Core drilling of deep borehole OL -KR 15 at Olkiluoto in Eurajoki 2001

Koko: px
Aloita esitys sivulta:

Download "Core drilling of deep borehole OL -KR 15 at Olkiluoto in Eurajoki 2001"

Transkriptio

1 Working Report 22-1 Core drilling of deep borehole OL -KR 15 at Olkiluoto in Eurajoki 21 Risto Niinimaki Tauno Rautio January 22 POSIVA OY T6616nkatu 4, FIN-1 HELSINKI, FINLAND Tel Fax

2 Working Report 22-1 Core drilling of deep borehole OL -KR 15 at Olkiluoto in Eurajoki 2 1 Risto Niinimaki Tauno Rautio Suomen Malmi Oy anuary 22 Working Reports contain information on work in progress or pending completion. The conclusions and viewpoints presented in the report are those of author(s) and do not necessarily coincide with those of Posiva.

3 Working Report 22-1 Core drilling of deep borehole OL -KR 15 at Olkiluoto in Eurajoki 21 Risto Niinimaki Tauno Rautio January 22

4 TEKIJA ORGANISAATIO: SUOMEN MALMI OY PL 1 Juvan teollisuuskatu ESPOO TILAAJA: POSIVA OY Toolonkatu 4 1 HELSINKI TILAAJAN YHDYSHENKILO : 2r;;. 2.oz/MH. DI Heikki Hinen Posiva Oy URAKOITSIJAN YHDYSHENKILO : FM Tauno Rautio Smoy RAPORTTI: WORKING REPORT 22-1 CORE DRILLING OF DEEP BOREHOLE OL-KR15 AT OLKILUOTO IN EURAJOKI 21 TEKIJA: r\_: 1 Risto Niinimaki Geologi, Smoy TARKASTAJA : - Tauno Rautio Geologi, Smoy

5 CORE DRILLING OF DEEP BOREHOLE OL-KR15 AT OLKILUOTO IN EURAJOKI 21 ABSTRACT Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May A positive decision was made at the end of 2 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 21. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled m and m deep boreholes with a diameter of 76 mm in October November 21 at Olkiluoto. The identification numbers of the boreholes are OL-KR15 and OL-KR15B, respectively. A set of monitoring measurements and samplings from the drilling and returning water were carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded as well as the pressure of the drilling water. The objective of these measurements was to obtain more information about bedrock and groundwater properties. Uranine was used as a label agent in the drilling water. The volume of the used drilling water was about 123 m 3 and the measured volume of the returning water was about 59 m 3 At the end of the work the boreholes were flushed by pumping about 3m 3 of water from the bottom ofboreholes. The deviation of the boreholes was measured with the deviation instrument EZ Shot. Additionally inclination was measured separately with an inclination instrument. The results of the EZ Shot measurements indicate that borehole OL-KR15 deviates m to the northwest and.63 m up at the borehole depth of 233 m and borehole OL-KR15B deviates.39 m to the east and.1 m up at the borehole depth of 45 m. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 152 MPa, the average Young's modulus is 47 GPa and average Poisson's ratio is.24. The main rock types are migmatitic micagneiss and granite. Filled fractures dominate. The average fracture frequency is 1.55 pc/m in borehole OL-KR15 and 3.33 pc/m in borehole OL-KR15B. The average RQD is 97.7% in borehole OL-KR15 and 93,7% in borehole OL-KR15B. One fracture zone was penetrated in both boreholes. The total length of the fracture zones is 1.19 m, which is.5 % of the total core length. Keywords: core drilling, borehole, micagneiss, granite, fracture, monitoring measurements, elastic parameters, deviation measurements.

6 SYV AKAIRAUS OL-KR15 EURAJOEN OLKILUODOSSA VUONNA 21 TIIVISTELMA Posiva Oy jatti valtioneuvostolle vuonna 1999 periaatepaatoshakemuksen, jolla se haki lupaa rakentaa kaytetyn ydinpolttoaineen loppusijoituslaitos Eurajoen Olkiluotoon. Periaatepaatoshakemuksen mukaisesti paikkatutkimukset keskitetaan Olkiluotoon. Joulukuussa 2 valtioneuvosto teki asiasta myonteisen paatoksen. Toukokuussa 21 eduskunta vahvisti valtioneuvoston paatoksen. Syksylla 21 tehdyilla tutkimuksilla hankittiin tietoa ONKALON sisaanmenopaikaksi suunnitellulta alueelta. Tutkimuksiin liittyen Suomen Malmi Oy kairasi 233,54 m pituisen tutkimusreian OL-KR15 ja marraskuussa 45,14 m:n pituisen reian OL-KR15B Eurajoen Olkiluodossa. Reikien halkaisijat ovat 76 mm. Kairauksien aikana suoritettiin tarkkailumittauksia lisainformaation saamiseksi kallio-olosuhteista. Mittauksia olivat veden sahkonjohtokyvyn ja huuhteluveden paineen mittaukset ja huuhteluveden/palautuvan veden maaran mittaus. Kairauksiin kaytettiin uraniinilla merkittya huuhteluvetta no in 123 m 3 Tyon aikana vetlli palautui rei' ista maaramittarin kautta noin 59 m 3 Tyon lopuksi pumpattiin noin 3 m 3 vetlli reikien pohjalta. Reikien sivupoikkeama ja taipuma mitattiin EZ Shot -mittarilla. Reikien kaltevuus mitattiin lisaksi kaltevuusmittarilla. EZ Shot -mittauksen mukaan reian KR15 taipuma on 233 m:n reikasyvyydessa luoteeseen 17,95 m ja ylospain,63 m ja reian KR15B taipuma on 45 m:n reikasyvyydessa itaan,39 mja ylospain,1 m. Kallionaytteistii maaritettiin yksiaksiaalinen puristusmurtolujuus, kimmomoduli ja Poissonin luku. Yksiaksiaalinen puristusmurtolujuus oli keskimaarin noin 152 MPa, kimmomoduli oli keskimaarin no in 4 7 GPa ja Poissonin luku,24. Kivilajeina esiintyivat migmatiittinen kiillegneissi ja graniitti. Rakoilusta taytteiset raot ovat hallitsevia. Kallion rakoluku on reialla KR15 keskimaarin 1,55 kpllm ja reialla KR15B 3,33 kpllm. Vastaavasti RQD-luku on reialla KR15 keskimaarin 97,7% ja reialla KR 15B 93,7 %. Rikkonaisia, tihearakoisia osuuksia lavistettiin yksi kummallakin reiaila. Rikkonaisia osuuksia on yhteensa 1,19 m. Yhteensa rikkonaisten osuuksien maara on,5 % reian kokonaisnaytemaarasta. A vainsanat: kairaus, kairanreika, migmatiittinen kiillegneissi, graniitti, rako, tarkkailumittaukset, muodonmuutosominaisuudet, sivusuuntamittaus

