15 List of fractures 8.16 Fracture frequency and RQD 8.17 Fractured zones, core loss 8.18 Core orientation 8.19 Core discing 8.20 Rock mechanical tests PHOTOS

8 3 1. INTRODUCTION 1.1 Background Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May The policy decision makes it possible to concentrate the research activities at Olkiluoto in Eurajoki. One part of the research is to build an underground rock characterisation facility (called "ONKALO"). Construction of the access tunnel was started in autumn Posiva Oy contracted (order number 9663/06/MUAT) Suomen Malmi Oy (Smoy) to drill new investigation boreholes in the area. In July - October 2006 boreholes OL-KR43 ( m) and OL-KR43B (45.01 m) were core drilled. The new boreholes were aimed to get additional information of the quality of bedrock. Borehole OL-KR43 is located north of the Contractor area near the Munakari road and west from the previously drilled deep boreholes. Borehole OL-KR43B is located about 3.5 metres west of borehole OL-KR43. The azimuths of the boreholes are and and initial dips of the boreholes are 60.9 and 60.8 from the horizontal, respectively. The location of the borehole OL-KR43 is shown in Figure 1. The diameter of the boreholes is 75.7 mm. 1.2 Scope of the work The aim of the work was to drill an about 1000 m long borehole to document the geology and the ground conditions (continuity of the rock units, fractured zones and rock quality) in the area. The 40 m precollar for borehole OL-KR43 was drilled with a down-the-hole (DTH) percussion drill. In order to get a core sample also from the upper part of the bedrock an about 45 m deep borehole OL-KR43B was core drilled near the main borehole. To maximise the recovery yield of an undisturbed and continuous core, triple tube coring technique was used. In addition to the drilling, work included core logging, rock mechanical field testing of the core, drilling fluid monitoring, flushing of the borehole, borehole deviation surveys and reporting.

9 4 This report documents the work and sampling done during the drilling of the boreholes. Depth measurements are from the ground surface (concrete slab) along the borehole unless otherwise stated.....c P o er pi a t OLKILUOTO Location of the boreholes KR1-KR43, KR43B Coordinate Syatem: Finnish Coordinate Syatem, zone Saanlo & Rlekkola Oy/KF LEGEND: KR1 Core drilled borehole Figure 1. Location of deep boreholes OL-KRJ- OL-KR43 in the Olkiluoto area.

10 5 2. DRILLING WORK AND TECHNICAL DETAILS OF THE BOREHOLE 2.1 Diamond core drilling The percussion drilling of borehole OL-KR43 (the wider upper part of the borehole, precollar) was done on the 4th of May in The borehole is cased with a 0 194/184 mm diameter tube, which is drilled to the depth of 6.0 m. The borehole section from 6.0 m to m was drilled with a 165 mm diameter DTH-hammer. This percussion drilled section of the borehole is cased with an acid-resistant stainless steel (Aisi 316) 0 140/134 mm diameter tube, which was grouted into the bedrock. The diamond drill rig, additional casings and air-lift pumping hoses were set up at the drilling site at the 19th of July in Drilling commenced on the 24th of July. On the 2ih of September in 2006, drilling depth m was reached. The drilling of borehole OL-KR43B was carried out after the borehole OL-KR43 was drilled. The diamond drill rig was set up at the drilling site OL-KR43B on the 1oth of October in Drilling thh the overburden, the thickness of which was about 1.95 m, was done on the 10 1 h of October in Acid-resistant stainless steel casing was drilled to the depth of 4.40 m. After the casing was placed, diamond core drilling continued normally. The final depth of m was reached on the 12th of October in The realized time schedule of the work is shown in Figure 2. Both boreholes OL-KR43 and OL-KR43B were core drilled with a computer controlled hydraulic U8 drill rig. NQ3 -triple tube core barrel and NQ -drill rods were used in drilling. Borehole diameter with NQ3 -triple tube core barrel is 75.7 mm and drill core diameter is 50.2 mm. The cutting area of the diamond bit of the triple tube core barrel is larger than that of the double tube core barrel. In the triple tube core barrel the third, innermost, tube is of split type. The innermost split tube containing the sample is removed from the core barrel with the aid of a piston working on water pressure. In this way the sample may be removed from the core barrel as undisturbed as possible.

11 6 Item July August I I September I October Week Borehole OL-KR43 r i ' Percussion drilling 4.5. Move to the hole Drilling m I Deviation measurements I Flushing and pumping Borehole OL-KR43B Move to the hole Drilling 0-45 m Deviation measurements Flushing and pumping Figure 2. Time schedule ofboreholes OL-KR43 and OL-KR43B. Drilling was uncontinuous shift work (three shifts per day and five days per week) and the drilling team in a shift consisted of a driller and an assistant. Geologist Tauno Rautio was the project manager and Matti Alaverronen was the drilling supervisor. Geological logging was done by geologist Ville Pussinen and Risto Niinimaki and the final report was compiled by geologists and Risto Niinimaki. Drilling time (which does not include set up and dismantling works) on borehole OL-KR43 was 689 h, which gives the mean drilling efficiency of 1.4 m per rig hour. The drilling time for borehole OL-KR43B was 17 h. Wear and tear of the drilling equipment was higher than the average in the Olkiluoto area with this type of borehole equipment. In this work, about 53 m was drilled per one NQ3 bit compared to a long-term average of about 75 m per NQ3, about 28 m per WL-76, about 29 m per T-76 and about 35 m pert-56 bits in Olkiluoto. Drill core samples were placed in wooden core boxes immediately after emptying the core barrel. In all 222 (OL-KR43) and 11 (OL-KR43B) wooden core boxes were used during this drilling work. Start and end depths of the core in each core box are presented in Appendix 8.1. Wooden blocks separating the different sample runs were placed to core boxes to show the depth of each lift. The core drilling included 363 (OL-KR43) and 16 (OL-KR43B) sample runs. Depths of lifts are presented in Appendix 8.2.

12 7 2.2 Deviation surveys To trace the borehole accurately the dip and the azimuth of borehole OL-KR43 was measured with Reflex Maxibor II and Reflex EMS downhole deviation survey tools. Maxibor was lowered into the borehole with rods and EMS with wireline cable. Borehole OL-KR43B was measured with EMS downhole deviation survey tool with wireline cable. EMS device measures the borehole dip with an electronic accelerometer and the azimuth relative to the magnetic north with a three component fluxgate magnetometer. According to the manufacturer, provided there are no magnetic anomalies, the accuracy of the azimuth is ± 0.5 degrees and the accuracy of the dip is ± 0.2 degrees. No significant magnetic anomalies have been detected during measuring the borehole. The azimuth is given to the magnetic north and the declination. Used declination in boreholes OL-KR43 and OL-KR43B in EMS calculations is 4.0 degrees. In basic setup Maxibor II device has two reflector rings at three metres intervals in a six metres long tube. In a straight hole the rings are concentric. When the tool is bent following the ed borehole, the rings are shifted correspondingly. By quantifying this shift, a measure of the bend can be calculated. Maxibor II measurer the rotation angle and uses the information to separate true bend from instrument rotation. Three carefully calibrated and perpendicularly placed accelerometer units provide the dip values and the rotation of the instrument. The diameter of the tube is adjusted for 46 mm size. When measuring larger boreholes (diam. about 76 mm) four centralizing rings of suitable size are installed directly around the reflector rings, camera and top coupling. Based on the initial coordinates and azimuth of the hole and deviation readings of the reflector rings a computer program calculates the coordinates and direction of the hole at each survey point. The results are presented as a table and in graphic form. According to the manufacturer typical accuracy in a 800 metres deep borehole with a diameter of 46 mm is ± 1 m. The Maxibor survey was carried out at three metres intervals. The survey was tied to geodetic fix points provided by the client.

13 8 2.3 Location and deviation measurements The initial dips of boreholes OL-KR43 and OL-KR43B are 60.9 and 60.8 degrees, respectively. The initial azimuths ofboreholes OL-KR43 and OL-KR43B are and degrees, respectively. In Maxibor survey initial dip used in borehole location calculations is the dip of the first station of Maxibor survey. It is not exactly same in this case as initial dip ofborehole (=casing, measuring ofprismarit Oy). The ground surface was used as the reference level of the borehole and depth measurements. The measured end coordinates of the borehole OL-KR43 based on Maxibor survey are shown in Table 1. In borehole OL-KR43 the Maxibor deviation survey was carried out to the depth of978 and EMS to the depth of 582 m because the borehole was blocked at depth about 600 metres. In borehole OL-KR43B EMS survey was carried out to the depth of 42 m. According to the Maxibor results the horizontal deviation of the borehole OL-KR43 at the depth of 978 metres is metres to the right and the vertical deviation is metres upwards in relation to the initial direction of the borehole (first station ofmaxibor survey). The coordinates of borehole OL-KR43B at the depth of 42 metres based on the EMS data are shown in Table 1. The results of the Maxibor survey are listed as a table in Appendix 8.3 and shown in graphic form as various projections in Appendix 8.4. The results of the EMS survey are listed as a table in Appendix 8.5 and shown in graphic form as various projections in Appendix 8.6. Table 1. Coordinates ofboreholes OL-KR43 and OL-KR43B. Coordinate Point location X y z ongtn Ground surface, OL-KR Calculated Top of the casing, OL-KR Surveyed End ofborehole, OL-KR43 (978 m) Maxibor Ground surface, OL-KR43B Calculated Top of the casing, OL-KR43B Surveyed End ofborehole, OL-KR43B ( 42 m) EMS

14 9 2.4 Construction of the upper part of the borehole Down-the-hole hammer percussion drilling was used to drill the precollar for borehole OL-KR43. Drilling a 0 194/184 mm casing thh the overburden into the bedrock started this borehole. The casing was drilled to the depth of 6.0 m from the surface. The thickness of soil was estimated to be 2.0 m. The borehole was continued with a mm hammer to the depth of m and a 0 140/134 mm acid-resistant stainless steel casing was placed into the borehole and cemented into the bedrock. At the bottom of the casing there is a cone, which helps to insert instruments into the borehole. Finally the 0 194/184 mm casing was cut to the ground level. The length of the cone at the bottom of the 0 140/134 mm casing is 110 mm. The conic part is 53 mm long. The bottom of the cone is made of the 0 84/77 mm tube, which is 57 mm long. The tube has right hand thread, which was used to attach the 0 84/77 additional casing during the drilling. The cone is inside the 0 140/134 mm casing and the end of the tube in the lower part of the cone is at the depth of m. The cone and the attached tube are made of acid-resistant stainless steel. The top of the casing was with a cap equipped with a lock. The constructions of upper parts of the boreholes are shown in Appendix The precollar for borehole OL-KR43B was done by drilling a 0 90/77 mm acidresistant stainless steel casing thh the overburden into the bedrock. The casing was drilled to the depth of 4.40 m from the surface due to fractured rock. The thickness of the soil was estimated to be 1.95 m. The casing with a casing shoe, was cemented into the bedrock. The top of the casing was with a cap equipped with a lock. Distances along the casing between the tops of casings and the ground level are 0.50 m and 0.61 m for boreholes OL-KR43 and OL-KR43B, respectively.

15 10

16 11 3. MONITORING MEASUREMENTS 3.1 Monitoring measurements during drilling work Several drilling parameters were monitored and water samples were taken during the drilling. The aim was to get additional information on rock quality and to predict possible drilling problems. To find out how much drilling water was leaking into the bedrock, the volumes of ingoing and returning water were monitored. The flowmeter for ingoing drilling water was connected to the waterline coming to the water pump of drill rig and the volume of returning water was measured from the overflow of the sedimentation tank. All drilling water batches made in the mixing tanks were sampled. The returning water was sampled once a day provided water was flowing out of the borehole. Due to the sensitivity of sodium fluorescein label agent to the UV-light, the sample bottles were wrapped in aluminium foil immediately after the sampling. Water samples were stored in a refrigerator until they were sent for analysis to the laboratory oftvo at Olkiluoto. Electric conductivity of the drilling water was measured after the label agent was mixed. The returning water samples were collected for the electric conductivity measurements, when water was flowing from the borehole. The returning water contains drill cuttings, the composition of which depends on the drilled rock type. If the drill cuttings were affecting the conductivity, the water samples (2-3 dl) were let to settle and, if needed, filtered thh a 45 /Lm filter to remove the remaining drill cuttings. The electric conductivity measurements were done with a WTW conductivity meter Cond 315i with TetraCon 325 conductivity cell. Conductivity meter gives the results as ms/m at +25 C. Conductivity meter was calibrated regularly by Posiva. The drill rig utilized on boreholes OL-KR43 and OL-KR43B was Atlas Copco Diamec U8 APC. U8 rig is a fully hydraulic microprocessor controlled unit with an automated process control. The manual interface to the control system is a touch screen panel. The control unit of the rig optimizes the drilling process according to drilling conditions in real time. The driller sets the upper and the lower values for the volume of the flushing water, feeding force and rotation torque. The driller sets also values for the penetration speed and rotation speed. Once these values have been set the rig will carry out the drilling within

17 12 the pre-set values by measuring the value of the parameters several times in a second. If the rig fails to keep up the chosen penetration speed within the pre-set parameter values, drilling will be stopped automatically. Feeding force is the force working on the bit and generated by the rig feed and the weight of the drill string. The feeding force is adjusted by the system pressure and bit force to achieve the optimal penetration speed. Drilling parameters (MWD measurements) are recorded by the rig computer. The recorded parameters are pressure and volume of the flushing water, rotation speed of rods, penetration speed, hydraulic system pressure and weight on bit. 3.2 Drilling water and the use of label agent Drilling water for borehole OL-KR43 was taken from the Olkiluoto freshwater line from the Contractor area. The length of hose line from the water line was about 400 m. Before entering the mixing tanks (three 5 m 3 fibreglass tanks) water was filtered thh a 500 p..m filter. All drilling water was marked with the label agent sodium fluorescein. Sodium fluorescein is an organic powdery pigment, which is broken down by UV radiation. Therefore the label agent mixing tanks were covered. Sodium fluorescein was delivered byposiva. At the TVO Olkiluoto laboratory sodium fluorescein was packed into glass vials in g ready to use doses for five cubic metres of water (the ned concentration is 250 p..g/1). At the drilling site, the contents of a vial was dissolved into one litre of water and the mixture was slowly added into the mixing tank in the beginning of pumping. Turbulence caused by pumping water into the tank ensured mixing of the label agent. 3.3 Quantities and label agent concentration of drilling and returning water During the drilling ofborehole OL-KR43, m 3 of water was used. After the drilling was. finished, the borehole was flushed with 36.8 m 3 of water. During the drilling and flushing, m 3 of returning water was measured. This is about 83% of the drilling and flushing water. Some water passed the flowmeter (could not be measured) during the air-

18 13 lift pumping and lifting of drill rods. The cumulative consumption of drilling water and the amount of measured returning water are shown in Figure 3. During the drilling ofborehole OL-KR43B, 15.0 m 3 of water was used. After the drilling was finished, the borehole was flushed with 1.1 m 3 of water. During the drilling about 12.5 m 3 of returning water was measured. The cumulative consumption of drilling water and the amount of measured returning water are shown in Figure 3. The concentration of the label agent is used to estimate the representativeness of the groundwater samples taken from the borehole. The ned label agent concentration of the drilling water was 250 J.lg/1. The achieved concentrations varied mainly between allowed limits +/- 30 J.!.g/1 and the average was 248 J.!.g/1 during the drilling of borehole OL-KR43. The lowest value was 170 J.lg/l and the highest value 440 J.!.g/1. During drilling ofborehole OL-KR43B the achieved concentration varied between 210 and 250 J.lg/1. The label agent batches, drilling water samples, electric conductivities and sodium fluorescein concentrations are listed in Appendix 8.8. Returning water samples were collected once a day when drilling work was continuous. In total, 33 samples were taken during the drilling of borehole OL-KR43. High sodium Drilling and returning water 1-Drilling water -Return water I Q) -e aoo u :s c3 600 c) o > Depth, m Figure 3. Cumulative consumption of drilling water and amount of returning water during the drilling of boreholes OL-KR43 and OL-KR43B.

19 14 fluorescein concentration in the returning water indicates that the water is mainly drilling water. Values over 125 J..!g/1 means that returning water contains in principle more drilling water than groundwater. Concentration values of the label agent in the returning water of borehole OL-KR43 varied from 20 to 230 J..!g/1 and average was 167 J..!g/1. The analysis of sodium fluorescein concentrations of the returning water samples are presented in Appendix Groundwater level in the borehole Groundwater level during the drilling work in the borehole OL-KR43 varied between 5.10 m and m, but was mainly between 10 and 12 metres. The result depends on the stabilising time before measurements. The groundwater level is measured from the ground surface along the borehole (it is not the vertical depth). Water levels during flush pumping are presented in Appendix Electric conductivity of drilling and returning water During the drilling, the electric conductivity of drilling water and returning water was monitored. Electric conductivity of each drilling water batch was measured after mixing the label agent. Electric conductivity varied between 20.1 and 24.1 ms/m during the drilling of boreholes OL-KR43 and OL-KR43B. The results are presented in Appendix 8.8. The variation range of the electric conductivity of returning water was slightly larger and it varied from 19.7 to 99.6 ms/m during the drillings ofborehole OL-KR43. Mainly the values were between 20 and 35 ms/m. The conductivity of the returning water is affected by the content and the conductivity of groundwater. The results are presented graphically in Figure 4 and measured values are presented in Appendix Drill cuttings yield Drill cuttings were collected in a sedimentation tank and the volume of drill cuttings was measured. From boreholes OL-KR43 and OL-KR43B, about 5500 and 260 litres of drill cuttings was collected, respectively. With the used bit size 75.7/50.2 mm, 2.52 litres of rock per metre was ground to drill cuttings. Consequently, the total volume of drill cuttings generated (OL-KR43) was about 2420 litres. If the expansion factor 1.7 of wet cuttings is assumed, the yield would be about 4110 litres. This means that all or almost all of drill cuttings were recovered to sedimentation tank. The result indicates that the water

20 15 Electric conductivity E en E i : g 80.0 "'0 c 0 (.) 60.0 I ("'\ N\ LJ\f!\J Depth, m Figure 4. Electric conductivity of returning water from boreholes OL-KR43 and OL KR43B. content of drill cuttings of the borehole OL-KR43 is higher than assumed with the used expansion factor. It is also possible that part of the material collected in the sedimentation tank is from fractures (fracture fillings). 3.7 The result of MWD -measurements Drilling parameters were saved on the memory card of the rig computer. When the hole was completed, the recorded data ofmwd (Measurement While Drilling) measurements was transferred to a separate computer. The rig records pressure and volume of the flushing water, rotation speed, penetration speed, hydraulic system pressure and weight on the bit. The drilling parameters are presented in Figure 5. Most of the peak values are narrow and can probably be caused by technical matters or fractures. The system pressure varied mostly from 90 to 200 bars. After the beginning of the borehole the system pressure had an increasing tendency towards the end of the borehole. The average system pressure was 165 bars.

21 16 The variation of bit force is caused partly due to the variation of hardness in the Olkiluoto bedrock. During the drilling of the hole the bit force is mainly between 10 and 30 kn. The average bit force was 16.5 kn. Penetration speed was kept as constant as possible by the automatic process control. Generally the penetration speed was from about 9 to 15 cm in a minute but in some short intervals it varied slightly. The average penetration speed was 13.8 cm per minute. Additionally there occurs variation on the penetration speed in some narrow sections. During the bedrock drilling the rotation speed of rods varied generally between 820 and rpm. In several sections, especially after the depth of 750 m, there has been some problems with registration of rotation speed, see Figure 5. The rig records also the behaviour of flushing water. The driller pre-sets the upper and the lower limits for the water flow, which will not be exceeded or fallen below. Water flow was quite constant except for some zones, where probably the fractures in bedrock caused significant variations in the flow values. Also driller sometimes decreased the water flow during the drilling to sharpen the bit. The average water flow was 34 litres per minute. From the beginning of the borehole the water pressure had an increasing tendency towards the end of the borehole. During the drilling of borehole OL-KR43 the water pressure varied normally between 5 and 40 bars. Most of the other peak values are narrow and can probably be caused by technical matters or fractures. One technical factor causing the variations could be bit wear at the end of the runs. The average water pressure was 19.7 bars.

22 Figure 5. Drilling parameters ofboreholes OL-:KR43 and OL-KR43B. 17

23 Flushing of the bore hole Before the final flushing of the borehole, the walls of the borehole were washed with the label agent water and brush to drop all loose material from the walls to the bottom of the borehole. A steel brush was utilized in washing the hole (Figure 6). In addition water jets thh inclined holes at the root of the brush were directed against the wall of the hole. The water was pumped thh the drill rods. After the walls of the borehole OL-KR43 were cleaned with the brush and water jets, the borehole was cleaned by pumping water from the bottom of the borehole thh alu-53 drill rods with a submersible pump. In this procedure an adapter with rubber sealing was lowered on the cone installed at the bottom of the casing (0 140/134). The adapter was lowered and lifted by a drill string, which was screwed to the top of the cone. Another drill string of alu-53 rods, which nearly reached the bottom of the hole, was attached to the adapter. The weight of the drill string pressed the adapter and the cone tightly together and there was no water leakage between them. In this method, the lowermost 9 m of the drill rods are perforated. A submersible pump was lowered to the depth of about 40 m inside the 0 140/134 mm casing. Consequently, the flushing water circulates via the bottom of the borehole. The pumping was carried out in two separate phase. First pumping phase was between 03:30pm on the 4th of October and 08:30 am on the 9th of October and second phase between 11 :45 am on the 1oth of October and 07: 17 am on the 1ih of October in During the first flush pumping phase 36.2 m 3 of water was pumped with an average rate of320 1/h and during the second phase 5.4 m 3 of water was pumped with an average rate of 122 1/h from borehole OL-KR43. After the pumping of borehole OL-KR43 the time-rate of recovery of the water level were observed. Measured groundwater levels are presented in Appendix After the walls of the borehole OL-KR43B were cleaned with the brush and labelled water the borehole was cleaned by pumping water from the borehole with a submersible pump. A submersible pump was lowered to the depth of about 25 m. The pumping was carried out between 09:50 am on the 20 1 h of October and 09:35 am on the 23rd of October in During the flush pumping 10.5 m 3 of water was pumped with an average rate of 1541/h from borehole OL-KR43B.

24 19 Figure 6. Steel brush used for washing boreholes (in picture a brush for fjj 76 mm holes).