7 CORE DRILLING OF DEEP BOREHOLE OL-KR15 AT OLKILUOTO IN EURAJOKI 21 ABSTRACT Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May A positive decision was made at the end of 2 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 21. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) core drilled m and m deep boreholes with a diameter of 76 mm in October November 21 at Olkiluoto. The identification numbers of the boreholes are OL-KR15 and OL-KR15B, respectively. A set of monitoring measurements and samplings from the drilling and returning water were carried out during the drilling. Both the volume and the electric conductivity of the drilling water and the returning water were recorded as well as the pressure of the drilling water. The objective of these measurements was to obtain more information about bedrock and groundwater properties. Uranine was used as a label agent in the drilling water. The volume of the used drilling water was about 123 m 3 and the measured volume of the returning water was about 59 m 3 At the end of the work the boreholes were flushed by pumping about 3m 3 of water from the bottom ofboreholes. The deviation of the boreholes was measured with the deviation instrument EZ Shot. Additionally inclination was measured separately with an inclination instrument. The results of the EZ Shot measurements indicate that borehole OL-KR15 deviates m to the northwest and.63 m up at the borehole depth of 233 m and borehole OL-KR15B deviates.39 m to the east and.1 m up at the borehole depth of 45 m. Uniaxial compressive strength, Young's Modulus and Poisson's ratio were measured from the core samples. The average uniaxial compressive strength is about 152 MPa, the average Young's modulus is 47 GPa and average Poisson's ratio is.24. The main rock types are migmatitic micagneiss and granite. Filled fractures dominate. The average fracture frequency is 1.55 pc/m in borehole OL-KR15 and 3.33 pc/m in borehole OL-KR15B. The average RQD is 97.7% in borehole OL-KR15 and 93,7% in borehole OL-KR15B. One fracture zone was penetrated in both boreholes. The total length of the fracture zones is 1.19 m, which is.5 % of the total core length. Keywords: core drilling, borehole, micagneiss, granite, fracture, monitoring measurements, elastic parameters, deviation measurements.

8 SYV AKAIRAUS OL-KR15 EURAJOEN OLKILUODOSSA VUONNA 21 TIIVISTELMA Posiva Oy jatti valtioneuvostolle vuonna 1999 periaatepaatoshakemuksen, jolla se haki lupaa rakentaa kaytetyn ydinpolttoaineen loppusijoituslaitos Eurajoen Olkiluotoon. Periaatepaatoshakemuksen mukaisesti paikkatutkimukset keskitetaan Olkiluotoon. Joulukuussa 2 valtioneuvosto teki asiasta myonteisen paatoksen. Toukokuussa 21 eduskunta vahvisti valtioneuvoston paatoksen. Syksylla 21 tehdyilla tutkimuksilla hankittiin tietoa ONKALON sislliinmenopaikaksi suunnitellulta alueelta. Tutkimuksiin liittyen Suomen Malmi Oy kairasi 233,54 m pituisen tutkimusreian OL-KR15 ja marraskuussa 45,14 m:n pituisen reian OL-KR15B Eurajoen Olkiluodossa. Reikien halkaisijat ovat 76 mm. Kairauksien aikana suoritettiin tarkkailumittauksia lisainformaation saamiseksi kallio-olosuhteista. Mittauksia olivat veden sahkonjohtokyvyn ja huuhteluveden paineen mittaukset ja huuhteluveden/palautuvan veden mlliiran mittaus. Kairauksiin kaytettiin uraniinilla merkittya huuhteluvetta noin 123 m 3 Tyon aikana vetta palautui rei'ista mlliiramittarin kautta noin 59 m 3 Tyon lopuksi pumpattiin noin 3 m 3 vetta reikien pohjalta. Reikien sivupoikkeama ja taipuma mitattiin EZ Shot -mittarilla. Reikien kaltevuus mitattiin lisaksi kaltevuusmittarilla. EZ Shot -mittauksen mukaan reian KR15 taipuma on 233 m:n reikasyvyydessa luoteeseen 17,95 m ja ylospain,63 m ja reian KR15B taipuma on 45 m:n reikasyvyydessa itaan,39 mja ylospain,1 m. Kallionaytteista maaritettiin yksiaksiaalinen puristusmurtolujuus, kimmomoduli ja Poissonin luku. Yksiaksiaalinen puristusmurtolujuus oli keskimiliirin noin 152 MPa, kimmomoduli oli keskimaarin no in 4 7 GP a ja Poissonin luku,24. Kivilajeina esiintyivat migmatiittinen kiillegneissi ja graniitti. Rakoilusta taytteiset raot ovat hallitsevia. Kallion rakoluku on reialla KR15 keskimiliirin 1,55 kpl/m ja reialla KR15B 3,33 kpl/m. Vastaavasti RQD-luku on reialla KR15 keskimlliirin 97,7% ja reialla KR15B 93,7 %. Rikkonaisia, tihearakoisia osuuksia lavistettiin yksi kummallakin reialla. Rikkonaisia osuuksia on yhteensa 1, 19 m. Yhteensa rikkonaisten osuuksien mlliira on,5 % reian kokonaisnaytemlliirasta. A vainsanat: kairaus, kairanreika, migmatiittinen kiillegneissi, graniitti, rako, tarkkailumittaukset, muodonmuutosominaisuudet, sivusuuntamittaus

9 1 CORE DRILLING OF DEEP BOREHOLE OL-KR15 AT OLKILUOTO IN EURAJOKI 21 ABSTRACT TIIVISTELMA CONTENTS 1 1. INTRODUCTION 1.1 Background 1.2 Scope of the work WORK DESCRIPTION 2.1 Diamond core drilling 2.2 Drilling water and the use of label agent 2.3 Monitoring measurements 2.4 Deviation surveys 2.5 Flushing of the borehole 2.6 Engineering geological logging 2.7 Rock mechanical tests on core samples TECHNICAL DETAILS OF THE BOREHOLES 3.1 Location and deviation 3.2 Structure of the upper part of the borehole ENGINEERING GEOLOGY 4.1 The effects of drilling to the sample quality 4.2 Rock quality 4.3 Fracturing 4.4 Core discing 4.5 Strength and elastic properties MONITORING RESULTS 5.1 Conductivity of drilling and returning water 5.2 Quantities of drilling and returning water 5.3 Drilling water pressure 5.4 Ground water level in the borehole 5. 5 Drilling cuttings yield 5.6 Drilling water and returning water label agent concentrations SUMMARY REFERENCES 3

10 2 8. APPENDIXES 8.1 Time schedule 8.2 Drilling equipment 8.3 Constructions of the upper part of the borehole 8.4 Degree of weathering 8.5 Lifts 8.6 List of core boxes 8.7 Rock description 8.8 Foliation 8.9 List of fractures 8.1 Fracture frequency and RQD 8.11 Fractured zones, core loss 8.12 Flushing water samples 8.13 Returning water samples 8.14 Deviation surveys 8.15 Deviation surveys, graphic PHOTOS

11 3 1. INTRODUCTION 1.1 Background In 1999, Posiva Oy filed an application for a policy decision from the council of state for a construction permit to build a final disposal facility for spend fuel at the Olkiluoto area in the Eurajoki municipality. It was applied that the nuclear repository site investigations would be concentrated at the Olkiluoto area. In December 2, the council of state made a positive policy decision and in May 21, the parliament ratified the decision. The policy decision makes it possible to concentrate the research activities at Olkiluoto in the municipality of Eurajoki. One part of the research is to build an underground rock characterisation facility (called "ONKALO"). Investigations during the autumn 21 are aimed to document the ground conditions in the area where the planned facility decline and shaft will be located. Posiva Oy contracted (order number 97/1HH) Suomen Malmi Oy (SMOY) to drill new investigation boreholes in the area. In October and November 21 boreholes OL-KR15 ( m) and OL-KR15B (45.14 m) were core drilled. The location of the boreholes are shown in Figure 1. Borehole OL-KR15 is located about 2 m from the Korvensuo reservoir pump station and the borehole OL-KR15B is located three metres west from the borehole OL-KR15. The boreholes are vertical (initial inclination 9 degrees) and the borehole diameter is 76 mm. 1.2 Scope of the work The aim of the work was to drill about 25 m long borehole to document the geology and the ground conditions (continuity of the rock units, fracture zones and rock quality) in the area. The 4 m precollar for the borehole OL-KR15 was drilled with a down the hole percussion drill. Therefore the 45 m deep borehole OL-KR15B was core drilled next to it. To maximise the recovery yield of an undisturbed and continuous core, a triple tube coring technique was used. In addition to the drilling, work included core logging, rock mechanical testing of the core, in-hole technical measurements, drilling fluid monitoring, flushing of the borehole, borehole deviation surveys and reporting. This report documents the work and sampling done during the drilling of the boreholes. Depth measurements are from the ground surface unless otherwise stated. Distance between the top of casings and the ground level is.4 m and.64 m for the boreholes OL-KR15 and OL-KR15B,

12 1-Tj 1' - t"--4 (j e - ::s g- r:::r '""'t (D 6 CD Cll t"--4 -Vl.. t"--4 Vl t:o s E?. 2" e; (1) p Location of the boreholes KR1 -KR15, KR15B Coordinate System: Finnish Coordinate System, zone 1 (Projection: Gauss-Kruger) Saanio & Riekkola Oy/HM, KF llegend: K Core Drilled Borehole KR15B KR15 11 [ R14 _ 1 I 'll' 1...,....,...,...,, I,.. I 8" (i1 Cl.l '" 3 - g- ;J (D g' 6 CD Cll (j 8" 5 CD Cl.l (j CD 8" 1G p ::r CD ::4.... ;:t> g. (D (D 8. g- : - s- go : ::::: a.. e- (1)