25 21 4. ENGINEERING GEOLOGY 4.1 Engineering geological logging Handling of the core was based on the POSIV A work instructions POS "Core handling procedure with triple tube coring (in Finnish)". Drill core samples were placed in to about one metre long wooden core boxes immediately after emptying the core barrel. Core boxes were covered with damp proofing quality aluminium paper so that the aluminium surface was against the core. Also the wooden blocks separating the different sample runs were covered with aluminium paper. Drill core was handled especially carefully during and after the drilling. Core was placed in the boxes avoiding any unnecessary breakage. Broken and clay rich core was wrapped in aluminium foil to avoid breaking it during storaging and logging. If loose rock fragments from the borehole walls were encountered during logging, they were placed after the block marking the end of the previous sample run. Therefore, at the beginning of a sample run there might be rock fragments that do not belong to the sample run itself. Geologist logged the core in the Posivas's core logging facility. Logging was designed for engineering geological purposes (Gardemeister et al. 1976, Korhonen et al. 1974). Following parameters were logged: fracture classification, fractured zones and core loss, artificial break and fracture frequency and RQD, petrography, foliation degree, degree of weathering and core discing. In addition, the lift and the core box numbers were documented. List of lifts lists the depths as they have been marked on the wooden spacing blocks separating different sample runs in the core boxes. If the length of the core in the sample run indicated that sampling depth was different from the depth measured during drilling, the true sample depth has been corrected on the spacing block. Therefore, the sample run depth means the sample depth. The drilling depth might be deeper than the sampling depth if the core lifter slips and part of the core is left in the borehole and is not retrieved until with the next lift. List of core boxes lists the start and end depths of the core in each core box. In the list of fractures the fractures were numbered sequentially from the top to the bottom of the borehole. Fracture depths were measured to the centre line of the core and were

26 22 given with one centimetre accuracy. If the middle line of an gular fracture did not coincide with the centre line of the core, an appropriate depth was given. If observations were given for a depth interval, the depth was given to the end of the last fracture, for example in the case of crushed zone. Logged depths were corrected to the true core depth, i.e. if there were depth inaccuracies due to the core loss or the core lifter had slipped, the depth written on the wooden block marking at the end of a lift was corrected. Inaccuracies due to core loss were also logged separately. The nature of a fracture was described with abbreviations: op = open, rusty/limonite covering ti = tight, no filling material fi =filled fisl = filled slickenside grfi =grain filled clfi = clay filled. The term "open" was used in core logging if fracture had rusty/limonite covering. Angle of a fracture was given in relation to the core axis. If a fracture was parallel to the axis its core angle was 0 and correspondingly if a fracture was perpendicular to the core axis its angle was 90. Thickness of the fracture filling was given in millimetres. The colour of the fracture surfaces was logged if it differed from the host rock colour significantly. Usually the colour of filled and open fractures differed from the host rock colour. Tight fractures had typically only a slightly different shade from the host rock colour. Fractures, which had a clear colour but the core was intact across the fractures were classified as filled fractures. In these cases in the remarks column has been written "" or "partly ", which indicates that the fracture is healed or partly healed and its permeability is poor in its natural state. Fractures, which had euhedral or subhedral mineral growth, have "crystals" written in the log. In addition, if any smell (ammonia, hydrogen sulphide) was detected, it was recorded to the remarks column. Minerals have been logged only if their recognition was absolutely sure. Mineral names used have been listed in the petrography section of the report.

27 23 Fracture surface colour (minerals) has been described with three to four letter abbreviations: brow, lbro, dbro (brown, light brown, dark brown) gray, lgra, dgra (gray, light gray, dark gray) gree, lgre, dgre (green, light green, dark green) red, lred, dred (red, light red, dark red) The colour shades of the fracture surface colours were described by adding one letter to the front of the three letter colour abbreviation. For example: rbro (reddish brown) Recognition of the mineral composition of the rock is qualitative and the mode has been estimated by eye. Mineral names have been abbreviated using the system used in Saltikoffs (1972) Finnish mineral name catalogue. Same abbreviations have also been used in the fracture descriptions. The most common abbreviations used are: quar = quartz feld = feldspars (K-feldspar or plagioclase) biot = biotite = onate (unspecified) talc= talc chlo = chlorite clay= clay minerals (unspecified) sulf = sulphide minerals (unspecified) kaol = kaolin epid = epidote grap =graphite Fracture surface morphology is described with following abbreviations: (ar) (gular) (ed) Fracture surface quality was described with a four letter abbreviation. The three step classification used corresponds with the JRC-numbers (Barton & Choubey 1977). (h; JRC 15-20)

28 24 (semih; JRC 7-14) (th; JRC 0-6) Core loss is the result of geological factors, which may include strong weathering or fracturing of rock, or technical factors during the drilling. The depth of core loss, length and cause was logged. If the location was not known exactly, the depth interval where the core loss occurred has been logged. Consequently, the depth measurements following the core loss are marked with notation. Fractured zones were described in the list of the fractured zones and core loss using the following abbreviations: Riiii = fracture-structured, densely fractured, more than 10 fractures per metre RiiV = crush-structured RiV = clay-structured Break and natural fracture frequency and ROD were logged on full metre depth intervals. Break frequency is the number of core breaks within one metre interval. Drilling, core handling, core discing and natural fractures cause breaks. Fracture frequency is the number of natural fractures within one metre interval. If the break frequency is higher than the natural fracture frequency the core must have been broken during the drilling or core handling accidentally or by purpose. If the natural fracture frequency is higher than the break frequency the fractures must be tight and cohesive enough to keep the core together. RQD gives the percentage of over 10 cm long core segments, which are separated by natural fractures, within one metre interval. Petrographical description is based on the Finnish engtneenng geological rock classification (Korhonen et al. 1974, Gardemeister et al. 1976). Each rock type has been described at the first occurrence and only the changes are added later if there has been significant differences in the deeper sections. Grain size has been classified as follows: Very fine grained, glassy, grain not visible to naked eyes Fine grained Medium grained Coarse grained Very coarse grained <<1 mm <lmm mm mm >50 mm Texture has been described with following terms (Milnes et al. 2006):

29 25 Massive Irregular Gneissic Banded Schistose MAS IRR GNE BAN SCH Foliation degree has been described using Posiva's classification (Milnes et al. 2006) Zones of relatively constant foliation intensity were delineated and dip, dip direction and angle of foliation were measured with a point interval of about 10 m. In addition, the foliation degree was estimated using the above-mentioned classification. Foliation degree has been classified to four categories: unfoliated weak moderate strong Texture and foliation intensity description can have the following variations: GNE 1, GNE2, GNE3, BANl, BAN2, BAN3, SCHl, SCH2, SCH3. Rocks with massive and gular texture are considered as unfoliated. Therefore only descriptions MAS and IRR without suffix 0 are used. Degree of weathering was described with following abbreviations (Korhonen et al. 1974, Gardemeister et al. 1976): RpO = unweathered Rpl =slightly weathered Rp2 =strongly weathered Rp3 = completely weathered If there are small changes in the weathering degree within the logged depth interval, for example around fractures, the overall weathering degree is given first and the minor weathering changes in brackets. When the weathering within a certain zone varies between two weathering degrees, the degrees used for such a zone are separated with a dash, e.g. Rp0-1. When there is some short uncertain places on minerals of other weathering degrees which are impossible to separate out, the minority weathering degree is presented in parentheses, e.g. RpO(Rp 1 ).

30 26 Core discing has been logged separately. Depth intervals, within which core discing occurs, have been documented. The number of breaks and core discs, the minimum and maximum spacing between discs has been logged. In each break, the geometry of the disc surfaces has been described using the following classification (the core is running from left to right): ( ( = top surface concave, lower surface convex (I = top surface concave, lower surface ar I( = top surface ar, lower surface convex ) ) = top surface convex, lower surface concave )I = top surface convex, lower surface ar I) = top surface ar, lower surface concave 11 = top surface ar, lower surface ar )( = top surface convex and lower surface convex S =saddle A = incomplete discing All core boxes were photographed (colour) both dry and wet. Core photographs (wet) are presented at the end of the report. In addition, close up photographs were taken from well preserved fractured zones and individual clay filled fractures. These photographs (wet) are presented at the end of the report after the full core box photographs. The depth of each run where the core has been orientated has been recorded. Also the start and end depths and the length of the orientated part of the sample have been recorded. If the mark has been poor or it has not been found at the upper end of a lift marked with "EM" by the driller, there is a comment of this in the list. Core orientation was carried out by using Ezy-Mark system in boreholes OL-KR43 and OL-KR43B. When utilized, Ezy-Mark tool was locked into the core lifter case of inner tube and set into the core barrel. Before drilling starts the core barrel with marking tool is lowered against the hole bottom, when the pencil of the orientation head makes a mark on the hole bottom and pins of the tool are pressed consistently with the profile of the hole bottom. When the tool reaches the bottom, orientation balls of the tool are locked in their lowest position, which is the lower side of inclined hole. During drilling marking tool slides above drilled core inside the core barrel. After drilling is finished, inner tube with sample and tool is normally pulled out by wire line. Core orientation can be done, when the tool is twisted into Ezy-Mark Orientation Cradle (Figure 7) so that orientation balls can be seen from the slot of the cradle. When core sample is set into the cradle and

31 27 orientation head is aligned respectively with the shape of the core face and pencil mark, can orientation be drawn on the outer surface of core using cradle's edge. If pencil mark does not exist, the core can still be orientated by using only pins of the orientation head. Block marking "EM" is used with this method. Orientation of samples was utilized to determine the direction of fractures and other linear and ar features in the core. 4.2 The effects of drilling to the sample quality Core loss due to rock breaking or grinding occurred in borehole OL-KR43 in eight places. The total length of the core losses was 1.39 m. In few places, the ends of core samples had signs of rotation but there was no significant core loss. Total length of the core losses in borehole OL-KR43B was 0.53 m in two separate sections. Mainly the core loss occurred close to the rock surface. Measured core losses are shown in Appendix The sample quality is better while drilling with triple tube core barrel than drilling with conventional double tube core barrel. In addition the sample quality is better when using an automatic drill rig, because the drilling is controlled by the computer continuously by taking several measurements per second. In a triple tube core barrel the inner tube is split and it is not necessary to shake the core out of the inner tube. Therefore, the core will stay more compact than in a normal double tube core barrel. This advantage is especially noticed when drilling fractured rocks. In addition, soft fracture fillings will be preserved much better. Furthermore, there is much less drill cuttings on the core surface, in the breaks and fractures. 4.3 Rock quality According to petrological studies of Olkiluoto based on bedrock mapping, drill core logging and related mineralogical and geochemical investigations carried out since 1988, the rock types of Olkiluoto can be divided into five major classes: 1) migmatitic gneisses, 2) homogeneous mica-bearing gneisses, 3) homogeneous tonalite granodiorite granite gneisses (TGG-gneisses), 4) amphibolites and other mafic gneisses and 5) pegmatitic granites. In addition, narrow diabase dykes occur sporadically. The migmatites can be divided into three subgroups in terms of their structural types: veined gneisses, stromatic

32 28 Figure 7. Drawing of the orientation line to the core sample with Ezy-Mark orientation tool (Photos 2iC Australia Pty Ltd). gneisses and diatexitic gneisses. The leucosomes of the veined gneisses show vein-like, more or less linear traces with some features similar to large-scale augen structures. Planar, linear leucosome dykes characterize the stromatic gneisses, while the migmatite structure of the diatexitic gneisses is more asymmetric and gular. The typical migmatites of Olkiluoto comprise % granitic leucosome in average. The homogeneous or sometimes banded gneisses include mica-bearing quartz gneisses, mica gneisses and hornblende or pyroxene-bearing mafic gneisses. The TGG gneisses are medium-grained, relatively homogeneous rocks that can show a weak metamorphic banding or mylonitic foliation, but they can also resemble plutonic, unfoliated rocks. The pegmatitic granites are leucocratic, very coarse-grained rocks, which sometimes contain large garnet porphyroblasts and also tourmaline and cordierite phenocrysts. Mica gneiss inclusions and xenoliths are typical of the wider pegmatite dykes. The veined gneisses account for 43% of the volume of the domain, the stromatic gneisses for 0.4% and the diatexitic gneisses for 21 %. The pegmatitic granites make up 20 % of the bedrock, the homogeneous mica gneisses 7 %, the mafic gneisses 1 % and the TGG gneisses the remaining 8% (Karki & Paulamaki 2006). Rock reported in boreholes OL-KR43 and OL-KR43B consists mainly of migmatite types, veined gneiss (VGN) and diatexitic gneiss (DGN). The next most abundant rock types are pegmatitic granite (PGR) and tonalitic-granodioritic-granitic gneisses (TGGgneisses ). Mafic gneiss (MFGN) is reported in two sections in the upper part of borehole OL-KR43. All rock types reported in these boreholes have been described earlier in the area. Rock types are classified by the main rock type, which can have sections of minor rock types. Rock is classified in main rock category, when section is over five metres long and

33 29 respectively as minor rock type category if the length of section is less than five metres. Sometimes, when there is variation inside the main rock type section (for example there are changes of leucosome content), the differing parts of the same rock type are divided into minor rock type categories as subdivisions of the main rock type. Migmatitic gneisses comprise fine to medium grained mica rich bands and light medium to coarse grained granitic bands. Veined gneisses are mainly moderately foliated (BAN2), but occasionally there are also weakly or strongly (BAN1, BAN3) foliated parts. In diatexitic gneisses foliation is mainly gular (IRR) or weak (BAN1) because of high leucosome content and gular nature of the rock type. The main minerals of migmatites are quartz, feldspars and biotite. TGG- gneisses reported in borehole OL-KR43 are mainly granodioritic or tonalitic. Foliation texture is gneissic type. In gneissic type of rock foliation degree is mainly weak (GNE1). The texture of pegmatitic granite is typically massive (MAS). The main minerals are feldspars, quartz and biotite. The texture of mafic gneisses is massive or gneissic. Mafic gneisses contain chloritebiotite and hornblende rich sections. Hornblende rich sections are homogenious. Petrographical description along the borehole is presented in Appendix Graphic log showing the rock types and fracture frequency is presented in Figure 8. Drill core of borehole OL-KR43 is mainly unweathered or from unweathered to slightly weathered (RpO, RpO(Rp 1 ), Rp0-1 ). 12 sections (totally m) of slightly weathered rock (Rp1) were observed. Slightly to strongly weathered rock (Rp1(Rp2) and Rp1-2) was observed in six sections (totally 8.80 m) and totally weathered (Rp3) rock was observed in two sections (totally 0.72 m). Weathering is strongest in sections to fractured zones. Drill core of borehole OL-KR43B is mainly unweathered (RpO) (37.91 m). One section from unweathered to slightly weathered rock (Rp0-1) was observed (totally 0.45 m) and one section of slightly weathered rock (Rp1) was observed 1.44 m. The weathering degree ofboth holes is shown in Appendix 8.13.

34 30 - Mica D Dlatexlt Stromatic Veined Pegmatltlc - Dlabase K-feclspar D gneiss Mafic gnei.. TGGgnei... s gnei.. gnei.. granite porphyr Quartzltlc gneiss D No fractured zones Rilll D - RiiV RiV Figure 8. Graphic log of the borehole showing rock types and fracture frequency (data from Appendices 8.12 and 8.16).

35 31 Dip and dip direction of foliation were determined by using measured alfa and beta angles of foliation. Dip and dip direction of foliation vary considerably. Mainly the dip varied between 20 and 50 degrees and dip direction between 150 and 210 degrees. The average values of measured dips and dip directions are 38 degrees and 178 degrees in borehole OL-KR43. Foliation intensity and foliation angles have been presented in Appendix Fracturing Fractures in the drill core are mostly of filled type. Fracture fillings are most commonly sulphides (pyrite, pyrrhotite ), white kaoline or white or light gray onate and black chlorite. Some clay was also observed as fracture filling. In most fractures, the fracture filling is a very thin layer on the fracture surfaces, and the opposite surfaces of the fracture match perfectly. Commonly the fracture filling is only a patchy coating on the fracture surfaces but these are still classified as filled fractures. The thickest fracture filling is about 57 centimetres between the depths of and m. It is a section which consists of crushed and loose rock material and clay and it is reported as a fracture. Most fractures, which have coloured surfaces, were classified as filled fractures. Tight fractures may also have a colour and, consequently, there is no clear distinction between tight and filled fracture. Some fractures, including some filled fractures, are healed. In total, 288 healed or partly healed fractures were intersected, which means about 18 % of all fractures in borehole OL-KR43. In total, 10 healed or partly healed fractures were intersected, which means about 15 %of all fractures in borehole OL-KR43B. In total, 12 clay filled, 40 grain filled and 300 slickensided fractures were observed in borehole OL-KR43. In total, three clay filled, one slickensided, three grain filled and one open fractures were observed in borehole OL-KR43B. Slickensided fractures occur thh the core but most of them are in or near the zones of higher fracture density. Detailed list of the fractures presented in Appendix Morphology of the fractures varies significantly. Most commonly surfaces are ed with a semih and gular with a semih (JRC-number 15-20). Other common morphologies are ar and semih (JRC-number 7-14). However, different variations are common. The average fracture frequency in borehole OL-KR43 is 1.6 fractures per metre and 1.5 fractures per metre in OL-KR43B. The mean RQD value for borehole OL-KR43 is

36 o/o and 97.7 % for borehole OL-KR43B. Fracture frequency and RQD value are shown graphically in Figure 8. The full logs of the natural fracture frequency, all fractures (artificial breaks and natural fractures) and RQD are presented in Appendix There is variation in the fracture directions. The fractures coincident with the direction of foliation are common. Dip directions of these fractures are to south and dip is mainly between 35 and 60 degrees. Another separable fracture direction is almost vertical with dip direction to between north and north-east but also to between south and south-west. Figure 9 shows the dip directions and the dips of the fractures on an equal-area lower hemisphere projection. The directions have been corrected using the directional survey data ofmaxibor instrument. In borehole OL-KR43 24 zones of strongly fractured rock were intersected. 15 zones are fracture-structured (Rill!), five are crush-structured zones (RiiV), three zones are a combination of fracture-structured and crush-structured rock and one zone is of fracture-, crush- and clay-structured rock. Total length of all these sections is m, which is about 5.4 % of the total core sample of this borehole. In borehole OL-KR43B one fracture-structured (Rilll) zone was intersected. The length of this section is 1.39 m, which is about 3.2% of the core sample of this borehole. Fractured zones are presented in Appendix Core orientation The aim was to orient core samples as much as possible in order to measure geological features. In borehole OL-KR orientation operations were carried out. Twenty orientation marks had to be rejected. In total, metres (92.9 %) of the core was oriented. The average length of oriented core per one successful marking operation was 5.64 metres. The length of consistent oriented sections varied from 1.16 to metres. In borehole OL-KR43B nine orientation operations were carried out. One orientation mark had to be rejected. In total m (96.0 o/o) of core was oriented. The results are shown in Appendix The few failures in the orientation operations were probably caused by loose pieces of core from the previous run in the bottom of borehole. Another possible reason was unintended misuse of the orientation tool when orientation line was drawn on core surface. Therefore the marks did not match with other marks and they were deemed unreliable. Due to this some marks were distorted.

37 33 N Figure 8. Dip directions/dips of fractures on an equal-area lower hemisphere projection. Contours presented are 1, 2, 3, 5 and 8 %. 4.6 Core discing Between the depths of and m in granitic leucosome section core discing was occurred. There were few open fractures and several number of marks of incomplete core discing. Core discing is presented in Appendix 8.19.

38 35 5. ROCK MECHANICS 5.1 Rock mechanical field tests on core samples Rock strength and deformation property tests were made with a Rock Tester-equipment. The device is meant for field testing of rock cores to evaluate rock strength and deformation parameters. The rock cores tested can be unprepared and the test itself is easy to perform. Samples for the testing from borehole OL-KR43 were taken about every 30 m, or if there was variation in alteration of the rock. Young's Modulus (E), Poisson's ratio (v) and Modulus of Rupture (Smax) were measured with a Bend test in which the outer supports (L) were placed 190 mm apart and the inner supports (U) 58 mm apart. Diameter of the core (D) is 50.2 mm. The test arrangement is shown in Figure 10. Young's Modulus describes the stiffness of rock in the condition of isotropic elasticity. This can be calculated based on Hooke's reduced law (Equation 5.1.1) [Pa] (5.1.1) cr = stress [Pa] Ea = axial strain Poisson's ratio is defined as the ratio of radial strain and axial strain (Equation 5.1.2). er = radial strain Ea = axial strain (5.1.2) Values of Modulus ofrupture are read directly from the Bend test measurement. The uniaxial compressive strength crc of the rock was determined indirectly from the point load test results. The point load tests were made according the ISRM instructions (ISRM 1981 and ISRM 1985). The point load index ls 50, which is determined in the test, is multiplied by 20 and the resulting value corresponds to the uniaxial compressive strength (Pohjanpedi et al. 2005).

39 36 u L>3,5D DUU3 L Figure 10. Bend test. Radial and axial strain gauges glued on the core sample. In the point load test the load is increased until the core sample breaks (Fig. 11 ). The point load index is calculated from the load required to break the sample. The test result is valid only if the break surface goes thh the load points. The point load number Is is calculated from the Equation [Pa] (5.1.3) P = point load [N] D =diameter of the core sample [mm] Point load number is dependent on the diameter of the core sample and it is therefore corrected to the point load index (i.e. a 50 mm diameter core) using Equations and The index Is 5 o is then correlated with the uniaxial compressive strength of the rock by multiplying the index by a coefficient of 20. The result is not dependent on the sample size. (5.1.4) ( F=- 50 DJ o,4s (5.1.5)

40 37 Figure 11. Point load test. + D ' 5.2 Strength and elastic properties Samples for testing the strength and elastic properties of the rock were taken about every 30 m or when the new main rock type occurs. Sample should be one piece at least 0.25 m long without any healed fractures or not remarkably micro fractured. In total, 34 samples were taken (veined gneiss (VGN) 22, diatexitic gneiss (DGN) 5, pegmatite (PGR) 3 and TGG-gneisses (TGG) 4 samples). One Bend test and two Point load tests were done with each sample. Differences in measurements are caused by the variability in the foliation intensity and grain size. Before these measurements, the following parameters were logged; angles of a foliation versus point load tests, rock type, foliation intensity and description of foliation. The description of foliation versus point-loaded samples is given in Appendix The mean uniaxial compressive strength of all samples is 131 MPa. The Young's Modulus of all samples is 37 GPa. The average Poisson's ratio of all samples is The rock mechanical test results are presented in Appendix 8.20, where the mean strength and elastic properties are presented. Uniaxial compressive strength, Young's Modulus and Modulus of Rupture ofboth rock types versus depth are shown in Figure 12.

41 Depth (m] Figure 12. Uniaxial compressive strength, elastic modulus, and Modulus of Rupture versus depth

42 39 6. SUMMARY Posiva Oy submitted an application to the Finnish Government in May 1999 for the Decision in Principle to choose Olkiluoto in the municipality of Eurajoki as the site of the final disposal facility for spent nuclear fuel. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the decision in May The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations, Suomen Malmi Oy core drilled a m deep borehole in the area. The borehole identification number is OL KR43. Because the precollar for borehole OL-KR43 was done by down-the-hole percussion drilling, another borehole, OL-KR43B, was core drilled to attain full rock sample coverage also from the upper part of the bedrock. Depth of the borehole is m. The core was drilled using a triple tube core barrel which had a split inner sample tube. During the drilling, the electric conductivity and the volume of drilling and returning water were monitored. The monitoring was aimed to get additional information of the bedrock quality. In boreholes OL-KR43 and OL-KR43B the electric conductivity of the drilling water and returning water varied from 20.1 to 24.1 ms/m and from 19.7 to 99.6 ms/m, respectively. The drill rig on boreholes OL-KR43 and OL-KR43B was computer controlled and drilling parameters were recorded. Drilling water was marked with sodium fluorescein as the label agent. During the drilling and flushing of borehole OL-KR43 about 1103 m 3 of water was used. The amount of returning water in borehole OL-KR43 was about 916m 3 During the drilling and flushing ofborehole OL-KR43B about 16m 3 of water was used. The amount of returning water in borehole OL-KR43B was about 13 m 3 After the drilling, the borehole OL-KR43 was flushed by pumping about 42 m 3 of water from the bottom of the borehole and about 11 m 3 of water from the borehole OL-KR43B. The deviation of the borehole OL-KR43 was measured with Reflex EMS- and Reflex Maxibor- deviation survey tools and OL-KR43B was measured with EMS- deviation survey tool. According to the Maxibor results deviation of the borehole OL-KR43 at the depth of 978 metres is meters to the right and the vertical deviation is metres upwards.

43 40 Uniaxial compressive strength, Young's Modulus, and Poisson's ratio were determined from the core samples. The average uniaxial compressive strength is 131 MPa, Young's Modulus 37 GPa and Poisson's ratio Main rock types intersected by the boreholes are migmatitic gneisses (veined gneiss (VGN) and diatexitic gneiss (DGN)), tonalitic-granodioritic-granitic gneiss (TGG) and pegmatite granite (PGR) but also mafic gneiss (MFGN) with slight occurrence. Rock samples are mostly unweathered or only slightly weathered. Filled fracture is the most common fracture type. The average fracture frequency in borehole OL-KR43 is 1.6 fractures per metre and in OL-KR43B 1.5 fractures per metre. Mean RQD values of boreholes OL-KR43 and OL-KR43B are 96.2% and 97.7 %, respectively. During drilling work 301 fractures with slickenside surfaces, 15 clay filled, 43 grain filled and one open fractures were intersected. In borehole OL-KR43 24 strongly fractured zones and in borehole OL-KR43B one strongly fractured zone were intersected. In borehole OL-KR % and in borehole OL-KR43B 96.0 % of the core was oriented.

44 41 7. REFERENCES Barton, N. & Choubey, V., The shear strength of rock joints in theory and practice. Rock Mechanics 1, s Springer-Verlag. Gardemeister, R., Johansson, S., Korhonen, P., Patrikainen, P., Tuisku, T. & Vahasatja, P Rakennusgeologisen kallioluokituksen soveltaminen. (The application of Finnish engineering geological bedrock classification, in Finnish). Espoo: Technical Recearch Centre of Finland, Geotecnicallaboratory. 38 p. Research note 25. ISRM Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials. In Rock Characterization Testing & Monitoring. Oxford, Pergamon Press. s ISRM Suggested Method for Determining Point Load Strength. International Journal Rock Mech. Min. Sci. & Geomech. Vol. 22, no 2. S Korhonen, K-H., Gardemeister, R., Jaaskelainen, H., Niini, H. & Vahasatja, P Rakennusalan kallioluokitus. (Engineering geological bedrock classification, in Finnish). Espoo: Technical Recearch Centre of Finland, Geotecnical laboratory. 78 p. Research note 12. Karki. A. & Paulamaki, S., Petrology of Olkiluoto. POSIV A Posiva Oy, Eurajoki. Milnes, A. G., Hudson, J., Wikstrom, L. & Aaltonen, I Foliation: Geological Background, Rock Mechanics Significance, and Preliminary Investigations at Olkiluoto. Working Report Posiva Oy, Eurajoki. Pohjanpera, P., Wanne, T. & Johansson, E Point load test results from Olkiluoto area- Determination of strength of intact rock from boreholes KR1-KR28 and PHI. Working Report Posiva Oy, Eurajoki. Saltikoff, B Mineraalinimisanasto. Espoo, Geological Survey of Finland. Report of Investigation N:o 11 (in Finnish). 82 pages. ISBN

45 42

46 43 List of core boxes, OL-KR43 Appendix 8.1 Number Section, m - m Number Section, m - m

47 44 List of core boxes, OL-KR43 Appendix 8.1 Number Section, m - m Number Section, m- m Ill

48 45 List of core boxes, OL-KR43 Appendix 8.1 Number Section, m - m

49 46 List of core boxes, OL-KR43B Appendix 8. 1 Number Section, m - m

50 47 Lifts, OL-KR43 Appendix 8.2 Lifts, m Lifts, m Lifts, m Lifts, m Lifts, m

51 48 Lifts, OL-KR43 Appendix 8.2 Lifts, m Lifts, m Lifts, m

52 49 Lifts, OL-KR43B Appendix 8.2 Lifts, m

53 50

54 51 Appendix 8.3 lt l'l l SUOMEN MALMI OY Suomen Malmi Oy Maxibor survey P.O.Box 10 Fl ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 978 Survey date: Project No: Y: Azimuth: Reported by: JT Z: Dip: Report date: Station Eastlng Depth Dip Azimuth --'H

55 52 Appendix 8.3.t l'l l SUOMEN MALMI OY Suomen Malmi Oy Maxibor survey P.O.Box 10 Fl ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 978 Survey date: Project No: Y: Azimuth: Reported by: JT Z: Dip: Report date: Station Northing Ea sting Depth Dip Azimuth

56 53 Appendix 8.3 U3l.t l'll SUOMEN MALMI OY Suomen Malmi Oy Maxibor survey P.O.Box 10 Fl ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 978 Survey date: Project No: Y: Azimuth: Reported by: JT Z: Dip: Report date: Station Nuw-:-.;. IY...t.L Depth Dip Azimuth

57 54 Appendix 8.3 l.t l'l l SUOMEN MALMI OY Suomen Malmi Oy Maxibor survey P.O.Box 10 Fl ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 978 Survey date: Project No: Y: Azimuth: Reported by: JT Z: Dip: Report date: Station Northing Easting Depth Dip Azimuth

58 55 Appendix 8.3 l t l'il SUOMEN MALMI OY Suomen Malmi Oy Maxibor survey P.O.Box 10 Fl ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 978 Survey date: Project No: Y: Azimuth: Reported by: JT Z: Dip: Report date: cjli.. Station l"'utumiy Depth Dip Azimuth

59 56 Appendix 8.3 l.t l'l l SUOMEN MALMI OY Suomen Malmi Oy Maxibor survey P.O.Box 10 Fl ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 978 Survey date: Project No: Y: Azimuth: Reported by: JT Z: Dip: Report date: Station Northing Ea sting Depth Dip Azimuth

60 57 Appendix 8.3 U3t l'i l SUOMEN MALMI OY Suomen Malmi Oy Maxibor survey P.O.Box 10 Fl ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 978 Survey date: Project No: Y: Azimuth: Reported by: JT Z: Dip: Report date: Station NUI-:-IY Easting Depth Dip Azimuth

61 58 Appendix 8.3 l.t l'i l SUOMEN MALMI OY Suomen Malmi Oy Maxibor survey P.O.Box 10 Fl ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 978 Survey date: Project No: Y: Azimuth: Reported by: JT Z: Dip: Report date: Station Northing Easting Depth Dip Azimuth

62 59 Appendix 8.4 r1a.t l'' SUOMEN MALMI OY Maxibor survey Suomen Malmi Oy P.O.Box 10 Fl ESPOO Client: Posiva Site: Olkiluoto Project No: Hole No: OL-KR43 X: Y: Z: Diameter: NQ3 Lenght: 978 Azimuth: Dip: Surveyed by: SA Survey date: Reported by: JT Report date: Horizontal projection Easting (m) I e -C) c :c 0 z l

63 60 Appendix 8.4 Maxibor survey Suomen Malmi Oy P.O.Box 10 Fl ESPOO Client: Posiva Site: Olkiluoto Project No: Hole No: OL-KR43 X: Y: Z: Diameter: NQ3 Lenght: 978 Azimuth: Dip: Surveyed by: SA Survey date: Reported by: JT Report date: Vertical projection Start direction (m) I : Q. Cl) a " " '-. ' ' "'-, " ""

64 61 Appendix 8.5 l.'.t l'l SUOMEN MALMI OY Suomen Malmi Oy EMS-survey P.O.Box 10 FIN ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 582 Survey date: Project No: Y: Azimuth: Reported by: JT Declination: 4.0 Z: Dip: Report date: a. a..&l Station _.._... B Depth Dip Azimuth

65 62 Appendix 8.5 l.',t l'i SUOMEN MALMI OY Suomen Malmi Oy EMS-survey P.O.Box 10 FIN ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 582 Survey date: Project No: Y: Azimuth: Reported by: JT Declination: 4.0 Z: Dip: Report date: Station Northing Easting Depth Dip Azimuth

66 63 Appendix 8.5 lt l'l SUOMEN MALMI OY Suomen Malmi Oy EMS-survey P.O.Box 10 FIN ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 582 Survey date: Project No: Y: Azimuth: Reported by: JT Declination: 4.0 Z: Dip: Report date: Station _... Depth PiP Azimuth -

67 64 Appendix 8.5 \L Suomen Malmi Oy EMS-survey P.O.Box 10 FIN ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 582 Survey date: Project No: Y: Azimuth: Reported by: JT Declination: 4.0 Z: Dip: Report date: Station Northing Ea sting Depth Dip Azimuth

68 65 Appendix 8.5 Ult l'l SUOMEN MALMI OY Suomen Malmi Oy EMS-survey P.O.Box 10 FIN ESPOO Client: Posiva Hole No: OL-KR43 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 582 Survey date: Project No: Y: Azimuth: Reported by: JT Declination: 4.0 Z: Dip: Report date: &.L Station. Depth..PIP. Azimuth

69 66 i t.'j t: l?ji SUOMEN MALMI OY Suomen Malmi Oy EMS-survey P.O.Box 10 FIN ESPOO Appendix 8.5 Client: Posiva Hole No: OL-KR438 Diameter: NQ3 Surveyed by: SA Site: Olkiluoto X: Lenght: 42 Survey date: Project No: Y: Azimuth: Reported by: JT Declination: 4.0 Z: Dip: Report date: Station Northing Easting Depth Dip Azimuth

70 67 reiqt x SUOMEN MALMI OY EMS-survey Suomen Malmi Oy P.O.Box 10 FIN ESPOO Appendix 8.6 Client: Posiva Site: Olkiluoto Project No: Declination: 4.0 Hole No: OL-KR43 X: Y: Z: Diameter: NQ3 Lenght: 582 Azimuth: Dip: Surveyed by: SA Survey date: Reported by: JT Report date: Horizontal projection Easting (m) \ \ \, 1\ \ \, \ \ ' \ \ ' :[ C) c.c t= 0 z

71 68 Appendix 8.6 rtj.t l'' SUOMEN MALMI OY EMS-survey Suomen Malmi Oy P.O.Box 10 FIN ESPOO Client: Posiva Site: Olkiluoto Project No: Declination: 4.0 Hole No: OL-KR43 X: Y: Z: Diameter: NQ3 Lenght: 582 Azimuth: Dip: Surveyed by: SA Survey date: Reported by: JT Report date: Vertical projection I....c a. Cl) c Start direction (m)

72 69 U1t A'i SUOMEN MALMI OY EMS-survey Suomen Malmi Oy P.O.Box 10 FIN ESPOO Appendix 8.6 Client: Posiva Site: Olkiluoto Project No: Declination: 4.0 Hole No: OL-KR43B X: Y: Z: Diameter: NQ3 Lenght: 42 Azimuth: Dip: Surveyed by: SA Survey date: Reported by: JT Report date: Horizontal projection Easting (m)

73 70 Appendix 8.6 EMS-survey Suomen Malmi Oy P.O.Box 10 FIN ESPOO Client: Posiva Site: Olkiluoto Project No: Declination: 4.0 Hole No: OL-KR438 X: Y: Z: Diameter: NQ3 Lenght: 42 Azimuth: Dip: Surveyed by: SA Survey date: Reported by: JT Report date: Vertical projection g-5.00.s:::: -c. Cl) t , t 0 10 Start direction (m) 20 30

74 construction Of TI-lE UPPER PART Of aorei-iole OL-KR43 Z- top oft\1e casing::: m Z- ground level::: m a:::: 2.00 m b::: m c:::: 0.50 m d:::: m

75 consiruciion Of 1\-IE UPPER PARI Of sorei-iole OL-KR43B t? CJ C>CJ t:\ C/) t:\ C/) Q) c.2 t:\ t? t:\ l- top of tne casing = m l- ground level== +3.0 m a::.95m b::. 4.40m 0.6 c::. m d:: m

76 73 Drilling water samples Appendix 8. 8 Borehole OL-KR43 Date Time Depth Flowmeter reading Volume Batch Electric Label conduc- concentration litres tivity m before after litres no ms/m J.tg I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

77 74 Drilling water samples Appendix 8. 8 Borehole OL-KR43 Date Time Depth Flowmeter reading Volume Batch Electric Label conduc- concentration litres tivity m before after litres no ms/m J.tg I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

78 75 Drilling water samples Appendix 8. 8 Borehole OL-KR43 Date Time Depth Flowmeter reading Volume Batch Electric Label conduc- concentration litres tivity m before after litres no ms/m Jlg I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :25 766,80? :

79 76 Drilling water samples Appendix 8.8 Borehole OL-KR43 Date Time Depth Flowmeter reading Volume Batch Electric Label conduc- concentration litres tivity m before after litres no ms/m g I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

80 77 Drilling water samples Appendix 8. 8 Borehole OL-KR43 Date Time Depth Flowmeter reading Volume Batch Electric Label conduc- concentration litres tivity m before after litres no ms/m J.tg I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

81 78 Drilling water samples Appendix 8. 8 Borehole OL-KR43 Date Time Depth Flowmeter reading Volume Batch Electric Label conduc- concentration litres tivity m before after litres no ms/m J.tg I I :45 washing :10 washing :10 washing :00 washing :15 washing :00 washing :40 washing

82 79 Drilling water samples Appendix 8.8 Borehole OL-KR43B Date Time Depth Flowmeter reading Volume Batch Electric Label conduc- concentration litres tivity m before after litres no ms/m Jlg I : : : :

83 80

84 81 Returning water samples Appendix 8. 9 Borehole OL-KR43 Date Time Depth Sample Flushing water Label batch concentration m no no J.Lg I : : : : : : : : : :00 495, : : : : : : : : : : : : : : : : : : : : : : :

85 82

86 83 Water level in borehole during flush pumping, OL-KR43 Appendix 8.10 Date Time Water flow meter Water level Remarks litres m : Pumpin_g_ started : : : : : : : Pump stopped, restarted : : : : : : : : : : : : : Pumping finished : : : : : : : : Rods lift up : : : : : : : Pumping started (MP 1) : : : : Changed MP1 for SP : : : :

87 84 Water level in borehole during flush pumping, OL-KR43 Appendix 8.10 Date Time Water flow meter Water level Remarks litres m : : : : : : : : : : Pumping finished : : : : : : : : : : : : : : : : : : : : : : : : : : :

88 85 Water level in borehole during flush pumping, OL-KR43B Appendix Date Time Water flow meter Water level Remarks litres m : Pumping started : Pump speed 300Hz : Hz : Hz :28 from 300 to 190 Hz : Hz : Hz : Hz : Hz : Pump sto_pped

89 86

90 87 Electric conductivity of returning water, OL-KR43 Appendix 8.11 Depth Electric Depth Electric Depth Electric m conduc- m conduc- m conductivity tivity tivity ms/m ms/m ms/m

91 88 Electric conductivity of returning water, OL-KR43 Appendix 8.11 Depth Electric Depth Electric Depth Electric m conduc- m conduc- m conductivity tivity tivity ms/m ms/m ms/m

92 89 Electric conductivity of returning water, OL-KR43 Appendix 8.11 Depth Electric m conductivity ms/m

93 90

94 I I Main rock type Minor subdivisions Start End Start End m m m m Rock type VGN TGG VGN VGN DON VGN DON DON DON MFGN VGN PGR DON PGR MFGN VGN DON PGR DON DON VGN DON DON DON PGR DON PGR _YGN _ Description Partly rock is regularly foliated and partly structure is more gneissic. Very homogenous medium grained tonalitic gneiss. Only some narrow granitic stripes occur. Lineation is clear. Regularly foliated veined gneiss. Variating veined gneiss. Foliation varies, but is mainly regular. Average leucosome content is 20 %. Mica gneiss is gularly foliated and leucosome content is over 50 %. Foliation is very regular in veined gneiss between this depth interval. Regularly foliated- gular structured migmatite. Leucosome content varies. Leucosome content is about 50% and gneiss stripes are gular to regular. More pegmatite containing section. Rock contains chlorite/ biotite and hornblende rich sections. Greenish hornblende rich sections are most homogenous and are probably a kind of meta veins. I Some short granite sections occur in veined gneiss. Othervise leucosome content in gneiss is about 25 %. Foliation in gneiss is mainly quite regular. I Reddish, medium to coarse grained granite. Section starts with pegmatite leucosome and changes gradually to more gneiss bearing. The end I of the section is mica gneiss with skarn. Reddish, medium to coarse grained granite. Medium grained hornblende/ chlorite bearing massive rock. Possible meta vein. Veined gneiss with about % leucosome. Variating diatexitic gneiss. Leucocome content is high. Short sections of veined gneiss and pure pegmatite occur. Foliation of mica gneiss in DON varies from regular to gular. I Unpure medium to coarse grained granite. Some narrow mica gneiss stripes occur. Rock consists of narrow sets of pegmatite and medium grained TGG gneiss. Rock is a kind of migmatitic TGG gneiss. Diatexitic gneiss with about 50 % of leucosome. Variating veined gneiss. Foliation varies from regular to folded. Average leucosome content varies %. Banded diatexitic gneiss with over 50% ofleucosome. Foliation is gular. Banded diatexitic gneiss with over 50 % ofleucosome. Foliation is gular. Banded diatexitic gneiss with over 50% ofleucosome. Foliation is gular. Pure reddish coarse grained granite Variating diatexitic gneiss. Rock consists of sections of pure pegmatite granite and veined/ mica gneiss Coarse grained pegmatite granite. Leucosome content is about 25 %. Mica gneiss in section is medium grained. - I I ""0 a ::::r' c:; e. 0.. tl.l n '""I o? 0 r w.6" "0 ::s 0.. ;;;; N -\0

95 I ' I I Main rock type Minor subdivisions Rock type Start End Start End m m m m VGN DGN DGN DGN VGN VGN PGR VGN PGR TGG PGR PGR DGN PGR TGG VGN PGR VGN PGR VGN VGN VGN DGN Description Quartz rich very fine grained skarn. Complicated rock in which is features ofveined and diatexitic gneiss. Average leucosome content is 30 % but foliation is occasionally gular in short sections especially in the beginning. Complicated diatexitic gneiss. Foliation is mainly gular. Short section oftgg also occur Foliation is mainly gular. High leucosome content. Rock is mainly medium to coarse grained granite including some mica gneiss. Could be classified as granite. Veined gneiss with about 10-15% leucosome. A couple of 0.5 m long pegmatite sections occur. Veined gneiss which consists mainly of fine to medium grained homognenous mica gneiss. Leucosome occurs as narrow stripes. Medium to coarse grained light colored granite. Variating veined gneiss. Coarse grained <0.5 m leucosome sections occur. Mica gneiss itself is quite homogenous in veined gneiss. Mainly coarse grained granite. There are features of a kind ofbrecciation in granite in the end half of section. Gray medium grained weakly foliated granitic rock. Coarse grained pegmatite granite. Coarse grained pegmatite granite mainly. Some gneiss stripes occur. Rock is mainly medium grained granite including some mica gneiss. Mainly coarse grained light colored pegmatite. Occasionally there are features of foliation in granite. Some narrow mica gneiss sections occur. Medium grained weakly foliated granitic gneiss. Veined gneiss with about 10-20% ofleucosome stripes. Pure light colored pegmatite granite. Rock weakly to moderately brecciated thh section. Disseminated sulphides (pyrrhotite and pyrite) occur. Greenish to reddish fine grained skarn section. Coarse grained light colored pegmatite. Veined gneiss as in previous main section. Veined gneiss with about 10-20% ofleucosome stripes. Some< 1 m coarse grained granite sections occur. Amount ofleucosome increases after 643 m. Rock consists of narrow< lm sections ofpegmatite and mica/veined gneiss. Features of weak to moderate brecciation occur in veined gneiss. Rock is mainly coarse grained granite. Strong brecciation occur between m. In this brecciated section sulphide stripes occur occasionally. '"ti (D 8 (IQ. """ ::r c=; e. 0.. (D Cll () """ ;:s? 0 t'"'" w.g- 'i:l (D ;:::3 0.. ;;< N 1.0 N

96 Main rock type Minor subdivisions Start End Start End m m m m Rock type DGN VGN DGN PGR PGR VGN PGR VGN DGN VGN DGN PGR DGN PGR VGN DGN VGN DGN PGR DGN VGN DGN DGN PGR TGG VGN PGR Description Leucosome rich diatexitic gneiss. Foliation in mica gneiss varies from regular to gular. Foliation in veined gneiss is mainly quite regular. Short <1 m sections ofpegmatite occur occasionally. Mainly amount ofleucosome is 20% Very leucosome rich section. Veined/mica gneiss occur as short sections in diatexite. Coarse grained light colored pegmatite. Very coarse grained pegmatite. F oldedl foliated veined gneiss. Coarse grained light colored pegmatite. Regularly foliated veined gneiss. Amount of leucosome is about 25 %. Unpure coarse grained granite. Some narrow mica gneiss stripes occur. Regularly foliated veined gneiss. Amount of leucosome is about 25 %. Rock consists of short sections of mica gneiss and pegmatite. Coarse grained light colored pegmatite. Partly veined gneiss partly gular diatexite. Coarse grained light colored pegmatite. A couple of reddish/ greenish skam inclusions. Dark medium grained veined gneiss. Foliation varies from regular to folded and gular. Because of more coarse grain size and common occurrence of sillimanite, rock is partly TGG looking. Some small skarn inclusions occur. Leucosome content is about 25 %. Composition of the rock is very similar as in previous section, but foliation is gular. Rock as same type as in previous VGN section. Short sections of coarse grained pegmatite occur. Mainly coarse grained granite, but there is some mica gneiss. Coarse grained light colored pegmatite. Mainly coarse grained granite, but there is some mica gneiss. Mainly regularly foliated rock. Amount of leucosome varies from %. Mica gneiss in veined gneiss is fine to medium grained. Sillimanite occur occasionally. Mainly coarse grained granite, but there are some mica gneiss stripes. Leucosome rich diatexitic gneiss. Foliation in mica gneiss is mainly gular. Light colored pegmatite. Gray medium grained weakly to moderately foliated granitic rock. Coarse grained pegmatitic granite occur mixed in TGG. Regularly foliated veined gneiss. Mainly corse grained light colored granite, but there are some mica gneiss and moderately foliated l.g!:_anitic sections. '"0 (1) -a (JQ. ::T' r:; e. 0.. (1) tl.l n ""' c;? 0 t""" w '"0 (1) ::::s 0.. ;;<?0... N 1.0 w

97 Main rock type Minor subdivisions Start End Start End m m m m Rock type VGN Description Mainly regularly foliated veined gneiss, partly foliation is in short sections gular. Amount of leucosome is about 20 %. Some short coarse grained pegmatite section,< 1 m, occurs. PGR Mainly coarse grained granite. -- '"C a (J'Q "'1. :::r ;:; e. 0.. (1) l:n (') "'1 c;? 0 t""" w 1.0.+:;:... "0 (1) ::s 0..?0... N

98 Main rock type Minor subdivisions Start End Start End m m m m Rock type Description TGG Very homogenous medium grained tonalitic gneiss. Some narrow granitic stripes and few gneiss sections occur. Lineation is clear. VGN Rock is regularly foliated gneiss mixed with section oftgg. VGN Partly rock is regularly foliated veined gneiss and partly structure is more gneissic. '"0 g OCl. ::J"' c:; e? tl.l (') '""! s p 0 t""' l.n t;t:; \0 Vl ::::3 0.. ;;;;?0... N

99 96

100 97 Degree of weathering, OL-KR43 Appendix Start End Weathering degree Remarks RpO Rp RpO Rp RpO RpO(Rp1) Small colour changes in veined gneiss Rp0-1 Granitic parts in VGN are light red coloured Rp1-2 Crush structured rock Rp0-1 Colour of mica gneiss occasionally lightened and granitic parts are reddish Rpl Colour of mica gneiss lightened and granitic parts are reddish. Kaolin in small amounts is common in mica gneiss Rp1-2 Crush structured rock Rp1 Kaolin occurs thhout rock Rp0-1 Reddish colour in granite in VGN Rp1 Kaolin occurs small amounts thhout rock Rp0-1 Kaolin occurs occasionally, granite in gneiss is reddish coloured RpO(Rp1) Weathering near fractures Rp0-1 Kaolin occurs occasionally, granite in gneiss is reddish coloured RpO Rp0-1 Kaolinization RpO Rpl Fractured zone in section, kaolinization occur Rp0-1 Pegmatite is mainly reddish, kaolinization occur Rp1 Crush structured rock Rp0-1 Pegmatite is mainly reddish, kaolinization occur occasionally RpO(Rpl) Weathering near fractures Rp1 Fractured zone Rp0-1 Lightened colour in mica gneiss occasionally, pegmatite is reddish coloured RpO Rp RpO(Rp1) Lightened colour near some fractures, light reddish colour in pegmatite occasionally Rp1(Rp2) Crush structured zone Rp0-1 Leucosome is red coloured RpO Rp0-1 Weathering near fractures RpO Rp0-1 Weathering near fractures RpO Rpl Narrow lightened colour section in mica gneiss RpO Only occasional pale reddish colour in pegmatite Rp0-1 Lightened colour in mica gneiss occasionally R_Q_1 colour of mica gneiss lightened in whole section.