13 5 2. WORK DESCRIPTION 2.1 Diamond core drilling Thickness of the overburden at the location of the borehole OL-KR15 is 3.6 m. The borehole thh the overburden is cased with a 194/184 mm diameter tube, which is drilled into the bedrock to the depth of3.9 m. From 3.9 m to 4.12 m the borehole was drilled with a 165 mm diameter hammer between 15th and 1 i 11 October 21. This percussion drilled part of the borehole is cased with a stainless steel mm diameter tube which is grouted into the bedrock. The diamond drill rig, additional casings and air lift pumping pipes were set up at the drilling site on 23rd October 21. Drilling commenced on the next day. On 2nd November 21, drilling depth m was reached. During the deviation survey, the centralizer for the survey equipment was stuck in the borehole. It was removed by drilling and the final depth m was reached. The time schedule of the work is shown in Appendix 8.1. The diamond drill rig was set up at the drilling site OL-KR15B on 6 1 h November 21. Drilling thh the overburden, which was 2.38 m thick, was done on the same day. Because of the fractured bedrock casing was drilled to the depth of 4.48 m. After the casing was placed, diamond drilling continued normally. The final depth m was reached on 8th November 21. Boreholes OL-KR15 and OL-KR15B were core drilled with a hydraulic Diamec 1 drill rig of which drill feed, hydraulic chuck, drill head and mast are reinforced. The core barrel used was a WL-76 triple tube and drill rods used were alu-72 rods. Borehole diameter with W-76 triple tube core barrel is 76 mn1 and drill core diameter is 52 mm. Equipment used is shown in Appendix 8.2. The cutting area of the diamond bit of a triple core barrel is larger than that of a double core barrel. In a triple core barrel the extra innermost tube is of split type. The innermost split tube containing the sample is removed from the core barrel with the aid of a piston working on water pressure. By this way the sample may be removed from the core barrel as undisturbed as possible. The structure of the WL-76 triple tube core barrel is presented in figure of Appendix 8.2 in drawings and photographs. Drilling was continuous shift work (three shifts per day) and the drilling team in a shift consisted of a driller and an assistant. Geologist Tauno Rautio was the project manager, and Ville Teivaala and Esko Hartikainen were drilling supervisors. Geological logging was done by geologist Risto Niinimaki and the final report was written by Tauno Rautio and Risto Niinimaki.

14 6 Drilling time (which does not include set up and dismantling works) on the borehole OL-KR15 was 189 h which gives the mean drilling efficiency of 1.2 m per rig hour. The drilling time for the borehole OL-KR15B was 39 h. Mean drilling efficiency per rig hour in different depth intervals are tabulated in Table 1. Table 1. Drilling efficiency. Depth interval, Efficiency, m m/rig hour Comments! OL-KR15 OL-KR15 OL-KR15 (end ofborehole m) Casing and drilling, OL-KR15B Wear and tear of the drilling equipment was heavier than average due to the hard bedrock. The wear of the drill bit correlates with the mineral composition of the bedrock. In this work, only 33. m was drilled per WL-76 bit compared to a long-term average of 55 m per T-76 and T-56 bits. 2.2 Drilling water and the use of label agent Drilling water for the boreholes OL-KR15 and OL-KR15B was pumped from the pump station of the Korvensuo reservoir. The water line was about 2 m long. Before water was pumped into the mixing tanks (two 3 m 3 fibreglass tanks) it was filtered thh a 5 m filter. All drilling water was marked with the label agent sodiumfluoresceine. Sodiumfluoresceine (uranine) is an organic powdery pigment which is broken down by UV radiation. Therefore the label agent mixing tanks have to be covered. The quality of the label agent was tested by the F ortum Vantaa laboratories in spring 21. At the Rauma chemist, uranine was packed in glass vials in 1.5 g ready to use doses. At the drilling site, contents of a vial was dissolved in one litre of water which was slowly added into the mixing tank at the beginning of pumping. Turbulence caused by pumping ensured mixing of the label agent.

15 Monitoring measurements During the drilling, several drilling water parameters were monitored and water samples taken. The aim was to get additional information of rock quality and predict possible drilling problems. To find out how much drilling water was leaking into the bedrock, the amounts of ingoing and returning drilling water were monitored. The flow meter for ingoing water was assembled in the waterline coming from the water pump and the amount of returning water was measured from the overflow of the sedimentation tank. Water level in the borehole was measured in the beginning of every morning shift and if there was more than two hour break in the drilling. All drilling water batches made in the mixing tank were sampled. The returning water was sampled once a day as long as water was flowing out of the borehole. Because the sensitivity of uranine to the UV -light, immediately after the sampling the sample bottles were wrapped in aluminium foil immediately after the sampling. Water samples were stored in a fridge until they were sent for analysis to the laboratory ofteollisuuden Voima Oy (TVO) in Olkiluoto. Electric conductivity of the drilling water was measured after the label agent was mixed. The returning water samples were collected for the conductivity measurements as long as water was flowing from the borehole. The returning water contains drilling cuttings of which composition depends on the drilled rock type. If the drilling cuttings was affecting the conductivity, the water samples (2-3 dl) were let to settle and, if needed, filtered thh a 45 Jlm filter to remove the remaining drilling cuttings. The conductivity measurements were done with a Phillips conductivity meter PW9529 which gives the results as ms/m at +25 C. The conductivity meter was calibrated at the laboratory oftvo before the measurements. Drilling water pressure was logged at the beginning of every sample run and when there were pressure changes. The drilling water pressure monitoring was aimed to avoid drilling problems and to recognise anomalously permeable fracture zones. The drilling water pressure has a direct correlation to the level of the water column replaced in the borehole. Increased permeability in the fracture zones reduce the water pressure. Blockages in the sample tube and wearing of the diamond bit increase the drilling water pressure.