101 98 Degree of weathering, OL-KR43 Appendix 8.13 Start End Weathering degree Remarks Rp3 Clay I grain filling Rp1 colour of mica gneiss lightened in whole section Rp0-1 colour of mica gneiss partly lightened RpO(Rp1) Weathering near fractures Rp0-1 colour of mica gneiss lightened, yellowish shade in fractured pegmatite RpO(Rp1) Narrow lightened sections in mica gneiss Rp0-1 colour of mica gneiss mainly lightened Rp1-2 Strongly brecciated rock in section Rp1 colour of mica gneiss mainly lightened and colour change also in leucosome Rp3 One grain filled fracture. Mainly weared away during drilling RpO(Rp1) Weathering near fractures RpO RpO(Rp1) Weathering near fractures RpO RpO(Rp1) Lightened colour near some fractures and micro fractures RpO RpO(Rp1) Lightened colour in mica gneiss stripes occasionally and patchy yellowish colour in leucosome RpO Rp1 Weathering near fractures RpO Rp RpO(Rp1) Weathering near some fractures RpO

102 99 Degree of weathering, OL-KR43B Appendix 8.13 Start End Weathering degree Remarks RpO Rp1 Kaolin stripes in gneiss RpO Rp0-1 Kaolin stripes in gneiss

103 100

104 101 Foliation, OL-KR43 Appendix 8.14 Borehole section Rock Alfa Beta Degree of Dip Dip Remarks Start (m) End (m) type angle ( 0 ) angle ( 0 ) foliation direction ( 0 ) (0) VGN GNE2 GNEI-GNE TGG GNEI VGN BAN VGN BAN VGN BAN VGN BAN DGN IRR VGN BAN VGN BAN VGN BAN VGN BAN DGN BAN2 IRR-BAN VGN BAN VGN BAN VGN BAN DGN IRR VGN BAN VGN BAN VGN BAN DGN BANI VGN BAN VGN BAN VGN BAN MFGN MAS GNE2-3, MAS MFGN GNE MFGN GNE VGN BAN VGN BAN PGR MAS VGN BAN VGN BAN DGN BANI PGR MAS MFGN MAS VGN BAN VGN BAN VGN 65 0 BAN DGN BAN PGR MAS DGN BANI MAS-BANI DGN GNEI MAS-GNEI VGN BAN VGN BAN DGN BANI IRR-BANI VGN BAN VGN BAN DGN BANI IRR-BANI VGN BAN2 BAN1-BAN VGN BAN VGN 80 0 BAN VGN 90 0 BAN PGR MAS VGN BAN VGN BAN VGN BAN VGN BAN DGN BANI MAS-BANI PGR MAS VGN BAN VGN BAN

105 102 Foliation, OL-KR43 Appendix 8.14 Borehole section Rock Alfa Beta Degree of Dip Dip Remarks Start (m) End (m) type angle ( 0 ) angle ( 0 ) foliation direction ('] CO) DGN BAN1 MAS, IRR-BAN VGN BAN2 BAN1-BAN2, folding VGN BAN VGN BAN VGN BAN VGN BAN VGN 80 0 BAN VGN 75 0 BAN VGN BAN DGN IRR IRR, BAN 1, MAS VGN BAN2 IRR-BAN VGN BAN VGN BAN DGN IRR IRR/ BAN VGN BAN VGN 60 0 BAN VGN BAN DGN IRR IRR/ MAS VGN BAN VGN BAN VGN BAN VGN BAN PGR MAS VGN BAN VGN BAN PGR MAS VGN BAN VGN BAN VGN BAN PGR MAS VGN BAN PGR MAS VGN BAN VGN BAN PGR MAS TGG GNE1 MAS-GNE PGR MAS VGN BAN VGN BAN VGN BAN VGN BAN PGR MAS VGN BAN VGN BAN VGN BAN VGN 90 0 BAN VGN BAN PGR MAS VGN BAN VGN BAN PGR MAS VGN BAN VGN BAN VGN BAN VGN BAN DGN IRR Brecciation VGN BAN VGN BAN DGN BAN2 IRR-BAN VGN 70 0 BAN Short section of veined gneiss

106 103 Foliation, OL-KR43 Appendix 8.14 Boreho1e section Rock Alfa Beta Degree of Dip Dip Remarks Start (m) End (m) type angle_co) angle_e_l foliation direction _C_O) (0) VON BAN VON 75 0 BAN VON BAN VON BAN VON BAN VON 70 0 BAN DON BAN2 MAS/BAN POR MAS DON IRR MAS-BAN POR MAS DON IRR VON BAN VON BAN DON MAS MAS/ BAN POR MAS VON BAN VON BAN VON BAN DON IRR VON BAN VON 60 5 BAN VON BAN DON BAN2 MAS/BAN POR MAS DON IRR MAS/BAN VON BAN Veined gneiss in diatexite VON BAN2 IRR-BAN VON BAN VON BAN VON BAN DON IRR VON BAN VON BAN VON BAN DON IRR IRR-BAN VON BAN VON BAN VON BAN DON IRR MAS-BAN VON BAN VON BAN VGN BAN VON BAN DON IRR IRR-BAN TOO ONE1 MAS-ONE VON BAN VON BAN POR MAS MAS-ONE VON BAN2 BAN2-IRR VON BAN VON BAN VON BAN VON BAN VON BAN VON BAN VON BAN VON BAN VON BAN

107 104 Foliation, OL-KR43B Appendix 8.14 Borehole section Rock Degree of Alfa angle Beta Dip Start (m) End (m) type foliation (0) angle ( 0 ) direction ( 0 ) Dip Remarks (0) TGG GNE GNE GNEl VGN BAN VGN BAN TGG GNE TGG GNE VGN BAN2 BAN2, GNE VGN BAN TGG GNE1

108 I I I Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) fi fi fi fi fi ti fi fi fi fi fi fi ti fi grfi grfi grfi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi Colour of fracture surface lgra whit, gray, lbro gray gray, lbro gray, whit gray gray, gree dgre, blac gray, lbro gray, whit gray, lbro gray ggra gray gray, ggre gray, ggre gray, lgra gray, lbro lgra gray, lbro lbro lgra, lbro lgra, lbro lgra, lbro lgra, lbro lgra, lbro lgra, lbro lgra lbro blac, yell whit whit whit, lgra Fracture filling kaol,, sulf, sulf, kaol chlo, sulf clay, whit, sulf clay, sulf, sulf sulf, sulf, sulf, sulf, sulf, sulf, sulf sulf chlo, illi kaol kaol kaol Thickness Fracture of filled shape fracture, mm Fracture hness Remarks calcite crystals, undulating crushed and weathered zone calcite crystals foliation foliation c ;a. 0..., n en 0 r (j..) > "'':j "'':j 1:::1 0.. ;;<?0 -Vl -0 VI

109 I I Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction (0) fracture m m (0) (0) (0) surface fi blac, whit fi lgra fi 90 whit, lgra fi 75 whit fi lgra fi gray, lgra fi blac, ygre, gray fi lgra, whit, lbro fi 75 ygre fi 70 ygre fi 60 lgra, lgre fi whit, ygre fi 30 lbro fi lbro, whit fi whit, lbro fi lgra, lbro, whit fi lgra, lbro fi whit, lbro ti fi 90 gray, lgra fi 0 gray, lbro, ggre fi 70 gray fi 90 lgra, lbro fi 70 blac, gray fi 60 lgra, gray, lbro fi 50 gray fi 70 gray fi 25 gray fi 60 gray, lgra fi 70 lgra, lbro, gray fi 90 gray fi 90 lgra, gray fi 55 gray clfi 80 gr Fracture Thickness Fracture filling of filled shape fracture, mm chlo, kaol kaol, kaol chlo, illi, kaol, sulf illi illi, illi kaol, illi sulf sulf, kaol kaol, sulf, sulf, kaol, sulf kaol, sulf, sulf chlo, clay, sulf chlo,, sulf clay clay, 3 3 clay, chlo clay clay 3 Fracture hness Remarks foliation foliation splitted partly undulating, undulating splitted, rock brecciated between this and previous fracture insignificant core loss is possible strongly weathered r fa ; (') 2 (il "' 0 r (.;.) 'e 'e ::s 0. -?0 -Vl '\

110 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) fi fi fi fi grfi grfi clfi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi ti fi 70 Colour of fracture surface gray lgra lgra, gray gray, lgra, lbro gray, lbro gray, lgre gray gray gray, lbro gray blac, gray gray blac, gray gray, lbro, lgre gray blac, gray gray gray, whit gray blac, gray whit, lgre gray lgra gray, lgra gray gray lgra dgre, lbro gray, lgra ggre, lgra gray ggre, lgra _gr'!}j ggr_e, lbro Fracture filling, sulf sulf, clay clay chlo, clay sulf clay clay clay clay, illi chlo, clay clay, kaol clay chlo, clay kaol, kaol clay, lbro clay clay, sulf Thickness Fracture of filled shape fracture, mm Fracture hness Remarks foliation technical core loss 0.5 m because of strong weathering foliation c 0 1-+) n G en 0 l' w > 'e 'e G ::s 0. x?0... Vl -0...:I

111 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m CO) (0) (0) fi fi fi fi fi fi fi fi grfi fi grfi fi ti fi fi fi ti fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fisl fisl Colour of fracture surface gray lgra gray, blac blac, gray gray lgra, lbro lgra ygre, lgra blac, gray whit, lbro, lgra gray, blac gray, ggre, lbro blac lgra dgra gray gray, blac ygre, blac, gray lgra lgra lgra, lbro gray gray whit, blac gray gray lgra blac, gray blac blac, lgra lgra blac, lbro blac, ygre, gray blac, ygre, gray Fracture filling clay, chlo, clay, sulf illi, chlo, clay kaol, sulf, clay, chlo clay, sulf, chlo chlo clay, chlo illi, chlo, sulf kaol, chlo chlo chlo, chlo, sulf chlo, illi chlo, illi, Thickness of filled fracture, mm Fracture shape rre 1rre 1 1rre Fracture hness Remarks, swarm of micro fractures splitted, splitted I r ('") Yl 0 r V) '"d '"d ::I 0. ;;:;?0 -Vl

112 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) fi fisl fi fisl fisl fisl fi fi fi fi fi fi fi fi fisl fi fisl fisl fisl fisl fisl fi fi fi fi fi fi fi fisl fisl fisl fi fi grfi fi fi Colour of fracture surface lgra, lbro blac, lbro ygre, blac blac, gray, lyel blac, ygre blac, lbro ygre, gry, lbro ygre ggre ygre ygre ygre blac, lyel ygre blac, lgra blac, ygre blac, ygre dgra,ygre dgra, lbro blac, lgra blac, lgra whit, lgra, ygre whit, lgra gray, lgra gray, dgre, lbro gray, lbro, whit blac, lbro, lgra blac blac, gray blac, lyel, lgra blac, lgre blac, lyel, lgra blac dgra blac, gray, lbro blac, lyel Fracture filling, sulf chlo, sulf illi, chlo chlo, illi blac, illi chlo illi, sulf illi illi illi illi illi chlo, illi illi chlo, chlo, illi chlo, illi chlo, illi chlo chlo chlo, kaol,, illi kaol,, sulf, sulf, kaol chlo, sulf, chlo, grap chlo, gray chlo, illi chlo, illi chlo, illi, chlo chlo, clay, sulf chlo, illi Thickness Fracture of filled shape fracture, mm Fracture hness Remarks splitted splitted splitted also sulphide, hard breccia filling c 0 i-1') ::t> (") v:> 0 l' (.;.) > ::s 0. ;;<?0... Vl -0 \0

113 Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction (0) fracture m m (0) (0) (0) surface fisl blac, lgre fisl blac, lbro, lgre fisl 80 blac, lgre fisl blac, lbro, ggre fisl whit, lgre, blac fi 85 lyel, lgra fisl 70 blac, gray, whit fi 80 blac, ygre fi 75 blac fi 55 blac, lgra fi whit fi blac, whit, lyel fi whit fi 35 blac, gray fi 70 whit, lgra fisl blac, gray fi 75 gray, whit fi 70 whit, blac fi blac, whit fi 80 whit fi 60 whit, ygre fi whit fi blac, gray, lbro grfi gray grfi 65 gray, blac, ygre fi 75 whit, lyel fi 60 whit, lyel fi 75 blac, lyel fi 75 blac, lgra, lllbro fi 50 whit fi 90 whit, lbro fi 30 whit fi 70 gray, lgre fi 30 whit, lbro fi 80 blac, gray 215 llq_. 0 fi 45-L L lgra, gray, lbro Fracture filling Thickness of filled fracture, mm chlo, illi chlo, sulf, illi chlo, illi chlo, sulf, illi kaol, illi, chlo illi, 3 chlo, kaol chlo, illi chlo chlo, 2 kaol chlo, kaol, illi kaol 0.5 kaol, chlo, grap kaol kaol, chlo chlo, kaol kaol kaol, illi kaol chlo, clay, sulf clay 3 clay, blac, illi 10 kaol, illi 0.5 kaol, illi chlo, illi chlo, illi, sulf 1 kaol, surf kaol illi kaol, sulf chlo, sulf 10 Fracture shape 1rre Fracture hness Remarks, splitted splitted splitted splitted r 0 >-+) () 2!!' 0 r (.;.) '1:::$ '1:::$ (1) ::::I 0.. ;;<?0 -Vl... 0

114 Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction e) fracture m m (0) (0) (0) surface fi 65 gray fi 80 lgra fi 55 blac grfi 60 blac, gray fi 40 whit, lbro fi 90 blac, ygre fi 70 ygre, whit fi 15 whit fisl 65 blac, ygre, whit fi 90 whit, lgra fi 80 blac, lgre fisl 65 blac, lgre fi 60 whit, lbro fi 50 lgra fi 40 lgra, lbro fi 70 lgra ti ti fi 70 lgra fi 65 lgra clfi 90 gray clfi 75 gray fi 30 lgra grfi 20 gray, lyel fi 35 gray fi 40 gray, dgra fi 35 gray, lgre fi 40 whit fi 30 whit, blac, gray fi 40 whit fi 10 blac, whit fi 25 whit, lgre, blac fi 40 whit fi 35 whit, gray fi 45 gray fi 40 ggra, whit Fracture filling Thickness of filled fracture, mm clay chlo chlo, clay kaol, sulf 0.5 chlo, grap, illi illi, kaol kaol chlo, grap, illi kaol chlo, illi chlo, illi kaol, sulf, sulf clay 20 clay 1 kaol, clay, illi clay 1 clay clay, illi kaol kaol, chlo 2 kaol kaol 0.5 kaol, illi, chlo 1 kaol 1 kaol 0.5 clay 1 illi, kaol Fracture shape Fracture hness Remarks calcite crystals not picked up not picked up not picked up I c 0 1'-1-) (') Vl 0 r w > "'e "'e (1) ::::s 0.. ;;<?0 -Ul --

115 Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction (0) fracture m m (0) (0) (0) surface fi 30 ggra, whit fi 15 whit, gray, lbro fisl 70 blac, whit grfi 75 gray, whit fi 60 whit fi 45 whit, lgre, lbro fi 60 whit, gray fi 50 whit, lyel fi 50 lyel, whit fi 45 lyel fi 35 lyel fi 65 blac, whit fi 70 whit, lyel, blac grfi gray, blac, lyel fisl blac, whit, lbro fi 90 blac, lbro fisl 85 blac, dgra ti fi lbro fi gray, lbro fi 90 whit, lbro fi 55 whit fi 70 blac, lyel grfi 45 gray, blac fi 80 whit, blac, lbro fisl 65 blac, lyel fi 40 lgre, whit fisl 75 blac, gray fi 75 blac, gray fi 85 blac, lyel fi 80 whit, lgre, blac fisl 55 whit, lgre, blac fisl 50 whit, lgre, blac fisl 75 whit, gray fi 70 lyel, whit fi 70 whit, ygre Fracture filling Thickness of filled fracture, mm illi, kaol kaol, sulf chlo, kaol clay, kaol kaol kaol, illi, sulf kaol kaol, illi illi, kaol 1 illi illi chlo, kaol kaol, illi, chlo clay, chlo, illi 3 chlo, grap, chlo, sulf chlo sulf, sulf kaol, sulf kaol chlo, illi chlo, clay 3 kaol, chlo, sulf chlo, illi illi, kaol chlo chlo chlo, illi kaol, illi, chlo kaol, illi, chlo kaol, illi, chlo 2 kaol, chlo illi, kaol 1 kaol, illi Fracture shape Fracture hness Remarks also slicken sides also kaolinite and sulphide partly partly foliation also slicken sides, core crushed - r 0... ("') Y' 0 r (j.) > "Cl "Cl (p :::::: 0.. ;;<?0 -Vl -N

116 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) fi grfi fi fi fi fi fi fi fi fi fi clfi fi fi fi fi fi fi fi fi fi grfi fi fi fi fi fi fi fi fi fisl fi fi fi fi fi 75 Colour of fracture surface lgre, dgra gray, lyel whit blac, whit, lyel blac, gray, lbro blac, gray whit whit whit whit ygre, whit whit, gray.lgre gray, blac, lbro gray, lbro dgra, lgra blac, gray, whit whit, ggre dgre, gray whit whit lgra gray, ggra, whit ggra, whit gray, whit blac, lgra whit lyel, lgra lgre, gray lyel, whit lyel, gray lgre, gray blac, ygre, whit whit lgra, whit blac, whit d_gra Fracture filling illi illi kaol chlo, kaol, illi illi, lbro chlo kaol kaol kaol kaol illi, kaol kaol, illi, clay, sulf sulf chlo, illi, kaol kaol, illi kaol kaol, illi, kaol kaol clay, kaol chlo kaol illi, kaol illi illi, kaol illi illi illi, kaol kaol kaol chlo, kaol Thickness Fracture of filled shape fracture, mm Fracture hness Remarks also calcite crystals splitted, splitted I:""' 0 ""'') ::p p) (') en 0 I:""' VJ (1) ::I 0. -?0 -Vl --w

117 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi Colour of fracture surface whit, lbro lgra, lbro whit whit whit, lbro whit, lgra whit whit, lbro whit whit whit, lbro, ggra blac, gray blac, ggra, lgra blac, lbro dgra, lbro, gray blac blac blac, gray blac blac, lbro blac, gray lgra lgra, ggre gray blac, brow, ggre gray, lgra blac blac blac blac blac, gray dgra, lgra whit lgra, lbro lgra, lbro gray, blac Fracture filling kaol, sulf sulf kaol kaol kaol, sulf kaol kaol kaol, sulf kaol kaol kaol, sulf, illi chlo chlo sulf sulf chlo chlo, chlo sulf chlo chlo chlo kaol, sulf, sulf chlo Thickness Fracture of filled shape fracture, mm 1rre 0.5 1rre Fracture hness Remarks foliation foliation, splitted, splitted splitted r 0 """+) n..., a (1)!!' 0 r (.;J > :g (1) ::s Vl...

118 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) fi fi fi fi fi fi fi fi fi fi fi fi fisl fi fi fi fi fi fi fisl fi fisl fi fi grfi fi fi fi fi fi fi fi fi ti ti fi Colour of fracture surface whit, lbro, lgra lgra, lbro whit whit whit whit whit, lbro whit whit, lgre whit, lgre, dgre lgra, lbro ygre blac, whit, ggre blac, whit, lyel whit whit, ggre, lbro whit whit whit, blac, lyel whit, blac, lyel whit, blac, lyel whit, blac, lyel whit, lyel, blac whit gray, lyel, blac whit, lbro whit whit whit whit, lbro whit whit lbro, blac lgra Fracture filling kaol, sulf,, sulf kaol kaol kaol kaol kaol, sulf kaol kaol, illi kaol, illi, chlo kaol, sulf illi chlo, grap, kaol chlo, kaol, illi kaol kaol, illi, sulf kaol kaol kaol, chlo, illi kaol, chlo, illi kaol, chlo, illi kaol, chlo, illi kaol, illi, chlo kaol clay, illi, chlo kaol, sulf kaol kaol kaol kaol, sulf kaol kaol sulf Thickness Fracture of filled shape fracture, mm Fracture hness Remarks undulating, splitted splitted partly also slicken sides l' - 0 ""''} (") 2 ri Cil 0 l' (j.l > "l:j "l:j 0 ::s Q.. ;;< Vl -Vl

119 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) fi ti fi fi fi fi fi fi ti fi fi fi fi fi fi clfi grfi ti ti ti ti fi fi fi fi fi fi fi fi fi fi fisl fisl fisl fisl fi 70 Colour of fracture surface lgra blac, lgra gray blac lgra lgra, lbro blac, gray whit gray lgre, gray gray, lgre, blac lyel, gray whit, lyel lyel, whit lgra yell, blac lgre, gray lyel whit whit blac, whit, lgre whit lyel, blac blac, whit, lbro blac, whit, lbro blac, whit blac, whit blac, whit blac, lgra, whit blac, whit Fracture filling chlo,, sulf chlo, kaol illi chlo, illi illi kaol, illi illi, kaol clay illi, grap illi illi kaol kaol chlo, kaol, illi kaol illi, chlo chlo, kaol, sulf chlo, kaol, sulf chlo, grap, kaol chlo, kaol chlo, kaol chlo, kaol chlo, kaol Thickness Fracture of filled shape fracture, mm Fracture hness Remarks calcite crystals foliation foliation splitted r 0 >-!') ::t> (") 2 (il Y' 0 r w > 'e 'e (!) ::I 0.. ><" Vl -0"\

120 I Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) fi ti fi fi fi fi fi fisl fi fi fi fi fi fisl fi fi fi fisl fisl grfi grfi fi fi fi fi grfi fi fi ti fi fi fi fi fi fi fi Colour of fracture surface gray, lbro lgre, whit gray, lbro lgra whit whit blac, ygre, whit whit ygre, blac ygre, whit, blac gray, ygre whit, ygre, lbro blac, whit, lbro ygre, whit ygre blac, lgre, lbro chlo, ygre, gray blac, gray, lbro blac, gray, lgre gray, lyel blac, gray gray blac, gray whit dgra, lbro dgra blac, lbro gray lgra, gray lgra lgra lgra gray, whit whit, lbro Fracture filling clay, sulf illi, kaol clay, sulf kaol kaol chlo, illi, kaol kaol illi, chlo illi, kaol, chlo illi kaol, illi, sulf chlo, kaol, sulf illi, kaol illi chlo, grap, illi chlo, grap, illi chlo, sulf chlo, illi clay, illi chlo, clay chlo, clay kaol clay, sulf chlo chlo, grap, lbro chlo, clay, kaol kaol, sulf Thickness Fracture of filled shape fracture, mm Fracture hness Remarks foliation, probably slicken sided, splitted core crushed splitted -- - c:..., 0 p.) n..., z (I) r::n 0 t""' \.#.) > '"C:I '"C:I (I) ::s 0..?0... VI -.)

121 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) CO) fi fi fi fi fi fi fisl fi fi fi fi fi fi fi fi fi fi ti fisl fi fi fi fi fi fi fi fi fi fi fisl fi fi fi fi fisl fisl 85 Colour of fracture surface whit whit, gray, lbro whit, blac whit, lbro whit, lgre, lbro lgre, whit blac, whit whit blac, ygre, whit lgra, lyel whit lgra whit, gray, lbro whit lbro lgra, ggre whit blac, whit whit whit, lgra gray lgra, lbro, blac lyel whit, gray gray, whit whit gray, lbro, whit whit, lbro, lgra blac, lgra whit, lbro whit lgra whit blac, dgre blac, whit Fracture filling kaol kaol, sulf kaol, chlo kaol, sulf kaol, sulf illi, kaol chlo, kaol kaol chlo, illi, kaol illi kaol kaol, sulf kaol sulf kaol chlo, kaol kaol kaol,, sulf, chlo illi kaol illi, kaol kaol sulf, kaol kaol, sulf chlo, grap kaol, sulf kaol kaol chlo chlo, kaol Thickness Fracture of filled shape fracture, mm 1rre 1rre rre 1rre 0.5 Fracture hness Remarks splitted a bit kaolin foliation undulating splitted splitted t""' 0 H; $:1) n 2 '"I (!) Y' 0 t""' w >- 'i:l 'i:l (!) =:s 0. ;;<?0 -VI... 00

122 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction e) m m e) (0) (0) fisl fi clfi fi fi fi fi fi fi ti fisl fi fi fi fi fisl fi fi fi fi fi grfi fisl fi fi fis fisl fisl fisl fi fi fi fi fi fi fisl Colour of fracture surface blac, lgra blac, gray gray, lyel gray gray lbro, whit, gray lbro, whit lgra,, whit whit, lbro blac, lbro lgra lgra blac, lbro, whit blac, whit, lbro whit, blac whit, blac whit whit whit, blac blac, gray, lbro blac, lbro blac, whit, lbro gray, lbro, whit blac, lbro blac, lbro blac, lbro blac, gray, lbro blac, gray blac, 1ye1, lbro blac, lgre lbro, gray lbro gray, lbro gray, lbro blac, lbro Fracture filling chlo, grap chlo, grap, clay, illi sulf, kaol sulf, kaol, kaol kaol, sulf chlo, grap, sulf grap, sulf chlo, kaol, sulf kaol, chlo kaol, chlo kaol kaol chlo, kaol chlo,, sulf chlo, grap, sulf chlo, grap, sulf, sulf, kaol grap, sulf chlo, grap, sulf chlo, grap, sulf chlo, grap, sulf chlo, grap chlo, illi, sulf chlo, illi sulf sulf, sulf sulf chlo, grap Thickness Fracture of filled shape fracture, mm Fracture hness Remarks partly, splitted, splitted foliation splitted slicken sides alco calcite r 0 ""!') ::p n rll 0 r w > 'i:l 'i:l (l) 0. =?0 -Vl -\0

123 I I I I I Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) _CO) fisl fi ti fisl ti fisl fisl fisl fisl ti ti fisl fi fi fi fi fi fi fi clfi fi fi fi fi fi fi fi fi fi fisl fi fi fi fisl fi grfi 80 Colour of fracture surface blac, lbro lbro, gray blac, lbro, gray dgra, lbro dgre, lbro dgra, lbro, blac blac blac, lbro lbro, gray lbro, blac dgre, lbro dgra, lbro lbro, gray lbro, gray blac gray, blac, lbro lgra blac, lbro gray, lbro lgra, lbro lgra gray, lbro lbro lbro lgra blac, gray lbro, dgra, lgra lgra, lbro dgra, gray, lbro blac, lbro gray, lgra gray, lgra, lbro Fracture filling chlo, grap, sulf sulf, clay chlo, grap, sulf chlo, grap, sulf chlo, sulf chlo, sulf chlo, grap chlo, grap, sulf sulf, chlo sulf, chlo, grap chlo, sulf chlo, grap, sulf sulf sulf, chlo, grap clay, chlo, sulf grap, lbro clay, sulf, sulf clay, sulf sulf sulf chlo sulf,, sulf grap, sulf grap, chlo clay,, sulf Thickness Fracture Fracture of filled shape hness fracture, mm 1rre Remarks, fault chalcopyrite, splitted, fault, fault partly, splitted partly partly, splitted I I l' fa. 0 ::p (") 2 ri Y' 0 l' V.l > "1:j "1:j (1) ::s 0. ;;:< VI -N 0

124 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction e) m m (0) (0) fisl 80 CO) fi fi fi fi fisl fi fi fisl fi fi fi ti fi ti ti fi fi fi grfi fi fi fisl fisl fisl fisl fi fisl fisl fi fisl fi fi fi fi 65 Colour of fracture surface blac, gray lgra gray, lbro lgra, lbro lyel blac, lgre lgra blac, lgra blac, lgra blac, lgra, lbro lgra, blac, lbro lgra, lbro dgra,, gray gray, lbro lgra gray blac, gray, lbro blac, gray blac, gray blac, gray, whit blac, lbro, whit blac, lbro, whit blac, gray blac, gray, lbro blac, dgre lgra, blac blac, lgra, gray blac, gray gray, blac, lbro blac blac, lbro, whit blac Fracture filling chlo, clay, sulf, sulf illi chlo, illi, chlo chlo, grap, clay chlo,, sulf chlo,, sulf, sulf chlo, grap sulf chlo, grap, sulf chlo, clay chlo, clay chlo, kaol sulf, kaol chlo, sulf chlo, grap, clay chlo, sulf chlo, grap, chlo chlo, chlo, grap grap, clay chlo, grap, sulf cho, grap Thickness Fracture Fracture of filled shape hness fracture, mm Remarks splitted partly splitted a bit kaolin foliation foliation, strong solid breccia with some fractures splitted onate filling brecciated splitted splitted r - 0 >-+) (') 2" Jll 0 r w > '"1::::1 '"1::::1 0 ::t 0.?0 -VI -N

125 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) fi fi fi fi fi fi fi fi fi fi fisl grfi fi fi fi fi fi grfi fi fi fi fisl fisl fisl fisl fisl fisl ti fisl fi fi fisl fi fi fi ti Colour of fracture surface blac, gray blac, gray blac gray, lgra lgra gray gray lgra b1ac, gray whit, blac, lbro gray, whit, blac blac, gray blac, whit blac, lbro blac, gray blac, gray blac, gray blac, lbro, gray blac, lbro lbro, gray lbro, gray blac, whit, lbro blac, gray, lbro blac, whit blac, lbro blac, whit, lbro blac, gray, lbro blac, lyel whit, lbro whit blac, whit, gray lgra blac, lyel lgra Fracture filling chlo, grap chlo, grap chlo, clay, quar chlo kaol, chlo, sulf kaol, grap chlo, kaol grap, sulf chlo chlo chlo grap, sulf grap, sulf sulf, grap sulf chlo, kaol, sulf chlo, sulf chlo, grap, kaol chlo, grap, sulf chlo, kaol, sulf chlo, grap, sulf chlo, grap, illi kaol, sulf kaol chlo, kaol chlo, illi Thickness Fracture of filled shape fracture, mm 3 1rre 1rre 3 1rre Fracture hness Remarks, splitted hard breccia filling also illite partly foliation l' 0 '"'-+; (J 2 (p """ Yl 0 l' V..l > 'i::$ 'i::$ (p ::s Vl -N N

126 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction CO) m m (0) (0) (0) fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fisl fi fisl fi fi fi fi fi fi fi fi fi Colour of fracture surface lbro, lgre lbro gray whit, lbro, dgra whit, lbro, blac lgra ggra gray, whit lgra blac, lbro, ggre blac, lbro, gray ggra, lgra dgra ygre, lbro, blac lgre blac, gray gray, lbro gray, lbro blac blac, gray blac blac gray, lbro, blac blac, lbro, gray gray, lbro gray, lbro blac, lbro gray lgra gray gray, lbro lbro whit whit whit whit -- Fracture filling sulf sulf kaol, sulf kaol, sulf, chlo kaol chlo, sulf, illi chlo, sulf sulf, chlo chlo clay, sulf clay, sulf chlo chlo, chlo chlo clay, sulf, chlo chlo, sulf chlo,, sulf, clay, sulf chlo, grap, sulf clay sulf sulf kaol kaol kaol kaol Thickness Fracture Fracture of filled shape hness fracture, mm Remarks partly mainly stepped, splitted splitted foliation, splitted foliation splitted splitted foliation partly - - c 0 1-1') (j Jll 0 t""' w :g 0 ::s 0.. S<"?0 -Ul -N V)

127 I I I I Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) fi ti ti ti fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fisl fi fisl fisl fi fisl fi fi ti fi ti Colour of fracture surface whit whit, gray whit whit whit whit, lbro dgra dgra gray, blac whit, lbro, blac whit, lbro whit, lbro ggra lgra, lbro lgra lgra lgra whit, lbro whit, lbro gray, lbro gray, lbro blac chlo, lgra lyel gray, blac blac, gray blac, gray blac, dgra gray, lbro dgra gray, blac Fracture filling kaol kaol kaol kaol kaol kaol, sulf chlo, grap chlo chlo kaol, sulf, chlo kaol, sulf kaol, sulf, sulf kaol, sulf kaol, sulf sulf chlo chlo, grap, chlo, clay chlo chlo, grap chlo, grap sulf grap, chlo Thickness Fracture Fracture of filled shape hness fracture, mm 1rre Remarks swarm of kaolin filled fractures foliation, splitted foliation, foliation foliation, splitted foliation splitted foliation l' 0..., :;'l (") 2 ri Y' 0 l'!..;j > "1:::$ "1:::$ (!) ::I 0.. ><?0 -Vl N +:-.

128 I I Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) CO) (0) fi fi fi fi ti fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fisl fi fisl fi fi fi fi fi fi fi fi fi fi fisl Colour of fracture surface gray, lbro gray, lbro gray blac, gray Fracture filling muse sulf chlo, grap gray, lbro sulf gray lgra gray lgra lgra blac, lgra, lbro chlo,, sulf gray, lbro sulf gray, lbro sulf, gray, lbro clay, sulf gray, lbro clay, sulf gray, lgra clay lgra whit, lbro kaol, sulf blac, brow, gray chlo blac, lbro chlo, sulf gray, lbro sulf blac, lbro chlo, sulf gray, lbro clay, sulf blac, gray, lbro chlo, grap, sulf lgra gray, lbro clay, sulf gray, lbro clay, sulf lbro, gray, blac sulf, grap, chlo gray gray, blac, bro, sulf, chlo blac, lgra, lbro chlo,, sulf ygre ygre, lbro gray blac, ay, lbro chlo, sulf Thickness Fracture Fracture of filled shape hness fracture, mm Remarks also clay foliation undulating c :4 0 ""' (") uc:j:l 0 l' w "l:s ;;<?0 -Vl -N Vl

129 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) fi fi fi fi fi fi fi fi fi ti fi fi fi fi fisl fisl fisl fisl fi fisl fi fisl fi fisl fisl fisl fi fi fi fi fi fi fi fi fi fi Colour of fracture surface dgra, lgra, lbro lbro, lgra lgra lgra, dgra lgra lgra brow, gray, lbro lbro lgra, lbro lgra whit lbro, gray dgra blac, lgre blac, lbro blac blac, lbro ggra, lbro blac, lbro gray blac, lbro gray, lbro dgra dgra, gray, lbro dgra, lbro gray, lbro, blac lgra, lbro lgra, lbro dgra, lgra, lbro whit, lgra lgra, blac lgra, lbro lgra lgra, dgra lbro, blac Fracture filling chlo,, sulf sulf chlo,, sulf sulf sulf kaol sulf chlo, grap chlo, grap, illi chlo, grap, sulf chlo, grap chlo, grap, sulf sulf grap, chlo chlo, grap, sulf, sulf grap grap grap, sulf, sulf, chlo, sulf, sulf chlo,, sulf kaol,, chlo sulf, chlo sulf, chlo Thickness Fracture of filled shape fracture, mm 1rre rre 1 2 Fracture hness Remarks partly splitted splitted splitted stepped stepped c: 0... s:.;l (") 2 (il Y' 0 r V..l.G- 'i:::s (1) :;! Vl... N 0'\

130 Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction (0) fracture m m (0) (0) (0) surface fi blac, gray fisl 70 dgra fi 80 blac, lgra fi lgra fi 85 blac, dgra grfi 90 dgra, lbro fi 70 lbro, lgra fi 70 lbro, lgra fi 70 dgra, lbro, gray fi 50 blac, lgra fisl 80 dgra fisl 50 dgra, lbro fisl 50 dgra fisl 35 blac, dgra fisl 60 blac, gray, lbro fi 70 blac fi 85 gray, lbro fi 70 dgra, lbro fi 80 lgra, lbro grfi 70 dgra, lbro fisl 70 dgra, lbro fisl 60 dgra, lbro fi 80 dgra fisl 45 blac, gray, lbro fi 70 dgra fi 70 blac fi 60 blac, lbro fisl 85 dgra fi 60 blac, lgra, lbro fi 50 dgra, lbro, gray fi 50 blac, lbro fi 70 blac, lbro fisl 70 dgra, lbro fi 85 blac grfi 85 dgra, blac fisl 45 blac, lbro Fracture Thickness Fracture filling of filled shape fracture, mm grap, chlo 2 grap clay, sulf 5 sulf, sulf, grap, sulf grap frap, clay, sulf grap chlo, grap chlo,, sulf sulf grap, sulf, sulf clay, grap, sulf 4 grap, sulf 4 grap, sulf grap chlo, grap, sulf grap sulf grap, sulf grap, sulf sulf sulf grap, sulf clay, chlo grap, chlo, sulf Fracture hness Remarks foliation not picked up, not picked up, not picked up, splitted also slicken sides, splitted splitted, splitted also slicken sides r - 0 _, s:w n 2..., (I) CZl 0 r VJ > '\::) '\::) (I) ::s 0. ;;< Vl -N...}

131 i I Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction C) fracture m m (0) (0) (0) surface clfi 85 dgra, blac fi 50 dgra,gray fi 45 dgra, brow fi 80 dgra fi 70 dgra fi 55 dgra fi 55 gray fi 80 lgra, blac, lbro fi 65 dgra, lbro fisl 60 dgra fisl 80 dgra fi 25 dgra fi 20 dgra, lbro fisl 35 dgra, lbro fi 75 lgra, lbro fi 75 gray, lbro fi 65 brow fi 50 brow fi 80 lgra fi 70 lgra fi 55 lgra fi 75 lgra, lbro fi 55 lbro, dgra, lgra fi 25 lgra, blac fi 40 dgra fi 65 lyel, lgra fisl 65 dgra, lbro, yell fisl 70 dgra, lgra 857 fisl 60 lgra, yell, blac 858 fi 55 lgra, brow 859 fi 65 lgra, yell, blac 860 fi 75 blac, yell, lgra 861 fi 40 lgra, yell, lbro 862 fisl 85, brow, blac Fracture filling Thickness of filled fracture, mm grap, chlo, clay 4 grap, grap grap grap grap, chlo quar 0.5, grap, sulf grap, sulf grap grap, clay grap grap, sulf grap, sulf, sulf 3, sulf 2 sulf 3 sulf, quar 2, quar 3, quar 3, quar, sulf 15 sulf chlo, illi grap, sulf, illi grap,, illi, grap, sulf 3, illi grap, illi,, illi, sulf 2 sulf, grap Fracture shape 1rre Fracture hness Remarks also slicken sides splitted splitted, splitted, splitted core loss 0.15 m, depths ofthe fractures cannot be measured r - 0,...,!:>) (") 2 ri _;n 0 r (j.) > :g (p ::s 0.. ;;<?0... Vl -N 00

132 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) 863 fisl fi fi fi fisl fisl fi fi fi fi fi fisl fisl fisl fisl fi fisl fisl fisl fi fi fisl fi fi fisl fisl fi fi fi fi fi fi fisl fi fi fi Colour of fracture surface dgra, brow blac, lgra, yell blac, brow dgra blac, yell, lgra dgra lgra, lbro, blac lgra, lbro, blac dgra blac, yell, lgra gray, brow dgra, lbro, lgra dgra, lbro blac, lbro, ygre whit, blac, lgra blac, gray, lbro blac, brow, lgra blac, lgra blac blac, lbro lgra blac, lbro, ygre blac, lbro, ygre blac, gray blac, gray, lbro blac, gray, lbro lgra blac, gray, lbro dgra, lgra gray, lbro blac, ygre, gray blac, gray blac, gray blac blac lgra Fracture filling grap, sulf chlo,, illi chlo, sulf, grap grap, chlo grap, illi, grap, sulf, sulf, chlo chlo, illi, sulf, grap, sulf grap, sulf chlo, grap, sulf kaol, grap, grap, sulf grap, sulf, grap, grap, chlo grap, sulf chlo, sulf, illi chlo, sulf, illi chlo, grap chlo, grap, chlo, grap, grap, chlo, sulf grap, sulf chlo, illi, grap chlo, chlo, chlo chlo Thickness Fracture of filled shape fracture, mm Fracture hness Remarks also pyrrhotite t""' 0.-+) ::p p) (') a Vl 0 t""' z: w x?0 -Vl -N \0

133 Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction (0) fracture m m (0) (0) (0) surface fi lgra, lbro fisl blac, gray, lbro fisl blac, gray, lbro fi gray fi 80 gray, blac fisl blac, gray, lbro fi 80 gray, blac fisl blac, gray, lbro fi lgra, lbro, dgra fi 60 lgra, brow fi 50 blac, gray, ygre fi 75 lgra, lbro, ygre fisl 45 blac, gray, ygre fisl 60 blac, gray, ygre fisl 50 blac, gray, ygre fi 70 blac, gray, ygre fi 90 blac, gray, ygre fi 60 lgra, lbro fisl 60 blac, gray fisl 80 dgra, lyel, gray fi 75 ygre fi 70 gray fi 70 lgra, lyel fi 60 gray, ygre fisl 80 ygre, blac, gray fi 35 lgra fisl 80 blac, ygre, lgra fi 55 blac, ygre, lbro fisl 55 dgra, ygre fisl 75 blac fi 50 blac, lbro, gree fi 80 dgra, ygre fisl 80 blac, gray, lbro fi 50 blac, brow fi 70 lgra, lbro fisl 70 blac, lbro, ay Fracture filling, sulf chlo,, sulf chlo,, sulf Thickness of filled fracture, mm, chlo chlo, grap,, chlo chlo,, sulf, sulf, grap 5, sulf 2 chlo,, illi, sulf, illi 0.5 chlo,, illi chlo,, illi chlo,, illi chlo,, illi chlo, illi, sulf chlo, grap, illi, illi, illi, illi illi, chlo 3 grap, illi, grap, illi, sulf grap, illi chlo, grap sulf, illi grap, illi grap, clay, 5 sulf, sulf 5 chlo, sulf -- Fracture shape 1rre Fracture hness Remarks also pyrite, splitted, splitted also pyrite splitted splitted -- c: ;!; 0 >-+) (") 8 (ti!!' 0 r w.g" 'i:l (p :: Vl... w 0

134 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m CO) (0) (0) fisl fi fi fi fisl fisl fi fi fi fi fi fi fi fi fi fi fi fi fi fi fisl fisl fisl fi fisl fi fisl fisl fi fi fi fi fi fi fi fi 90 Colour of fracture surface gray, blac, lbro blac, lbro blac, gray, lbro blac, gray, lbro gray, blac, lbro dgra, lgra, lbro dgra, lbro, gray gray, ygre yell. gray yell. gray gray, ygre lgra lgra, lyel gray lgra, lbro gray, brow lgra dgra, lgra, lbro gray, lbro lyel blac, lbro, gray dgre, gray blac, dgra blac, gray dgre,gray gray blac, lyel gray, blac, lgre gray lbro gray, lbro, ygre gray, blac, lbro blac, ygre, gray lyel, gray gray, lbro, dgra lbro, lgra Fracture filling clay, sulf sulf sulf,, sulf clay, sulf grap, sulf grap, sulf, chlo, illi illi illi illi, quar, sulf grap, sulf,, sulf chlo, sulf chlo chlo, grap chlo chlo, illi, chlo, illi sulf sulf, illi chlo, illi chlo,, illi illi grap, sulf sulf, Thickness Fracture of filled shape fracture, mm 0.5 Fracture hness Remarks splitted splitted splitted, splitted t'"" 0 ""'+) (') CZl 0 t'"" VJ :g > (D ::s 0.. ;;:;?0... VI... w...