16 8 2.4 Deviation surveys To trace the borehole accurately the dip and azimuth of the borehole were measured with a EZ Shot downhole survey tool, which was lowered into the boreholes with a wire line. In addition, the dip of the borehole was measured separately with a PP-downhole dip meter. EZ-Shot meter measures the borehole dip with an electronic accelerometer and the azimuth with a three component fluxgate magnetometer. According to the manufacturer, if there are no magnetic anomalies, the accuracy of the azimuth is ±.5 degrees and the dip of the borehole.2 degrees. The azimuth is given to the magnetic north and the declination, which is about five degrees in the area,has be added to the results. 2.5 Flushing of the borehole Before the final flushing of the boreholes, the walls of the boreholes were washed with the label agent water to drop all loose material to the bottom of the boreholes. The washing device is a double coupler of which one end is blocked and which has four 5 mm boreholes on its rim 9 degrees apart. Consequently, the water jets are directed in a straight angle to the wall of the boreholes. Washing of the boreholes is done by lowering and rotating the rods while the drilling water pressure is on. About 7 m 3 of label agent water was used during the wash of the borehole OL-KR15 and 1.6 m 3 used during the wash of the borehole OL-KR15B. After the walls of the boreholes were washed the boreholes were cleaned by pumping water thh alu-43 drill rods with a submersible pump. In this method, the lowermost 9 m of the drill rods are perforated and in the upper part alu-72 drill rods are used. A submersible pwnp was lowered to about 35 m inside the drill rods. Consequently, the flushing water circulates by the bottom of the borehole. Pumping was interrupted once and drill rods were moved up and down in the borehole to remove any residual drilling cuttings from the wall of the borehole. The pump was taken out of the drill rods before moving the drill rods, and lowered back after the procedure and the pumping continued. The flushing and pumping was done between 8 pm on 4th November and 7 am on 6th November 21 in the borehole OL-KR15. During the flushing 14.4 m 3 of water was pumped from the borehole OL-KR15 at an average rate of 411 1/h. In the borehole OL-KR15 B the flushing and pumping was done between 8 pm on 8th Noven1ber and 7 am on 9th November 21. During the flushing 16.4 m 3 of water was pumped from the borehole OL-KR15B at an average rate of 713 1/h.

17 r Engineering geological logging Handling of the core is based on the POSIV A work instructions TY--3/ 1 "Core handling procedure with triple tube coring (in Finnish)". Drill core samples were placed in about one metre long \Vooden core boxes immediately after emptying the sample tube. Core boxes were covered with damp proofing quality aluminium paper so that the aluminium surface was against the core. Also the wooden blocks separating the different sample runs were covered by aluminium paper. Drill core during the drilling was handled especially carefully. Core was placed on the boxes avoiding any unnecessary breakage. Broken and clay rich core was wrapped in aluminium foil to avoid breaking it during storage and logging. If loose rock fragments had fallen of the borehole walls, they were placed after the block marking of the end of the previous sample run. Therefore, at the beginning of a sample run there might be rock fragments which do no belong to the sample run itself. Geologist logged the core in a transportable office at the drilling site. Logging was designed for engineering geological purposes (Gardemeister et al. 1976, Korhonen et al. 1974). Following parameters were logged: fracture classification, fracture zones and core loss, artificial break and fracture frequency and RQD, petrography, foliation degree, degree of weathering and core discing. In addition, the lift and core box number were documented. In the list of fractures the fractures were numbered sequentially from the top of the borehole to the bottom of the borehole. Fracture depths were tneasured to the centre line of the core and were given with one centimetre accuracy. If the middle line of an gular fracture did not coincide with the centre line of the core, an appropriate depth was given. If observations were given for a depth interval, the depth was given to the end of a last fracture, for example in the case of crushed zone. Logged depths were corrected to the true core depth, i.e. if there were depth inaccuracies due to the core loss or the core lifter had slipped, the depth written on the wooden block marking the end of a lift was corrected. Inaccuracies due to core loss were also separately logged. The nature of a fracture was described with abbreviations: op =open, rusty/lin1onite covering ti = tight, no filling material fi =filled fisl = filled slickenside grfi = grain filled

18 1 clti = clay filled. Open used in core logging if fracture with rusty/limonite covering. Angle of a fracture was given relative to the core axis. If a fracture was parallel to the core axis its core angle was and if a fracture was perpendicular to the core axis its core angle was 9. Thickness of the fracture filling was given in millimetres. The colour of the fracture surfaces was logged if it differed from the host rock colour significantly. Most commonly the colour of filled and open fractures differed from the host rock colour. Tight fractures had typically only a slightly different shade from the host rock colour. Fractures which had a clear colour but the core was intact across the fractures were classified as filled fractures. In these cases in the remarks column has been written "" or "partly '' which indicates that the fracture is and its permeability is poor in its natural state. Fractures, which had euhedral or subhedral mineral growth, have"crystals" written in the log. In addition, if there was any smell, it has been logged to the remarks column. Fracture surface colour (minerals) has been described with four letter abbreviations: brow, lbro, dbro (brown, light brown, dark brown) gray, lgra, dgra (gray, light gray, dark gray) gree, lgre, dgre (green, light green, dark green) red, lred,dred (red, light red, dark red) Minerals have been logged only if their recognition was absolutely sure. Mineral names used have been listed in the petrography section of the report. The colour shades of the fracture surface colours were described by adding one letter to the front of the three letter colour abbreviation. For example: rbro (reddish brown) Fracture surface morphology is described with following abbreviations: plan (planar) (gular) (ed)