135 Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction (0) fracture m m (0) e) (0) surface fisl dgra, lgra, lbro fi 75 blac, gray fisl dgre, lbro, lgre fisl blac, lgra, ygre fi 90 lgre fi 65 gray, ygre, blac fi yell, lgra, lbro fi 65 gray, lyel, lbro fisl dgra, lbro, gray fisl blac, lbro, ygre fi lgra, lbro, blac fi blac, brow, gray fi blac, brow, gray fi 50 yell, lbro fi 80 blac, lgre, brow fi blac, gray, lbro fisl blac, gray, lbro fi dgra, lbro, gray fi 70 gray, lbro, blac fi gray, lgre, blac fi 50 blac, ygre, lgra fi gray, lgre fi lyel, lgra, lbro fi lgra, lgre fi lgre, gray fi 55 lgra fisl 80 blac, lgra fi 70 lgra, lbro fi 80 gray, lbro, lgre fisl 90 blac, gray fi 50 blac, ygre, gray fisl 55 blac, gray, lbro fisl 70 blac, gray, lbro fisl 70 blac, lgra, lbro fisl 75 blac, lbro fi 85 blac, lbro, gray Fracture filling Thickness of filled fracture, mm 10 chlo, sulf, illi chlo,, illi illi 1, illi illi,, sulf, illi, sulf grap, sulf chlo, sulf, illi, sulf, chlo 10 chlo, sulf, chlo, sulf, illi illi, sulf 1 chlo,, sulf chlo,, sulf chlo, sulf grap, sulf, sulf, illi chlo, illi,, illi illi,, sulf 3, illi illi, 0.5 chlo,, sulf, sulf chlo, chlo, illi, chlo,, sulf chlo, sulf, clay grap,, sulf sulf sulf, Fracture shape 1rre Fracture hness Remarks foliation also illite foliation splitted splitted r 0 """+) :;'l 0 2 Y' 0 r (.;.) > "0 "0 (1) =:! 0.. ><" 00 -Vl -\..>.) N

136 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction CO) m m (0) (0) (0) fisl grfi fi fi fi fi fi fi fi fi fi fi fisl fi fi fi fi fi fi fisl fi fi fi fisl fi fi fisl fi fisl fi fi fi fisl Colour of fracture surface blac, gray, lbro blac, lbro, gray blac, lbro, gray lbro, lgra, gray dgra, lgra, lbro blac, lbro, gray gray, blac gray, lbro dgra, lbro, gray dgra, lbro, gray lbro, gray gray blac, gray, lbro gray gray blac, gray, lbro blac, gray dgra blac, lbro, gray blac, lbro blac, lbro blac, lbro blac, lbro blac, dgra, lbro dgra lbro, blac blac, lbro, dgra lbro, gray, blac dgra gray gray, lbro, brow dgra, lbro, gray dgra, gray Fracture filling chlo,, sulf clay, sulf grap, sulf, clay sulf, grap,, sulf grap, chlo, sulf chlo, grap sulf, sulf, sulf sulf,, sulf grap, chlo, sulf chlo, sulf sulf chlo, sulf sulf chlo, grap, sulf chlo, grap sulf grap, chlo, sulf sulf sulf grap, sulf, chlo, ap Thickness Fracture Fracture of filled shape hness fracture, mm Remarks splitted core loss between interval probably core loss, depths of the fractures cannot be measured, all fractures and features cannot be reported, splitted c 0 >-+) ::t> n 2..., (t) Cil 0 t""' (.;.) (t) 0..?0 -Vl -w w

137 I Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction C) fracture m m (0) (0) (0) surface fi lgra, lbro fi lgra fi 65 blac, lgra fi 50 lgra, lgre fi gray, dgra, lbro fi lgra fisl dgra, lbro, gray fi 80 dgra fi 80 gray, lyel, lbro fi 30, sulf fi 80 lgra, lbro, blac fi 80 lgra, lbrp fi 35 lgra, lbro fi 85 gray, lbro fi 80 blac, gray, lbro fi 80 lgra fi 45 gray, lbro fi 80 lgra fi 50 lgra fisl 80 dgra, lbro fi 90 blac, gray, lgre fi 80 gray, lbro, blac fi 50 gray, lbro fi 80 lgra, lbro fi 80 lgra, lbro, blac fi 80 blac, lbro fi 80 blac, lbro fisl 80 blac, gray fisl 45 blac, gray fi 45 dgre, lgra fisl 70 blac, lgra, lbro fi 45 blac, gray fi 70 dgra, blac fi 60 blac, gray fi 75 blac, gray fi blgray Fracture filling, sulf Thickness of filled fracture, mm 0.5, illi grap, sulf grap, sulf 2 grap, sulf, sulf, sulf 3, sulf sulf, sulf 0.5 chlo, sulf, sulf grap, sulf chlo,, sulf, sulf, chlo 1, sulf, sulf, sulf, chlo grap, sulf sulf chlo, grap, chlo, chlo, chlo,, sulf chlo chlo chlo, '--_chlo, carq Fracture shape 1rre 1rre 1rre Fracture hness Remarks pyrrhotite splitted splitted - t""' 0..., (j 2..., (1) Y' 0 t""' w > '0 '0 (1) ::s 0.. ;;:<"?0 -VI... w.j:::..

138 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) COl fi fisl fisl fisl fisl fisl fisl fi fi fi fi fi fisl fisl fi fi fi fi fi fi fi fisl fi fi fi fi grfi fi fi fi fi fi fisl fi fi fi Colour of fracture surface dgra dgra, lbro blac, lbro blac, lbro blac, gray, lbro blac, gray blac, gray gray dgra, lgra lgra, blac blac, gray, lbro blac blac, lbro, lgra blac, lbro, gray blac, dgra, lbro gray, lbro gray, lbro dgre, lgra, lbro gray, blac blac, gray lbro blac, gray, lyel blac, lgra lgra, lbro, blac whit, lbro gray, whit, lbro gray, blac gray, whit, lbro gray, blac whit, gray whit, blac, lbro blac, yell, gray blac, lgre, gray whit lgre, gray gray, lbro Fracture filling chlo, sulf chlo, grap, sulf chlo, grap, sulf chlo, grap, sulf chlo, grap, chlo,, chlo chlo, sulf chlo, sulf, chlo,, sulf grap, sulf sulf sulf, sulf chlo, chlo sulf sulf, chlo, sulf, chlo kaol, sulf, kaol, sulf clay, chlo chlo, kaol, sulf chlo kaol kaol, chlo, sulf chlo, illi chlo, illi kaol, illi sulf Thickness Fracture of filled shape fracture, mm Fracture hness Remarks splitted also onate, splitted foliation r fa. 0 >-+') 0 2' '"I 0 c:n 0 r w > 0 :;1 0. ;;<?0 -Vl -w Vl

139 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0} e) (0) fi fi fi fi fisl fi fi fi fis fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fisl Colour of fracture surface lbro, lgra lyel gray, lyel, lgra dgra, lbro, lgra blac, gray gray, dgre, lbro blac, gray gray b1ac, gray blac, lbro gray, lbro gray, lbro gray, lbro blac, gray blac, lbro lbro, gray gray, brow lbro, gray, whit blac, dgre ygre ygre lgre, gray gray, lbro gray gray, lbro gray, lbro gray, lbro lbro blac, lbro dgre dgra lgre, lbro blac, gray gray, whit gray, whit, lyel blwhi!_ Fracture filling sulf, chlo, grap sulf ch1o, su1f chlo, sulf sulf chlo kaol, seri kaol, kao1 chlo sulf sulf sulf seri sulf chlo, sulf chlo illi, sulf chlo kaol kaol chlo,kaol, sulf Thickness of filled fracture, mm -- Fracture shape 1rre Fracture hness Remarks splitted splitted splitted splitted splitted - r : 0 =t> (j 2 '"I (1) Y' 0 r V.l > 'e 'e (1) ::s 0..?0 -Vl... w 0"1

140 Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction (0) fracture m m CO) (0) (0) surface fi 30 lgra, lbro fi 80 blac, whit fi 65 gray fisl 85 blac, gray, lbro fi 70 blac, gray, lbro fi 80 lgra, lbro, blac fi 35 gray, lbro, blac fi 80 lgra, lbro fi 25 blac, lbro, gray fisl 50 dgra, lbro fisl 70 blac, gray, lbro fi 45 blac, gray, lbro fi 35 blac, lgra fi 35 whit, gray, blac fi 55 whit, gray fi 80 whit, blac fi 40 lgra, whit fi 50 lgra, lbro fi 30 whit, gray fi 90 lbro, gray fi 25 gray fisl 80 blac, lbro fi 80 blac, lbro, gray fi 15 gray, lbro fi 40 gray, lbro fi 35 gray fi 40 gray fi 15 gray fi 30 blac, gray fisl 85 blac, lbro fisl 85 blac, lbro fi 30 blac fi 40 gray, whit fi 30 lgra, lbro fi 80 blac, gray, lbro fi 80 blac, gray Fracture Thickness Fracture filling of filled shape fracture, mm, sulf 1 chlo, kaol 0.5 chlo, sulf, sulf chlo,, sulf, sulf clay, sulf, sulf chlo, sulf grap, sulf chlo, sulf chlo,, sulf kaol kaol kaol, chlo kaol, 1, sulf kaol sulf 0.5 chlo, sulf chlo,, sulf, sulf 0.5, sulf chlo chlo, chlo, sulf chlo kaol, sulf blac, gray, lbro chlo, clay Fracture hness Remarks partly partly splitted, splitted, strong, strong partly t""" 0 >-+) PJ (") uv.l 0 t""" VJ > "t:s "t:s = ;;<?0... Vl -w -...)

141 I Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m CO) (0) (0) fi fi fi fi fi fi fi fi fi fi fisl fi fisl fi fi fi fi fi fisl fisl fisl fisl fisl fi fi fisl fi fi fisl fisl fisl fi fi fi fi fi 75 Colour of fracture surface gray, lbro whit, lbro gray lbro blac, gray lgra, lbro blac, brow, lgra lgra lgra lbro blac, lgra, lbro blac, gray blac, gray, lbro blac, gray, lbro blac, brow, gray dgra, lbro, blac blac, gray blac, lbro blac, gray blac, brow, gray blac, gray, lbro blac, gray blac, gray blac, gray, lbro blac, lbro blac, gray lgra blac, lbro, gray blac, lbro blac, gray blac, gray blac, lbro blac, gray blac, gray, lbro blac, gray blac,jbro, gray Fracture filling sulf kaol, sulf chlo,, sulf chlo, chlo,, sulf chlo, chlo,, sulf chlo,, sulf chlo, sulf,, sulf, chlo chlo, chlo, sulf chlo, grap, chlo, grap, sulf chlo, chlo, chlo, chlo, sulf chlo, sulf chlo chlo, sulf chlo, sulf, chlo chlo, chlo, sulf chlo, sulf chlo, sulf chlo chlo, sulf Thickness Fracture of filled shape fracture, mm 2 1 1rre 1rre 1rre Fracture hness Remarks pyrrhotite splitted pyrrhotite I I t: ;!4. 0 '""'l (") 2 (il Y' 0 l' w > "0 "0 0 ::s 0.. ><?0 -V. -w 00

142 Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction CO) fracture m m (0) (0) (0) surface fi 80 blac, gray fi 20 lgra fi 80 gray fi 20 lgra fi 75 blac, lbro fi 85 blac, gray fi 80 dgra, lgra, lbro fi 80 lyel fi 85 dgra fi 75 lbro, blac fi 80 dgra fi 80 blac fi 90 blac, gray fi 85 blac, gray fisl 75 blac, lbro fi 50 lgra fi 45 blac, gray, lbro fi 45 blac, gray fi 50 lgra, blac fisl 60 blac, lbro fisl 70 blac, lbro, gray fi 70 dgra fi 65 blac, lgra fisl 75 dgra, lbro, lgra fi 50 dgra, lbro fisl 65 blac, lbro fisl 80 blac, gray, lbro fi 70 blac, gray, lbro fi 70 blac, gray, lbro fisl 60 blac, gray fi blac, lbro, gray fi 80 blac, gray fi 80 blac, lgre, gray fisl blac, gray fisl... blac, gray ---- Fracture Thickness filling of filled fracture, mm chlo, chlo, sulf chlo, sulf chlo, sulf chlo, grap chlo, grap chlo, grap chlo, grap chlo, grap 70 1 chlo,, sulf chlo, 1 grap, chlo, sulf chlo, grap, sulf grap grap, sulf, 5 chlo, sulf chlo, sulf chlo, sulf chlo,, sulf chlo,, sulf chlo, grap chlo, sulf chlo, chlo, illi, chlo, clay chlo, sulf Fracture shape Fracture hness Remarks, splitted hard breccia filling between two fractures, splitted, splitted splitted t""' fa. 0 >-+; ::t> (') en 0 t""' VJ > '\::$ '\::$ (!) ::s 0.. ;;<?0 -VI -w \.0

143 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) e) fi fi fi fisl fisl fi fi fi fi fi fi fisl fi fi fi fi fi ti fi fi fi fi fi grfi fi fi grfi grfi fisl L ' fisl 50-L - Colour of Fracture Thickness fracture filling of filled surface fracture, mm gray, quar gray, lbro, sulf dgra, lgra blac, gray blac, gray chlo blac, gray chlo gray blac, gray chlo whit, gray kaol, whit, blac, gray kaol, chlo blac, gray chlo blac, gray chlo blac, gray chlo, sulf blac, lbro chlo, sulf gray, lyel illi 0.5 gray, lbro, blac, sulf, chlo blac, gray, lbro chlo, lbro, gray blac, lbro chlo, sulf lgra 1 blac, lbro, chlo, sulf, gray, lbro sulf blac, lbro, gray chlo, grap, sulf 3 lgra 3 blac chlo, grap blac, lbro clay, chlo, sulf 120 blac, lbro clay, chlo, sulf 50 gray, blac clay, chlo, grap 2 blac, gray clay, chlo, grap 2 Fracture shape Fracture hness Remarks splitted splitted, splitted splitted Rock strongly brecciated and is full of micro fractures and clay/ grain filled fractures, hard to determine which is fracture which is not core loss, depths not measured loose breccia 50 mm solid rock between this and previous so called fracture - r 0 >-+) ::t> n Y' 0 r (.;.) > "i:j "i:j (1) ::s 0..?0 -Vl....+;::.. 0

144 I I Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction (0) fracture m m (0) (0) (0) surface 1287 fisl 60 gray, blac 1288 grfi 70 gray, blac 1289 fisl 60 dgra, chlo 1290 fi 70 blac, gray 1291 fisl 45 blac, gray 1292 fisl 75 blac, gray 1293 grfi 60 dgra, blac 1294 fisl 70 blac, gray, lbro 1295 fi 35 gray 1296 fisl 60 blac, gray, lbro 1297 fi 45 blac, gray, lbro 1298 grfi 65 dgra, blac 1299 fi 45 blac, gray 1300 fisl 55 blac, gray 1301 fi 75 lgra 1302 fi 70 gray, whit, blac 1303 fi 75 lgra 1304 ti fi 50 lgra 1306 fi 40 gray, lbro 1307 fi 60 lbro 1308 fi 80 whit, lgra 1309 ti fi 70 gray, blac 1311 fi 80 lgra 1312 fi 50 gray, blac, lbro 1313 fi 65 gray, lbro fisl 65 blac, gray fi 75 blac, gray fisl 60 blac, gray fisl 40 blac, gray, lbro fi 80 blac ti fi 85 lgra fi 75 blac, gray fi 35 Agra, brow Fracture Thickness filling of filled fracture, mm clay, chlo, grap 1 clay, chlo 3 clay, grap, chlo 2 chlo chlo, clay, grap chlo, clay, grap 1 chlo, clay, sulf 4 chlo, clay, sulf 20 chlo, sulf chlo, grap, sulf chlo, clay 30 chlo, grap, clay chlo, grap, clay 0.5, kaol 1 1 sulf, clay, sulf 2 kaol clay, chlo 2 clay, chlo, sulf clay, sulf chlo, grap, clay chlo, clay chlo, grap, clay chlo, grap, clay 3 chlo chlo chlo, grap _ L Fracture shape Fracture hness Remarks splitted hard to soft breccia filling not picked up splitted splitted splitted, calcite crystals splitted - l' 0 ""+) ::t> P' n J'J 0 l' w > 't:l 't:l (!) 0.?0 -Vl -

145 I Fracture Start End Type Alfa Beta Dip Dip Colour of number depth depth angle angle direction (0) fracture m m (0) (0) (0) surface fi 70 blac, gray, lbro fi 30 lgra, lbro fi 70 gray fisl 75 dgra, blac fisl 75 blac, gray, lbro fisl 75 blac, gray, lbro fi 65 blac, gray fi 0 lgra fisl 80 dgra, lbro fi 85 gray, blac fi 85 lgra, lbro fi 45 gray, lgra fisl 75 gray, lbro fisl 75 blac, gray fisl 80 blac, gray fisl 75 blac, brow, lyel fi 75 blac, gray fi 90 blac fi 85 blac, gray fi 80 dgra, blac, fi 70 blac, gray, lbro fi 85 lgra fisl 70 gray, dgra fi 50 gray, lbro fi 85 gray 1349 fi 30 gray fi 80 gray fisl 85 blac, gray fi 75 gray, lbro fisl 70 blac, gray fi 25 gray, blac fi 70 blac, gray fisl 80 blac, lbro, gray fi 60 lyel fisl 70 gray, blac Fracture filling chlo, sulf, sulf Thickness of filled fracture, mm chlo, grap, clay 2 chlo, sulf chlo, sulf chlo chlo, grap 2 clay, chlo, grap, sulf 2 clay, grap, sulf 10 chlo, grap, clay chlo, clay chlo, grap, illi 0.5 chlo,, chlo chlo, clay, sulf 1 chlo, clay sulf chlo chlo, grap, clay clay, sulf chlo, grap, clay 2 chlo, chlo, grap, sulf illi clay Fracture shape Fracture hness Remarks splitted splitted core loss 0.03 m L' (j 2 '"'I (1) :fl 0 L' \.#.) > 'e 'e (1) ::s Vl... N

146 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction CO) m m (0) (0) (0) fisl fisl fisl fi fi fi fi fisl fisl fisl fi fisl fi grfi fi fi fi fisl fi fi fi fi fi fi fi fisl fisl fi fi fi fisl ti fi fisl Colour of fracture surface blac, gray blac, gray blac, gray blac, lyel, gray blac, lbro, gray gray lgra, lbro blac, gray blac, gray gray, blac blac, gray blac, ygre blac, gray blac, gray dgra blac, gray blac, lbro, lgra blac, lyel blac, gray lgra, lbro gray blac, gray, lbro blac, gray gray blac, gray blac, lbro blac, gray, whit blac, gray lgra blac, brow blac, brow blac, whit, lyel blac, whit, lgre Fracture filling chlo, grap chlo, grap chlo, grap chlo, illi chlo, sulf, clay, sulf chlo, clay chlo, grap, clay chlo chlo chlo, illi clay, grap grap chlo, chlo, sulf, chlo, illi chlo,, sulf chlo, clay, sulf chlo, clay chlo, grap, sulf chlo, grap, kaol chlo chlo chlo, kaol, illi chlo, kaol, illi Thickness of filled fracture, mm Fracture shape Fracture hness Remarks splitted both ends slicken sided, core loss 0.50 m, mainly grain filling weared away foliation foliation foliation, strong foliation, strong, undulating foliation foliation foliation splitted r 0 (j..., 2" (D CZl 0 r (j..) > "1:j "1:j (D ::s 0..?0... VI -..j:::o. w

147 I I i I I I i Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m C) (0) (0) fi fi fi fi fi fisl fisl fi fi fi fi fisl fisl fisl fisl fi fi fisl fi fisl fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi L fi L Colour of fracture surface gray, whit blac, lgra, lbro lgra lgra, whit blac, whit dgra, gray blac, lgra, lyel whit, blac whit whit whit, lyel, lgra blac, gray, lbro blac, gray, lbro blac, gray, lbro blac, whit, lbro dgra whit blac, whit, lyel blac, gray blac, lgre, lgra lgra whit, lbro lgra whit whit whit whit whit dgra, gray dgra, lgra lgre, whit dgre, blac, gray dgra dgra, lgra whit whit Fracture filling kaol chlo, sulf, kaol chlo grap chlo, illi kaol, chlo kaol kaol kaol, illi, chlo,, sulf chlo chlo chlo, kaol, sulf chlo kaol chlo, kaol, illi chlo, chlo,, illi kaol, kaol kaol kaol kaol kaol grap, illi, kaol chlo, grap, chlo chlo, kaol kaol Thickness of filled fracture, mm Fracture shape 1rre Fracture hness Remarks splitted splitted foliation, splitted, splitted t""' - 0 >-+) p.; (j 2 (il!!' 0 t""' w > 'i:::$ 'i:::$ ('J ::s 0..?0... V. -

148 I I Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction e) m m (0) (0) (0) ti ti fi fisl fi fisl fisl fi fi fisl fi fisl ti fi fi fisl fi fi fi fi fi fi fi fi fi fisl fi fi fi fi fi fi fi fi fi fi 25 Colour of fracture surface blac blac, lgra dgra, whit blac, whit blac, lgra blac, gray blac, gray blac, whit blac, lgra blac, lgra whit, lyel, lbro lyel blac, lgre lgra whit lgra, lyel whit, lbro whit gray, whit blac, whit lgra dgra dgra, gray lbro, whit, blac dgra, gray lbro, gray, gree dgra gray lgra lgra, lbro gray gray lbro, blac Fracture filling chlo chlo ch1o, kaol chlo, kaol chlo, chlo chlo, chlo, kaol chlo chlo kaol, illi, sulf chlo, illi kaol, illi kaol, sulf kaol kaol chlo, kaol grap grap seri, kaol muse seri, clay, sulf Thickness Fracture Fracture of filled shape hness fracture, mm Remarks foliation foliation foliation foliation foliation foliation partly undulating, partly -- c 0 =t> (") z..., (1) en 0 t'""' (.;.) > 'e 'e (1) ::I 0. ><"?0 -Vl - Vl

149 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0) fi fi fisl ti fi fi fi fi fi ti fi ti fi fi fi ti fi fi fi fi ti fi fi fi fi fi fi fi ti fi fi fi fi fi fi fi Colour of fracture surface gray, lgra lgra, lbro blac, gray lgra, blac, lgre whit gray gray, lyel gray gray, lbro gray, blac lgra, whit lgra lbro, whit lgra, lbro lgra lgra lgra lgra dgra lgra gray, lbro blac, gray, lbro lgra, lbro lgra lbro lbro lgra, gray lbro lbro gray, blac Fracture filling, sulf grap chlo, illi kaol clay, illi, sulf, kaol sulf sulf.kaol chlo chlo, sulf kaol, sulf sulf muse seri seri Thickness Fracture of filled shape fracture, mm Fracture hness Remarks mainly foliation r 0..., n 2 '"'I 0 _;n 0 r VJ > "1::1 "1::1 0 ::s 0.. ;>< -Vl -..j:::.. 0\

150 Fracture Start End Type Alfa Beta Dip Dip number depth depth angle angle direction (0) m m (0) (0) (0} fi fi fi fi fisl fi fi fisl clfi clfi ti fi fi fi fi fi fi ti fisl fisl fi fi ti fisl fi fisl fisl fi ti ti fi fisl fisl fi fisl fisl Colour of Fracture Thickness fracture filling of filled surface fracture, mm lgra, blac lgra, blac lgra, blac, sulf blac, lgra blac, lgra, lbro chlo, sulf gray blac, gray chlo blac, gray chlo gray, blac gray, blac whit whit whit whit whit whit blac blac whit, blac gray, blac chlo chlo, sulf blac, lgra, bgre chlo, blac, lgra, bgre blac, gray chlo gray, blac whit, dgre 1 lgre, whit dgre blac, ggre blac, gree, gray whit, gree dgra blac, d_gre chlo chlo chlo chlo Fracture shape Fracture hness Remarks, strong, strong, strong, strong, strong, strong also clfi r 0..., ::p (') Cil 0 r w > "C) "C) G ::s 0.. ;;<?0... Vl....+;: l

151 Fracture Start End Type Alfa Beta Dip number depth depth angle angle direction m m (0) (0) (0) fi fisl grfi clfi fi fi fi fi fi fi fi fi fisl fi fi fisl fi fi fi fisl fisl ti fisl fisl fi fisl fisl fi fi fi fi fi ti ti Dip Colour of Fracture (0) fracture filling surface 84 whit, blac 89 blac, gray chlo blac gray 66 gree, blac chlo 20 blac, lgre 37 blac, gray, lbro, sulf 46 lgra sulf 39 lgra sulf lgra black 86 black chlo 65 black, gray chlo, karb 86 black chlo 40 blac, gray chlo, blac, ggre chlo 44 blac, gree, lbro chlo,, sulf 88 lgra blac blac grap blac grap blac grap blac, dgra grap, gree 81 blac, ggre chlo, grap 83 blac, gray chlo, whit, blac 86 blac, gray 89 blac, gray, lbro, sulf 74 blac, gray chlo, 38 blac, gray, chlo 88 Thickness Fracture of filled shape fracture, mm 1rre 3 2 1rre 0.5 Fracture hness Remarks also grfi not picked up not picked up partly splitted splitted r - 0 H) ::p!") (J 2..., (1) Y' 0 r (.;.) > "1:j "1:j (1) ::s 0..?0... VI -..j:::.. 00

152 I Fracture Start End Type Alfa Beta Dip Dip number depth depth (0) (0) direction (0) m m (0) op ti ti clfi fi fi ti grfi ti fi fi clfi fi fi fi grfi fi fi fi fi fi fi fi fi fi fi fi fi fi fi fi ti ti clfi fi Colour of Fracture Thickness fracture filling of filled surface fracture, mm brow rust, kaol gray, bgre 1.5 lgra dgra lbro, blac 1.5 gray lgra, lgre gray, whit, gree 30 whit kaol whit kaol whit kaol whit kaol 7 whit kaol 1 whit kaol whit kaol whit kaol whit kaol whit kaol whit kaol whit, lgra kaol whit kaol lgra kaol whit kaol whit kaol lgra kaol gray, dbro gray gray, brow brow, gray, whit karb, rust 1.5 Fracture shape Fracture hness roig Remarks splitted slightly kaol slightly kaol filling parly like silt, compressed splitted thickness estimated, measured core loss in this run is about 3 cm not picked up rock pieces and kaol, not picked up not picked up, kaol stripe, kaol stripe, kaol stripe r 0..., ::p (') Vl 0 r (.;.l tc > 't) 't) (I) 1:::1 0.?0 -VI -..j:::.. \0

153 Fracture Start End Type Alfa Beta Dip Dip number depth depth e) (0) direction (0) m m (0) ti ti fi fi ti fi ti fi fi fi fi fi ti ti fi fi fi fi fi ti fi fi ti ti fi fi fi fi fisl grfi 30 Colour of Fracture Thickness fracture filling of filled surface fracture, mm lgra, whit lgra, whit 2 whit gray, whit, gree, sulf 1 whit 1 whit lgra, whit 0.5 whit, lbro, sulf whit, gray, kaol 2 whit, gray kaol whit kaol whit kaol whit kaol whit whit, lbro gray kaol, sulf gray, whit, gree 4 gray dgre, gray chlo gray Fracture shape 1rre 1rre Fracture hness Remarks slightly pyrite slightly pyrite slightly pyrite slightly pyrite slightly kaol splitted r fa. 0..., (") 8 (il Y' 0 r w t:d... VI 0 > '"l::j "0 (1) ::s 0.. -?0 -VI

154 151 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m %

155 152 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures N atura1 fractures RQD Remarks m m pc/m pc/m % core loss 0.5 m

156 153 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m %

157 154 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures N atura1 fractures RQD Remarks m m pc/m pc/m %

158 155 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m %

159 156 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures N atura1 fractures RQD Remarks m m pc/m pc/m %

160 157 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m %

161 158 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m o/o

162 159 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures N atura1 fractures RQD Remarks m m pc/m pc/m %

163 160 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures N atura1 fractures RQD Remarks m m pc/m pc/m o/o

164 161 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m % core loss between depth interval

165 162 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m %

166 163 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures N atura1 fractures RQD Remarks m m pc/m pc/m % one wide grain filled fracture

167 164 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m %

168 165 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m %

169 166 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures N atura1 fractures RQD Remarks m m pc/m pc/m %

170 167 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m Q_c/m pc/m %

171 168 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures N atura1 fractures RQD Remarks m m pc/m pc/m %

172 169 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m %

173 170 Fracture frequency and RQD, OL-KR43 Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m %

174 171 Fracture frequency and RQD, OL-KR43B Appendix 8.16 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m % core loss, values inecaxt core loss, values inecaxt

175 172

176 173 Fractured zones, core loss, OL-KR43 Appendix 8.17 Start End Class of the Core loss Remarks m m fractured zone m RiiV Clay filled fractures, strongly weathered rock Rill I 13 fractures ( 4 fractures) Rill I 12 fractures Rilll 37 fractures ( 6 fractures) Rill! 14 fractures Rilll 5 fractures RiiV Clay filled fractures, strongly weathered rock RiiV Some thin clay fillings Rilll 11 fractures, thin clay fillings Rill! 9 fractures RiiV Two thicker clay fillings in the beginning of the section Rilll Illite is common on fracture surfaces RiiV Grain filled and slicken sided fractures Rilll 6 fractures Rilll 11 fractures ( 6 slicken sided fractures), section starts with grain filled fracture RiiV Rock brecciated, grain filled and slicken sided fractures RiiV Breccia fillings on both ends of the section, slicken sided fractures common Rill I Narrow densely fractured zone, 10 fractures RiiV Some thin grain filled fractures occur. Slicken sided fractures are common. There is weak to moderate brecciation thh the section Rill! Slicken sided fractures common Core drilled twice RiiV Weak brecciation thh the section Rilll Weak brecciation occasionally Ends of the core pieces weared during drilling RiiV One 0,15 m thick grain filled fracture, weak brecciation in solid rock. Because of core loss the end depth of the section is only estimated Rill! Core loss, features of section cannot be determined properly Rill! 12 fractures, some slicken sided fractures Rilll 15 fractures, several slicken sided fractures Rill! 36 fractures, some slicken sided fractures also Rill I 11 fractures ( 5 fractures) Core rotated and weared during drilling Rill! 21 fractures, several slicken sided fractures RiiV Beginning of the section strongly brecciated, slicken sided fractures and clay fillings occur Fratured zone, loose core weared when drilled Rill I 54 fractures, slicken sided fractures common RiV One 0,57 m thick grain filled fracture, almost weared away during drilling (core loss 0,50 m) Rilll Near bottom contact one thin grain and one thin clay filled frature.

177 174 Fractured zones, core loss, OL-KR43B Appendix Start End Class ofthe Core loss Remarks m m fractured zone m Rock surface estimated to be m depth of 1.95 m. After that there was some open spaces or very soft material, drill dropped down few times. No fracture surfaces can be seen. Casing drilling to the depth of 5.40 m Rill I One third of fractures and like kaoline stripes Part of clay fillings flushed away.

178 175 Core orientation, OL-KR43 Appendix 8.18 Point Depth of Orientation Remarks! orientation mark Start End Length m m m m no mark mark rejected, unreliable mark rejected, unreliable mark rejected, unreliable no mark mark rejected, unreliable mark rejected, unreliable mark rejected, unreliable

179 176 Core orientation, OL-KR43 Appendix 8.18 Point Depth of Orientation Remarks! orientation mark Start End Length m m m m mark rejected, unreliable no mark

180 177 Core orientation, OL-KR43 Appendix 8.18 Point Depth of Orientation Remarks! orientation mark Start End Length m m m m no mark mark rejected, unreliable mark rejected, unreliable mark rejected, unreliable mark rejected, unreliable mark rejected, unreliable mark rejected, unreliable mark rejected, unreliable

181 178 Core orientation, OL-KR43 Appendix 8.18 Point Depth of Orientation Remarks! orientation mark Start End Length m m m m no mark no mark

182 179 Core orientation, OL-KR43B Appendix 8.18 Point Depth of Orientation Remarks! orientation mark Start End Length m m m m mark rejected, unreliable

183 180

184 Start End Rock (( (I I( )) )I I) 11 m m type pes pes pes pes pes pes pes PGR )( s A Width mm pes pes pes min max Remarks Imbossib1e to calculate exactly amount of marks of incomplete discing. n 0 a 0.. (j ::r <JCl 0 I w G" "'T::::S (I) ::::s \0

185 182

186 183 Rock mechanical tests, point load test, OL-KR43 and OL-KR43B Appendix 8.20 Borehole z Is so <Jc 1 Foliation Degree of Description Rock Time from depth (m) angle 2 ( 0 ) foliation 3 of foliation 4 type 5 drilling 6 (m) MP a MP a a IRR TGG IRR TGG BAN2 TGG BAN2 TGG GNE1 TGG GNE1 TGG BAN2 VGN BAN2 PGR GNE2 VGN GNE2 VGN BAN2 VGN BAN2 VGN BAN2 VGN BAN2 VGN BAN2 VGN BAN2 VGN MAS DGN BAN1 DGN BAN2 VGN BAN2 VGN GNE2 VGN GNE2 VGN MAS VGN IRR VGN MAS VGN IRR VGN BAN2 VGN MAS VGN IRR VGN BAN2 VGN BAN2 VGN BAN2 VGN BAN2 VGN IRR VGN MAS PGR MAS PGR MAS PGR MAS PGR BAN2 VGN GNE2 VGN GNE2 VGN BAN2 VGN GNE2 DGN MAS DGN MAS DGN IRR DGN BAN2 VGN BAN2 VGN IRR DGN MAS DGN MAS VGN BAN2 VGN MAS PGR MAS PGR 26

187 184 Rock mechanical tests, point load test, OL-KR43 and OL-KR43B Appendix 8.20 Borehole z Is so <Jc 1 Foliation Degree of Description Rock ' depth (m) angle 2 ( 0 ) foliation 3 of foliation 4 type 5 (m) MP a MP a a p BAN2 VGN BAN2 VGN IRR DGN IRR DGN BAN2 VGN BAN2 VGN IRR VGN BAN2 VGN MAS TGG GNE1 TGG BAN2 VGN MAS VGN BAN2 VGN BAN2 VGN average Time from drilling ALL Notes for Table 1 1 Use coefficient factor of 20 2 Definition of a and p angles and measured in the tested, point-loaded sample 3 Foliation intensity in the tested, point-loaded sample. O=no foliation, I =weak, 2=medium, 3 =strong (based on the Finnish engineering geological rock classification) 4 Additional description of foliation in the tested, point-loaded sample like regular thh the sample, gular, two different foliations, etc. 5 Definition of rock type in the tested, point-loaded sample 6 Time in days between the core drilling and the point load test Z (m) calculated using borehole dip 70.0

188 185 Rock mechanical tests, bend test, OL-KR43 and OL-KR43B Appendix 8.20 Sample ID, E V Smax Rock average type depth, m GP a MP a TGG TGG TGG VGN VGN VGN VGN VGN DGN VGN VGN VGN VGN VGN VGN VGN VGN PGR PGR VGN VGN DGN DGN VGN DGN VGN PGR VGN DGN VGN VGN TGG VGN VGN average ALL

189 186

190 187 I -. I...,.,....,

191 = _,...,.,.,._ ' -= ' -" J :_ _ r,.....t,- _....,.,ft...,.:...;.:_,,.'\..,-- _.., :::: , ;a1-.a,... - "'nt "" ' , I

192 191. t (. '.;. :.-,.... ' ',,.. f I '

193 192 --:ill (t, \,...,, 1.. 1/Jit"S,/; :, \ I '.- '" n 'l> I - I _ -- - _.. Li if. ""I - :, , '..., \ = <:.: _.. -,..

194 193 ' l , "' l" 1... P.. r - J 1> J ' " l....if.. ' )' J... -' ' - t!i'' I \... '. "' r 'l -- I f5lt ,... -.:,.. - '!Jl!l. ;;,

195 194

196 195 I ij/11 -.All" -..- ;n -=- : -,... ' "*" - 'J :t;7 p " _I...,.,_. '\., ;,_ I - J :-- c 1 I'... ;j '-::;. \ Jll. - "'.. - :4

197 196 f '\ L,.. t.,,. I

198 197 _-= ). tl ' l """-- -- > '. -..-Jf -- I \ I...,., ; '.,,. f-<t''" ' f.., -

199 198 "ifj:.;,,. '., 4,..: '! J" -".H;.,, rn ' -"':'-:=-t _._... ;;..;;: ::_- - _ -. - ::.:. " -....t-.. \o,,...-:oo ' - ---,..._:::_:_

200 - -.. """"_, , ,,.....t.....,... "\,.\ { t ' I r,r' \1?'.a, a.s ,.;: t ::t J. - " ,_.. - 0: t,.,: _,, '. - I

201 200..-;r , ' ' i _._ ,...,.,. "....,. t ""' '

202 201 v.' ") ;\';'.... 0:, \,,. ',(, ';/'!_ I ' ' ' \ " f -.,- L Jn st.tu}l if.,.?.!

203 202 '!/!.'..'.. t...$, ;:-, J! t -"', !lil. ', >.. _ l , !.....:... - i '. \ ',,._ - -c.t,.-.. ' I' '.... 'I f., -- f' :::: -;, '......,... ;;. \... j - - -

204 203 ::' ,., ' \ '"-....,. ( t t -,..- otoot :....:.n _.4-o:tr... l -... Jl'l'... '\ , _..,-- *

205 """' ---> ,.. rl Ji :i;. l 1.. I :! e t ) ' -.. ' ,--

206 205 -,..._ ;.r).., - ;.\. ', : , ;;;- -.;.-: '. -..;, on:f'. r --.;., ' _ -,:. _

207 ... "EO " 206 ' ';1 I -;._ : - -. I

208 207..., :f' '-t: ( '.. ::.;...,., \., J t ' -,. ' -. # '.

209 ,..,..,_:..;:;:, ;.. :J '. -...?:Y:"" ",.:-7...,.,.,...- :;:v. - f;'(.,...:..f;r,,. --..,... :: - n ; ; :, l.:'"r._..,.:., t - _..=.,.---"-= --

210 209

211 ,. - aj. '.- '. ' " _. f -; _. ;.;. u.:,; f _..,-T:...- '. I t f _ - -.mji ' _.... i -, !-, :.'.: I.., - -- ' <f- :,t

212 =;--; f- -. _. -_ ""'!: ' ,_ -- -., ;1;/#...,I '

213 : -:c-: '- ;-;,-'"', _, '... : -----:> I 1 f I

214 213

215 214

216 215

217 216, :;... :-.,._ :,.,.,.._ ' _, _. '. l I I ' aflila.l( I -.,,_ I- -.,.!.!,.. ".. 'fi.. i ' "..,. l' '.. - '\. '\ :.. '.J '

218 217. ',..,,...,..

219 218 " = "...,;:,.' ;.\.""' -:;..,,.;_ -:",. - ; , = _, ) r , if "; \ :., ' ' :f ' ' ' :.. ' '.#

220 219, ,.. l. ':'. '0 'S'ft(,' ' A : V.. ' #, > AY,.f "\t,... -)to j

221 220 I.. " ' J1 ' ". ; '". V#ll/1! "... ( J..--,."f!" r. -

222 221 -, 'l< _,._.,._ = =:L ' i" ---, ----:: =-, <f"t "CP'.... I...: -- "'

223 222

224 223 ' < ;...,.. f!.t.... t _-,_ '-= :...-

225 ,..a'.'a.z1.!. A r,. --- r - '\;' aj ' -.:1&;. - -Jiill\ ,.,.""-"'i?', - - ; "T _... a. -.. ' ' ""-..,..., _,:\ 1 - -"":r.lr...!

226 ;;;-...,r.;:;_....,_:-. 'l ', '\ ' f'... ) -.;.;.:st, : - if.wy - --, ,.,..... I ,.. _,.. _... _ J

227 226

228 227

229 228

230 229

231 230 "... r ,,.,....;..... /... At,... "'"'"{ "" -,.. """'"'\l - 'Y; : _. flif:!if.a.# ,-r:: :-.. --=-;o.- I

232 :,... ",... I, ----= ; :,.... l

233 f... ',,.. :. " ' ' I ,_.! I : -a - - -, : ":' ill ---'.. : V. -.. t.,., l,#..., \ :- - - ;;;- -; I. : ,..., r!lf.!l l l J.-.._..., _..._ :.....!'. ". : : :11! "' -, ,._..., :. --

234 _..._ ;, :_ :; - 1 " '- ----: :-: Qt. -"'" tl ".. :,.. ;_ " ,.,._... '*: ' ;_ _ ;., 'I ; J - - '

235 234..., "' I,.... I ; I q;., : ' ::..,. f!i :s,:.

236 235.' _ - - "- - --,.... b - -_ L '.., 4J " '.... ' '-:. f.. - "' _..,.._-.'I:_ 2S':c= ,., ---- \... ':..-.. '. ' '\.;1!1- -=-=- -

237 t.. i".\. " '.t' '.

238 237

239 238 ' , , ' '""' " '-'t , :;:

240 239.., '*' '. _... ' " \ - - -:.: _,...,._.. I! y ';..- I, - -:;...-._" ' '!'if!&. r.:,_;.- «I t --.

241 :_ : ' -

242 241 Qb t 1\ tt ' J (... '"' - I.. ' - "".J l Jr - I -.. ""!""' 7..._-.. -.,st..._.:\ M. _.., <". - - ' -

243 242

244 243 lll.50 m OL-KR u cm m OL-KR

245 244 m OL-KR cm \ m OL-KR

246 245 20cm N Gl.OO m OL-KR IU blf l. 8Q m OL-KR

247 cm m OL-KR m OL-KR

248 247

249 '.. ; )o :, '. '!!' } th :.1 tdt H -. - ' ={. :.. I.., - t (;,. I.., I ' \!' = :!:!_ _-: I _ ' _ _ ' -.. ":' 1-(., :. 'i ;, - - '' -.. J ' :, Si :: ' \ -- ('. 4. i.. --">...,

Core Drilling of Oeep Bomhole Ol-KR37 at Olkiluoto in furajoki 2005

Core Drilling of Oeep Bomhole Ol-KR37 at Olkiluoto in furajoki 2005 Working Report 2005-62 Core Drilling of Oeep Bomhole Ol-KR37 at Olkiluoto in furajoki 2005 Risto Niinimaki November 2005 POSVA OY Fl-27160 OLKLUOTO, FNLAND Tel. +358-2-8372 31 Fax +358-2-8372 3709 TEKJA

Lisätiedot

Core drilling of deep borehole OL -KR 15 at Olkiluoto in Eurajoki 2001

Core drilling of deep borehole OL -KR 15 at Olkiluoto in Eurajoki 2001 Working Report 22-1 Core drilling of deep borehole OL -KR 15 at Olkiluoto in Eurajoki 21 Risto Niinimaki Tauno Rautio January 22 POSIVA OY T6616nkatu 4, FIN-1 HELSINKI, FINLAND Tel. +358-9-228 3 Fax +358-9-228

Lisätiedot

LYTH-CONS CONSISTENCY TRANSMITTER

LYTH-CONS CONSISTENCY TRANSMITTER LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are

Lisätiedot

Efficiency change over time

Efficiency change over time Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel

Lisätiedot

Capacity Utilization

Capacity Utilization Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run

Lisätiedot

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The

Lisätiedot

Core Drilling of Shallow Drillholes OL-PP72...OL-PP89 at Olkiluoto, Eurajoki 2011

Core Drilling of Shallow Drillholes OL-PP72...OL-PP89 at Olkiluoto, Eurajoki 2011 Working Report 2012-20 Core Drilling of Shallow Drillholes OL-PP72...OL-PP89 at Olkiluoto, Eurajoki 2011 Vesa Toropainen May 2012 POSIVA OY FI-27160 OLKILUOTO, FINLAND Tel +358-2-8372 31 Fax +358-2-8372

Lisätiedot

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its

Lisätiedot

ONKALO Pose Experiment Core Drilling of Drillholes ONK-PP , ONK-PP and ONK-PP in ONKALO at Olkiluoto

ONKALO Pose Experiment Core Drilling of Drillholes ONK-PP , ONK-PP and ONK-PP in ONKALO at Olkiluoto Working Report 2010-86 ONKALO Pose Experiment Core Drilling of Drillholes ONK-PP223...226, ONK-PP253...261 and ONK-PP268...272 in ONKALO at Olkiluoto 2009 2010 Vesa Toropainen December 2010 POSIVA OY Olkiluoto

Lisätiedot

TEST REPORT Nro VTT-S Air tightness and strength tests for Furanflex exhaust air ducts

TEST REPORT Nro VTT-S Air tightness and strength tests for Furanflex exhaust air ducts TEST REPORT Nro VTT-S-04515-08 19.5.008 Air tightness and strength tests for Furanflex exhaust air ducts Requested by: Hormex Oy TEST REPORT NRO VTT-S-04515-08 1 () Requested by Order Hormex Oy Linnanherrankuja

Lisätiedot

Other approaches to restrict multipliers

Other approaches to restrict multipliers Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of

Lisätiedot

Information on preparing Presentation

Information on preparing Presentation Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals

Lisätiedot

The CCR Model and Production Correspondence

The CCR Model and Production Correspondence The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls

Lisätiedot

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Ville Liljeström, Micha Matusewicz, Kari Pirkkalainen, Jussi-Petteri Suuronen and Ritva Serimaa 13.3.2012

Lisätiedot

16. Allocation Models

16. Allocation Models 16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue

Lisätiedot

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi

Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi

Lisätiedot

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 13.6.2013 19:42 / 1 Minimum