19 11 Fracture surface quality was described with a four letter abbreviation. The three step classification used corresponds with the JRC-numbers (Barton & Choubey 1977). (h; JRC 15-1) (semih; JRC 7-14) smoo (smooth; JRC -6) Core loss is the result of geological factors which include strong weathering or fracturing of rock, or technical factors during the drilling. The depth of core loss, amount and reason was logged. If the location was not known exactly, the depth interval where the core loss occurred has been logged. Consequently, the depth measurements following the core loss are marked with notation. Fractured zones were described in the list of the fractured zones and core loss using the following abbreviations: Riiii = fracture-structured, densely fractured, more than 1 fractures per metre RiiV = crush-structured RiV =clay-structured Artificial break and fracture frequency and ROD were logged on full metre depth intervals. Artificial break frequency is the number of core breaks within one metre interval. Artificial breaks include all breaks which are caused of by drilling, core handling, core discing and natural fractures. Fracture frequency is the number of natural fractures within one metre interval. If the artificial break frequency is larger than the fracture frequency the core must have been broken during the drilling or core handling accidentally or by purpose. If the fracture frequency is larger than the artificial break frequency the fractures must be tight and cohesive enough to keep the core together. RQD gives the percentage of over 1 cm long core segments, which are separated by natural fractures, within one metre interval. List of lift depths is given as it has been marked on the spacing wooden blocks separating different sample runs in the core boxes. If the length of the core in the core barrel indicated that sampling depth was different from the drilling depth, the true sample depth has been corrected on the spacing block. Therefore, the sample run depth means the sample depth. The drilling depth might be deeper than the sampling depth if the core lifter slips and part of the core is left in the borehole and is not retrieved until with the next lift. The lifts are listed in Appendix 8.5. List of core boxes lists the start and end depths of the core in each core box. List of core boxes is in Appendix 8.6.

20 12 Petrographical description is based on the Finnish engineering geological rock classification (Korhonen et al. 1974, Gardemeister et al. 1976). Each rock type has been described at the first occurrence and only the changes are added later if there has been significant differences in the deeper sections. Grain size has been classified as follows: Very fine grained, glassy, grain not visible to Naked eyes << 1 mm Fine grained <1 mm Medium grained mm Coarse grained mm Very coarse grained >5 mm Texture has been described with following terms (Finnish abbreviations used): Massive Foliated Mixed (migmatitic) M L s Foliation degree has been classified to four categories: unfoliated weak medium strong Texture and foliation intensity description can have following variations: MO, M1, L1, L2, L3, SO, S1, S2, S3.

21 Recognition of the mineral composition of the rock is qualitative and the mode has been estimated by eye. Mineral names have been abbreviated using the system used in Saltikoffs (1972) Finnish mineral name catalogue. Same abbreviations have also been used in the fracture descriptions. The most common abbreviations used are: quar = quartz feld = feldspars (Kfeldspar or plagioclase) biot = biotite carb = carbonate (unspecified) talc= talc chlo = chlorite clay= clay minerals (unspecified) sulf = sulphide minerals (unspecified) fehy = Fe-hydrates, (limonite) epid = epidote grap = graphite Foliation degree has been described using the Finnish engineering geological classification. Zones of relatively constant foliation intensity were delineated and the angle of foliation was measured about every 1 metres. In addition, the degree was estimated using the above mentioned four category classification (Korhonen et al. 1974, Gardemeister et al. 1976) Degree of weathering was described with following abbreviations (Korhonen et al. 1974, Gardemeister et al. 1976): RpO = unweathered Rp 1 = slightly weathered Rp2 = strongly weathered Rp3 = completely weathered If there are small changes in the weathering degree within a logged depth interval, for example around fractures, the overall weathering degree is given first and the minor weathering changes in brackets.

22 14 Core discing has been logged separately. Depth intervals, within which core discing occurs, have been documented. The number of breaks and core discs, the minimum and maximum spacing between discs have been logged. In each break, the geometry of the disc surfaces have been described using the following classification (the core is running from left to right): ( ( = top surface concave, lovver surface convex (I = top surface concave, lower surface planar I( = top surface planar, lower surface convex ) ) = top surface convex, lower surface concave )I = top surface convex, lower surface planar I) = top surface planar, lower surface concave 11 =top surface planar, lower surface planar )( = top surface convex and lower surface convex S =saddle A = incomplete discing All core boxes were photographed (colour) both dry and wet. Core photographs (wet) are presented at the end of the report. In addition, close up photographs were taken from well preserved fracture zones and individual clay filled fractures. These photographs (wet) are presented at the end of the report after the full core box photographs Rock mechanical tests on core samples Rock strength and strain tests were made with Rock Tester-equipment. Samples for the testing were taken every 3 m, or if the rock type changed. Young's Modulus E, Poisson's ratio v and Modulus of Rupture Smax were measured with a Bend test in which the outer supports (L) were placed 16 mm apart and the lower supports (U) 48 mm apart. The test arrangement is shown in Figure 3.

23 15 u D L> 3,5D DUL/3 L Figure 3. Bend test Young's Modulus describes the ratio between stress and strain. This is given as Hook's law (equation 2.9.1) (j E =- [Pa] Ea (2.9.1) cr = stress [Pa] Ea = axial strain Poisson's ratio is defined as the ratio of radial strain and axial strain (equation 2.9.2). (2.9.2) Er = radial strain Ea = axial strain Uniaxial compressive strength crc was determined indirectly from the point load test results. The point load tests were made according the ISRM instructions (ISRM 1981 ja ISRM 1985). The point load index lsso, which is determined in the test, is multiplied by 24 and resulting value corresponds with the uniaxial compressive strength.

24 16 In the point load test the load is increased until the core sample breaks (Fig. 4 ). The point load index is calculated from the load required to break the sample. The test result is valid only if the break surface goes thh the both load points. The point load number Is is calculated from the equation p I.. =-, J D- (2.9.3) P = point load D = diameter of the core sample Point load number is dependent on the diameter of the core sample and it is corrected to the point load index using the equations and The result is not dependent on the sample SIZe. (2.9.4) (2.9.5) 4 D ' L >,5D Figure 4. Point load test

25 17 3. TEHNICAL DETAILS OF THE BOREHOLES 3.1 Location and deviation The initial dip ofthe boreholes OL-KR15 and OL-KR15B was 9 degrees. The ground surface was the starting level of the borehole and depth measurements are from the ground surface unless otherwise mentioned. The collar coordinates of the borehole are shown in the Table 2. EZ-Shot measurements indicate that at the depth of 233 m the borehole OL-KR15 has deviated m to the northwest and.63 m up from the initial azimuth and the borehole OL-KR15B has deviated.39 m to east and.1 m up at the depth of 45 m. The total deviation in the borehole OL-KR15 was 7.7% from the length of the borehole and in the borehole OL-KR15B.8%. The National XYZ coordinates of the boreholes calculated from the EZ-Shot measurements are presented in Table 2. Table 2. Coordinates of the boreholes OL-KR15 and OL-KR15B. Point location, borehole number X y z Ground surface, OL-KR Top of the casing, OL-KR End ofborehole (231 m), OL-KR Ground surface, OL-KR15B Top of the casing, OL-KR15B 8.99 End ofborehole (45 m), OL-KR15B , Structure of upper part of the borehole Down the hole drilling was used to drill the precollar for the borehole OL-KR15. This borehole was started by drilling a 194/184 mm casing thh the overburden into the bedrock. The casing was drilled to 3. 9 m depth from the surface. The thickness of the soil was estimated to be 3.6 m. The borehole was continued with a 165 mm hammer to 4.12 m and a 14/135 mm stainless steel casing was placed into the borehole and cemented into the bedrock. At the bottom of the casing there is a funnel, which helps to insert instruments into the borehole. Finally the mm casing was cut to the ground level.

26 18 Length of the funnel at the bottom of the 14/135 mm casing is 11 mm. The funnelling part is 53 mm long. The bottom of the funnel is made of a 84/77 mm tube which is 57 mm long. The tube has right hand thread which was used to attach the 84/77 casing during the drilling. The funnel is in the 14/135 mm casing and the end of the tube in the lower part of the funnel is at the depth of 4.9 m. Between the tube and the bedrock is 3 cm of concrete which was cut thh at the beginning of diamond drilling. The funnel and the attached tube are also made of stainless steel. The structure of the funnel and casing is shown in Appendix 8.3. After the drilling was finished, a one square metre concrete slab was cast around the casing. The top of the casing was with a plug, which has a lock. The precollar for the borehole OL-KR15B was done by drilling a 9/77 mm casing thh the overburden into the bedrock. The casing was drilled to 4.48 m depth from the surface. The thickness of the soil was estimated to be 2.38 m. Later the casing, which had a casing shoe, was cemented into the bedrock. The top of the casing was with a plug, which has a lock.

27 19 4. ENGINEERING GEOLOGY 4.1 The effects of drilling to the sample quality Core loss due to rock breaking or milling did not occur. In places, the ends of core pieces had rotated but there was no significant core loss. The sample quality is better while drilling with triple tube core barrel than drilling with double tube core barrel. In a triple tube core barrel the inner tube is split, it is not necessary to shake the core out of a inner tube and, therefore, it will stay more compact than in a normal double tube core barrel. This advantage is especially noticed when drilling fractured rocks; it is not necessary to fit the ends of the core pieces together. In addition, soft fracture fills will be preserved much better. Furthermore, there is much less drilling cuttings on the core surface, and in the breaks and fractures. 4.2 Rock quality Drill core consisted of rock types which had earlier described from the area. Mica gneiss is typically migmatitic and in places granitic (pegmatitic) material is abundant. In addition, granite has slightly foliated sections and contains mica gneiss enclaves. These two rock types are in many places intercalated and, consequently, in drill core, average intersections are only a few metres thick. Therefore, rock types have been classified by the major rock type and can have thin layers of minor rock type. Drill core is mainly unweathered and narrow weathered zones were intersected only near the surface of the bedrock. In the borehole OL-KR15B there is one narrow strongly weathered zone and one weakly weathered zone. In the borehole OL-KR15 there are two weakly weathered zones. In total, 1.92 m of the drill core had visible signs of weathering. However, in places feldspars are cloudy also in the unweathered parts. The weathering degree of rocks are shown in Appendix 8.4. Migmatic micagneiss comprises mica rich bands and light red coarse grained granitic bands. It is typically moderately foliated, L2. The grain size of the mica gneiss varies from fine grained to medium grained. The main minerals are quartz, feldspars and biotite. In places, occurs and some places occurs small cavities. Granite is equigranular. Its grain size varies from medium grained to coarse grained, in places it is pegmatitic. The texture is typically massive, MO, but there are some weakly foliated mica gneiss enclaves, M 1. The main minerals are feldspars, quartz and biotite.