Lisätiedot

Drilling and the Associated Drillhole Measurements of the Pilot Hole ONK-PH6

Drilling and the Associated Drillhole Measurements of the Pilot Hole ONK-PH6 Working Report 2007-68 Drilling and the Associated Drillhole Measurements of the Pilot Hole ONK-PH6 Antti Öhberg, ed. Hannele Hirvonen Kimmo Kemppainen Juha Niemonen Nicklas Nordbäck Jari Pöllänen Tauno

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be

Lisätiedot

Metsälamminkankaan tuulivoimapuiston osayleiskaava

Metsälamminkankaan tuulivoimapuiston osayleiskaava VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations

Lisätiedot

Flow Measurements in ONKALO at Olkiluoto

Flow Measurements in ONKALO at Olkiluoto Working Report 2006-65 Flow Measurements in ONKALO at Olkiluoto Probe Holes and ONK-KR1 ONK-KR4, ONK-PVA1 and ONK-YPPL18 Markus Reiman Jari Pöllänen Juha Väisäsvaara September 2006 POSIVA OY FI-27160 OLKILUOTO,

Lisätiedot

7.4 Variability management

7.4 Variability management 7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.9.269

Lisätiedot

anna minun kertoa let me tell you

anna minun kertoa let me tell you anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta

Lisätiedot

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145 OX2 9 x N131 x HH145 Rakennuskanta Asuinrakennus Lomarakennus Liike- tai julkinen rakennus Teollinen rakennus Kirkko tai kirkollinen rak. Muu rakennus Allas Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 2 km

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

,0 Yes ,0 120, ,8

,0 Yes ,0 120, ,8 SHADOW - Main Result Calculation: Alue 2 ( x 9 x HH120) TuuliSaimaa kaavaluonnos Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered

Lisätiedot

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a , Tuulivoimahanke Layout 9 x N131 x HH145 Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 km 2 SHADOW - Main Result Assumptions for shadow calculations

Lisätiedot

Exercise 1. (session: )

Exercise 1. (session: ) EEN-E3001, FUNDAMENTALS IN INDUSTRIAL ENERGY ENGINEERING Exercise 1 (session: 24.1.2017) Problem 3 will be graded. The deadline for the return is on 31.1. at 12:00 am (before the exercise session). You

Lisätiedot

( ,5 1 1,5 2 km

( ,5 1 1,5 2 km Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 4 5 3 1 2 6 7 8 9 10 0 0,5 1 1,5 2 km

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG VE1 SHADOW - Main Result Calculation: 8 x Nordex N131 x HH145m Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet LX 70 % Läpäisy 36 32 % Absorptio 30 40 % Heijastus 34 28 % Läpäisy 72 65 % Heijastus ulkopuoli 9 16 % Heijastus sisäpuoli 9 13 Emissiivisyys.77.77 Auringonsuojakerroin.54.58 Auringonsäteilyn lämmönsiirtokerroin.47.50

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Calculation: N117 x 9 x HH141 Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Drilling and the Associated Drillhole Measurements of the Pilot Hole ONK-PH4

Drilling and the Associated Drillhole Measurements of the Pilot Hole ONK-PH4 Working Report 2006-71 Drilling and the Associated Drillhole Measurements of the Pilot Hole ONK-PH4 Antti Öhberg Eero Heikkinen Hannele Hirvonen Kimmo Kemppainen Johan Majapuro Juha Niemonen Jari Pöllänen

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 5.11.2013 16:44 / 1 Minimum

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Results on the new polydrug use questions in the Finnish TDI data

Results on the new polydrug use questions in the Finnish TDI data Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen

Lisätiedot

Särmäystyökalut kuvasto Press brake tools catalogue

Särmäystyökalut kuvasto Press brake tools catalogue Finnish sheet metal machinery know-how since 1978 Särmäystyökalut kuvasto Press brake tools catalogue www.aliko.fi ALIKO bending chart Required capacity in kn (T) in relation to V-opening. V R A S = plates

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 22.12.2014 11:33 / 1 Minimum

Lisätiedot

Choose Finland-Helsinki Valitse Finland-Helsinki

Choose Finland-Helsinki Valitse Finland-Helsinki Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun

Lisätiedot

The Viking Battle - Part Version: Finnish

The Viking Battle - Part Version: Finnish The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman

Lisätiedot

Pohjavesiputkien PVPl 9 ja PVP20 asentaminen furajoen Olkiluodossa kesällä 2004

Pohjavesiputkien PVPl 9 ja PVP20 asentaminen furajoen Olkiluodossa kesällä 2004 Työraportti 2004-48 Pohjavesiputkien PVPl 9 ja PVP20 asentaminen furajoen Olkiluodossa kesällä 2004 Tauno Rautio Marraskuu 2004 POSIVA OY FIN-2760 OLKILUOTO, FINLAND Tel +358-2-8372 3 Fax +358-2-8372 3709

Lisätiedot

LUONNOS RT 80260 EN AGREEMENT ON BUILDING WORKS 1 THE PARTIES. May 1998 1 (10)

LUONNOS RT 80260 EN AGREEMENT ON BUILDING WORKS 1 THE PARTIES. May 1998 1 (10) RT 80260 EN May 1998 1 (10) AGREEMENT ON BUILDING WORKS This agreement template is based on the General Terms and Conditions of Building Contracts YSE 1998 RT 16-10660, LVI 03-10277, Ratu 417-7, KH X4-00241.

Lisätiedot

Kalliopinnan varmistukset seismisillä linjoilla ja suunnitellun kuilun alueella syksyllä 2002

Kalliopinnan varmistukset seismisillä linjoilla ja suunnitellun kuilun alueella syksyllä 2002 Työraportti 2002-51 Kalliopinnan varmistukset seismisillä linjoilla ja suunnitellun kuilun alueella syksyllä 2002 Mari Lahti Lokakuu 2002 POSIVA OY FIN-27160 OLKILUOTO, FINLAND Tel. +358-2-8372 31 Fax

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5.

ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel. Kalle Lehto, Aalto-yliopisto 5.5. ReFuel 70 % Emission Reduction Using Renewable High Cetane Number Paraffinic Diesel Fuel Kalle Lehto, Aalto-yliopisto 5.5.2011 Otaniemi ReFuel a three year research project (2009-2011) goal utilize the

Lisätiedot

Curriculum. Gym card

Curriculum. Gym card A new school year Curriculum Fast Track Final Grading Gym card TET A new school year Work Ethic Detention Own work Organisation and independence Wilma TMU Support Services Well-Being CURRICULUM FAST TRACK

Lisätiedot

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...

Lisätiedot

Rakennukset Varjostus "real case" h/a 0,5 1,5

Rakennukset Varjostus real case h/a 0,5 1,5 Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 1 2 3 5 8 4 6 7 9 10 0 0,5 1 1,5 2 km

Lisätiedot

MUSEOT KULTTUURIPALVELUINA

MUSEOT KULTTUURIPALVELUINA Elina Arola MUSEOT KULTTUURIPALVELUINA Tutkimuskohteena Mikkelin museot Opinnäytetyö Kulttuuripalvelujen koulutusohjelma Marraskuu 2005 KUVAILULEHTI Opinnäytetyön päivämäärä 25.11.2005 Tekijä(t) Elina

Lisätiedot

Bounds on non-surjective cellular automata

Bounds on non-surjective cellular automata Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective

Lisätiedot

Gap-filling methods for CH 4 data

Gap-filling methods for CH 4 data Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling

Lisätiedot

Alternative DEA Models

Alternative DEA Models Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex

Lisätiedot

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2004

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2004 Working Report 2005-76 Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2004 Eveliina Tammisto Pirjo Hellä Jere Lahdenperä December 2005 POSIVA OY FI-27160 OLKILUOTO, FINLAND Tel +358-2-8372 31 Fax +358-2-8372

Lisätiedot

Hydraulically Conductive fractures and Their Properties in Boreholes KR4 and KR7-KR10 at Olkiluoto Site

Hydraulically Conductive fractures and Their Properties in Boreholes KR4 and KR7-KR10 at Olkiluoto Site . Working Report 2004-21 Hydraulically Conductive fractures and Their Properties in Boreholes KR4 and KR7-KR10 at Olkiluoto Site.. Pirjo Hella Eveliina Tammisto Henry Ahokas May 2004 POSVA OY FN-27160

Lisätiedot

Data quality points. ICAR, Berlin,

Data quality points. ICAR, Berlin, Data quality points an immediate and motivating supervision tool ICAR, Berlin, 22.5.2014 Association of ProAgria Centres Development project of Milk Recording Project manager, Heli Wahlroos heli.wahlroos@proagria.fi

Lisätiedot

PAINEILMALETKUKELA-AUTOMAATTI AUTOMATIC AIR HOSE REEL

PAINEILMALETKUKELA-AUTOMAATTI AUTOMATIC AIR HOSE REEL MAV4 MAV5 MAV6 PAINEILMALETKUKELA-AUTOMAATTI AUTOMATIC AIR HOSE REEL Käyttöohje Instruction manual HUOMIO! Lue käyttöohjeet huolellisesti ennen laitteen käyttöä ja noudata kaikkia annettuja ohjeita. Säilytä

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2006

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2006 Working Report 2007-93 Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2006 Katriina Keskitalo Susanna Lindgren November 2007 POSIVA OY FI-27160 OLKILUOTO, FINLAND Tel +358-2-8372 31 Fax +358-2-8372 3709

Lisätiedot

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ https://community.plm.automation.siemens.com/t5/tech-tips- Knowledge-Base-NX/How-to-simulate-any-G-code-file-in-NX- CAM/ta-p/3340 Koneistusympäristön määrittely

Lisätiedot

C++11 seminaari, kevät Johannes Koskinen

C++11 seminaari, kevät Johannes Koskinen C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,

Lisätiedot

Salasanan vaihto uuteen / How to change password

Salasanan vaihto uuteen / How to change password Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

Use of spatial data in the new production environment and in a data warehouse

Use of spatial data in the new production environment and in a data warehouse Use of spatial data in the new production environment and in a data warehouse Nordic Forum for Geostatistics 2007 Session 3, GI infrastructure and use of spatial database Statistics Finland, Population

Lisätiedot

Pricing policy: The Finnish experience

Pricing policy: The Finnish experience Pricing policy: The Finnish experience Esa Österberg Senior Researcher Alcohol and Drug Research, STAKES, Helsinki, Finland esa.osterberg@stakes.fi Three pillars of traditional Nordic alcohol control Strict

Lisätiedot

Flow and Electrical Conductivity Measurements During Long-Term Pumping of Drillhole OL-KR6 at Olkiluoto, Results from June 2010 Measurements

Flow and Electrical Conductivity Measurements During Long-Term Pumping of Drillhole OL-KR6 at Olkiluoto, Results from June 2010 Measurements Working Report 2011-22 Flow and Electrical Conductivity Measurements During Long-Term Pumping of Drillhole OL-KR6 at Olkiluoto, Results from June 2010 Measurements Janne Pekkanen March 2011 POSIVA OY Olkiluoto

Lisätiedot

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2010

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2010 Working Report 2011-40 Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2010 Heikki Hinkkanen July 2011 POSIVA OY Olkiluoto FI-27160 EURAJOKI, FINLAND Tel +358-2-8372 31 Fax +358-2-8372 3809 Working Report

Lisätiedot

TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo

TIEKE Verkottaja Service Tools for electronic data interchange utilizers. Heikki Laaksamo TIEKE Verkottaja Service Tools for electronic data interchange utilizers Heikki Laaksamo TIEKE Finnish Information Society Development Centre (TIEKE Tietoyhteiskunnan kehittämiskeskus ry) TIEKE is a neutral,

Lisätiedot

Kvanttilaskenta - 1. tehtävät

Kvanttilaskenta - 1. tehtävät Kvanttilaskenta -. tehtävät Johannes Verwijnen January 9, 0 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem False, sillä 0 0. Problem False, sillä 0 0 0 0. Problem A quantum state

Lisätiedot

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen

Lisätiedot

Kairanreiän VB puhdistustyöt Loviisan Hästholmenilla

Kairanreiän VB puhdistustyöt Loviisan Hästholmenilla Työraportti 98-36 Kairanreiän VB puhdistustyöt Loviisan Hästholmenilla Tauno Rautio Toukokuu 1998 POSIVA OY Mikonkatu 15 A, FIN-00100 HELSINKI, FINLAND Tel. +358-9-2280 30 Fax +358-9-2280 3719 Työraportti

Lisätiedot

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets

S Sähkön jakelu ja markkinat S Electricity Distribution and Markets S-18.3153 Sähkön jakelu ja markkinat S-18.3154 Electricity Distribution and Markets Voltage Sag 1) Kolmivaiheinen vastukseton oikosulku tapahtuu 20 kv lähdöllä etäisyydellä 1 km, 3 km, 5 km, 8 km, 10 km

Lisätiedot

Secto Design Oy Kauppalantie 12 02700 Kauniainen Finland tel. +358 9 5050598 fax +358 9 5475 2535 info@sectodesign.fi www.sectodesign.

Secto Design Oy Kauppalantie 12 02700 Kauniainen Finland tel. +358 9 5050598 fax +358 9 5475 2535 info@sectodesign.fi www.sectodesign. Secto Design Oy Kauppalantie 12 02700 Kauniainen Finland tel. +358 9 5050598 fax +358 9 5475 2535 info@sectodesign.fi www.sectodesign.fi Secto 4200 pendant natural birch, black or white laminate, walnut

Lisätiedot

Tork Paperipyyhe. etu. tuotteen ominaisuudet. kuvaus. Väri: Valkoinen Malli: Vetopyyhe

Tork Paperipyyhe. etu. tuotteen ominaisuudet. kuvaus. Väri: Valkoinen Malli: Vetopyyhe etu Monikäyttöpaperi hoitaa useimmat pyyhintätehtävät Sopiva lasipintojen pyyhintään Sopii käsien kuivaamiseen Elintarvikekäyttöön hyväksytty Tork Easy Handling, pakkaus, jota on helppo kantaa mukana,

Lisätiedot

Siirtymä maisteriohjelmiin tekniikan korkeakoulujen välillä Transfer to MSc programmes between engineering schools

Siirtymä maisteriohjelmiin tekniikan korkeakoulujen välillä Transfer to MSc programmes between engineering schools Siirtymä maisteriohjelmiin tekniikan korkeakoulujen välillä Transfer to MSc programmes between engineering schools Akateemisten asioiden komitea Academic Affairs Committee 11 October 2016 Eija Zitting

Lisätiedot

Geological Mapping of Investigation Trench OL-TK7 at the Olkiluoto Study Site, Eurajoki, SW Finland

Geological Mapping of Investigation Trench OL-TK7 at the Olkiluoto Study Site, Eurajoki, SW Finland Working Report 2004-66 Geological Mapping of Investigation Trench OL-TK7 at the Olkiluoto Study Site, Eurajoki, SW Finland Seppo Paulamäki March 2005 POSIVA OY FI-27160 OLKILUOTO, FINLAND Tel +358-2-8372

Lisätiedot

SAGA 150. Asennusohjeet. Mittaa oven korkeus. Piirrä seinään oven kiinni -päätyyn seinäkannattimen kohdalle vaakaviiva korkeudelle ovi + 75mm + 20 mm.

SAGA 150. Asennusohjeet. Mittaa oven korkeus. Piirrä seinään oven kiinni -päätyyn seinäkannattimen kohdalle vaakaviiva korkeudelle ovi + 75mm + 20 mm. SAGA 150 Asennusohjeet 500 1 2 Mittaa oven korkeus. Piirrä seinään oven kiinni -päätyyn seinäkannattimen kohdalle vaakaviiva korkeudelle ovi + 75mm + 20 mm. 3 Piirrä vesivaa an avulla viiva myös kiskon

Lisätiedot

FIS IMATRAN KYLPYLÄHIIHDOT Team captains meeting

FIS IMATRAN KYLPYLÄHIIHDOT Team captains meeting FIS IMATRAN KYLPYLÄHIIHDOT 8.-9.12.2018 Team captains meeting 8.12.2018 Agenda 1 Opening of the meeting 2 Presence 3 Organizer s personell 4 Jury 5 Weather forecast 6 Composition of competitors startlists

Lisätiedot

1. Liikkuvat määreet

1. Liikkuvat määreet 1. Liikkuvat määreet Väitelauseen perussanajärjestys: SPOTPA (subj. + pred. + obj. + tapa + paikka + aika) Suora sanajärjestys = subjekti on ennen predikaattia tekijä tekeminen Alasääntö 1: Liikkuvat määreet

Lisätiedot

( N117 x HH141 ( Honkajoki N117 x 9 x HH120 tv-alueet ( ( ( ( ( ( ( ( ( ( m. Honkajoki & Kankaanpää tuulivoimahankkeet

( N117 x HH141 ( Honkajoki N117 x 9 x HH120 tv-alueet ( ( ( ( ( ( ( ( ( ( m. Honkajoki & Kankaanpää tuulivoimahankkeet Honkajoki & Kankaanpää tuulivoimahankkeet N117 x HH141 Honkajoki N117 x 9 x HH120 tv-alueet Alahonkajoki_kaava_alueen_raja_polyline Asuinrakennus Julkinen tai liiker rak. Lomarakennus Teollinen rak. Allas

Lisätiedot

I. Principles of Pointer Year Analysis

I. Principles of Pointer Year Analysis I. Principles of Pointer Year Analysis Fig 1. Maximum (red) and minimum (blue) pointer years. 1 Fig 2. Principle of pointer year calculation. Fig 3. Skeleton plot graph created by Kinsys/Kigraph programme.

Lisätiedot

Injektointi- ja kontrollireikien kairaus ja vesimenekkimittaus poisto- ja ilmanvaihtokuiluille Olkiluodossa vuosina Työraportti

Injektointi- ja kontrollireikien kairaus ja vesimenekkimittaus poisto- ja ilmanvaihtokuiluille Olkiluodossa vuosina Työraportti Työraportti 2008-08 Injektointi- ja kontrollireikien kairaus ja vesimenekkimittaus poisto- ja ilmanvaihtokuiluille Olkiluodossa vuosina 2006-2007 Tauno Rautio Helmikuu 2008 POSIVA OY Olkiluoto FI-27160

Lisätiedot

MIKES, Julkaisu J3/2000 MASS COMPARISON M3. Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories

MIKES, Julkaisu J3/2000 MASS COMPARISON M3. Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories MITTATEKNIIKAN KESKUS CENTRE FOR METROLOGY AND ACCREDITATION Julkaisu J3/2000 MASS COMPARISON M3 Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories Kari

Lisätiedot

Solar Water Heater Kit. EcoStyle. 1 User Manual/Operating Instructions. Contents FREE LESSON PLANS AVAILABLE.

Solar Water Heater Kit. EcoStyle. 1 User Manual/Operating Instructions. Contents FREE LESSON PLANS AVAILABLE. EcoStyle 1 User Manual/Operating Instructions Contents 1 Contents 2 What s in the box? 3 Setting up the 4 Heating water 5 Measuring water temperature with the digital thermometer 6 Maximum/minimum temperature

Lisätiedot

Reliable diagnostic support Ultra-light design

Reliable diagnostic support Ultra-light design EN Powerful illumination Intelligent charging management Reliable diagnostic support Ultra-light design VISIOMED Optima UV original scale 1:1 VISIOMED Optima Quality Made Easy and an illumination close

Lisätiedot

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4) Tilasto T1106120-s2012palaute Kyselyn T1106120+T1106120-s2012palaute yhteenveto: vastauksia (4) Kysymys 1 Degree programme: (4) TIK: TIK 1 25% ************** INF: INF 0 0% EST: EST 0 0% TLT: TLT 0 0% BIO:

Lisätiedot

Toimintamallit happamuuden ennakoimiseksi ja riskien hallitsemiseksi turvetuotantoalueilla (Sulfa II)

Toimintamallit happamuuden ennakoimiseksi ja riskien hallitsemiseksi turvetuotantoalueilla (Sulfa II) Toimintamallit happamuuden ennakoimiseksi ja riskien hallitsemiseksi turvetuotantoalueilla (Sulfa II) Happamuuskuormituksen ennustaminen valuma-aluetasolla Marie Korppoo ja Markus Huttunen 13.5.2019 Päämäärä

Lisätiedot

Studies of Quaternary Deposits in Investigation Trenches OL-TK15 and OL-TK16 on the Olkiluoto Study Site, Eurajoki, SW Finland. Working Report

Studies of Quaternary Deposits in Investigation Trenches OL-TK15 and OL-TK16 on the Olkiluoto Study Site, Eurajoki, SW Finland. Working Report Working Report 2009-25 Studies of Quaternary Deposits in Investigation Trenches OL-TK15 and OL-TK16 on the Olkiluoto Study Site, Eurajoki, SW Finland Pekka Huhta May 2009 POSIVA OY Olkiluoto FI-27160 EURAJOKI,

Lisätiedot

You can check above like this: Start->Control Panel->Programs->find if Microsoft Lync or Microsoft Lync Attendeed is listed

You can check above like this: Start->Control Panel->Programs->find if Microsoft Lync or Microsoft Lync Attendeed is listed Online Meeting Guest Online Meeting for Guest Participant Lync Attendee Installation Online kokous vierailevalle osallistujalle Lync Attendee Asennus www.ruukki.com Overview Before you can join to Ruukki

Lisätiedot

KMTK lentoestetyöpaja - Osa 2

KMTK lentoestetyöpaja - Osa 2 KMTK lentoestetyöpaja - Osa 2 Veijo Pätynen 18.10.2016 Pasila YHTEISTYÖSSÄ: Ilmailun paikkatiedon hallintamalli Ilmailun paikkatiedon hallintamalli (v0.9 4.3.2016) 4.4 Maanmittauslaitoksen rooli ja vastuut...

Lisätiedot

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0

T Statistical Natural Language Processing Answers 6 Collocations Version 1.0 T-61.5020 Statistical Natural Language Processing Answers 6 Collocations Version 1.0 1. Let s start by calculating the results for pair valkoinen, talo manually: Frequency: Bigrams valkoinen, talo occurred

Lisätiedot

Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat

Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat 7.80.4 Asiakasnumero: 3000359 KALLE MANNINEN KOVASTENLUODONTIE 46 51600 HAUKIVUORI Toimitusosoite: KUMMANNIEMENTIE 5 B 51720 RAHULA Viitteenne: Henna-Riikka Haikonen Viitteemme: Pyry Niemi +358400874498

Lisätiedot

Lapuan myöntämä EU tuki SOLUTION asuinalueille omakoti- tai rivitaloa rakentaville

Lapuan myöntämä EU tuki SOLUTION asuinalueille omakoti- tai rivitaloa rakentaville Lapuan myöntämä EU tuki SOLUTION asuinalueille omakoti- tai rivitaloa rakentaville Pakollinen liite rakennustyön tarkastusasiakirjaan ja toiseen hakuvaiheeseen / Compulsory supplement the construction

Lisätiedot

AYYE 9/ HOUSING POLICY

AYYE 9/ HOUSING POLICY AYYE 9/12 2.10.2012 HOUSING POLICY Mission for AYY Housing? What do we want to achieve by renting apartments? 1) How many apartments do we need? 2) What kind of apartments do we need? 3) To whom do we

Lisätiedot