28 2 Rock descriptions along the boreholes are presented in Appendix Graphic log showing the rock types and fracture frequency is presented in figure 4. Angle of foliation relative to the core axis was measured. Because the borehole was vertical, core was not oriented. Based on the foliation angle relative to the core axis, the strike and dip of the foliation do not vary much, except some small parts in the mica gneiss. Foliation intensity and foliations angles have been presented in Appendix Fracturing Fractures in the drill core are tight or filled. Most of them are filled. There were no open fractures. Fracture fill material is most commonly grey or white carbonate and sulphides, mostly, or dark chloritic material. White kaolin was also observed as fracture fill. In most fractures, the fracture filling is very thin layer on the fracture surfaces, and the opposite surfaces of the fracture match perfectly on each other's. Commonly the fracture filling is only a patchy coating on the fracture surfaces but these are still classified as filled fractures. Only a few fractures have a filling, which is more than one millimetre thick. The thickest fracture filling is about three centimetres in the borehole OL-KR15B. Most fractures, which have coloured surfaces, were classified as filled fractures. Tight fractures may also have a colour and, consequently, there is no clear distinction between tight and filled fracture. Some fractures, including some filled fractures, are healed. In total, 58 of the fractures intersected, which are about 13% of all fractures, were healed or partly healed. There are 4 clay filled fractures in the borehole OL-KR15 and 11 in the borehole OL-KR15B. 2 grain filled fractures were observed in the borehole OL-KR15 and 4 in OL-KR15B. 23 slickensided surfaces were intersected in the borehole OL-KR15 and 4 in OL-KR15B. In addition, there is one fracture zone with clay and grain filled fractures, but to prevent the core falling apart the core was left in the box and it was not possible to define the exact nature of these fractures. Some of the slickensided fractures have clay or grain filling and some clay and grain filled fractures have slickensides under the fill. Slickensided fractures occur thh the core but most of them are in or near the zones of higher fracture density. In places, slickensided fractures are in groups. Detailed logs of the fractures are presented in Appendix 8.9.

29 21 Rock types Fractures, pes/m OL-KR168 OL-KR16 Mica gneiss Granite Figure 4. Graphic log of the boreholes showing rock types and fracture intensity.

30 22 Morphology of the fractures varies a lot. Most commonly surfaces are gular and semih (JRC-number 7-14). The second most common morphology is gular or ed with a h surface (JRC-number 15-2). However, different variations are common. Average fracture frequency in the borehole OL-KR15 is 1.55 fractures per metre and 3.33 fractures per metre in OL-KR15B. The mean RQD value for the borehole OL-KR15 is 97.7% and 93.7% for OL-KR15B. Variations of the fracture frequency and RQD are listed in Table 3 and fracture frequency is sho"wn graphically in Figure 4. The full logs of the fracture frequency, artificial breaks and RQD are presented in Appendix 8.1. Table 3. Average fracture frequency and RQD values in different depth intervals in OL-KR15 and OL-KR15B. Depth Average Average Depth Average Average from-to fracture RQD value, from-to fracture RQD value, m-m frequency, % n1-m frequency, % fractures/m fractureslln > , One zone of strongly fractured rock was intersected in each borehole. In the borehole OL KR15B, there is a fracture-structured zone between 3.3 and 3.78 m and a crush-structured zone in OL-KR15 between and m. The total thickness of fracture zone is 1.19 m which is.5% of the drill core length. Fracture zones are presented in Appendix Core discing Neither of the drill core shovved evidence of core discing.

31 Strength and elastic properties Samples for testing the strength and elastic properties of the rock were taken every 3 m and in places where the major rock type changed. In total nine samples were tested, eight from the borehole OL-KR15 and one from the borehole OL-KR15B. This accounts five mica gneiss samples and four granite samples. One bend test and two point load tests were done from each sample. Differences in measurements result from the variability in the foliation intensity and grain size. The uniaxial compressive strength of the rock types is slightly different. The mean uniaxial compressive strengths of the mica gneiss and granite are 141 MPa and 167 MPa, respectively. This indicates that the mica gneiss is 16% weaker than granite. Elastic modulus of the rock types has larger variation. The average elastic modulus of the mica gneiss samples is 51 GPa and granite sample 42 GPa, i.e. the elastic modulus of the granite is 18% smaller than the elastic modulus of the mica gneiss. The rock mechanical test results are presented in Table 4, in which the mean strength and elastic properties are presented for each rock type. Uniaxial compressive strength, Young's Modulus and Modulus of Rupture of each rock type versus depth are shown in Figure 5. CU' 2,.eo.. g, 175, Cl) t/) b ::::s t/) :; 15, CI)"C. 125, , 35,... cu.. 3, :::\!! 25, :::\E... 5 c. t/) t/) en 1, 2, /... E 75, CJ> , 15, 5, --- lr. 1, -6 25, 5,, ,, 5, 1, 15, 2, 25, Pth[m] Young's Modulus (GPa] Uniaxial compressive strength [MPa] - -.A- Modulus of Rupture [MPa] -Cl) :::!: Figure 5. Uniaxial compressive strength, elastic modulus, and Modulus of Rupture versus depth. Mica gneiss is shown as black symbols and granite as red symbols.

32 Table 4. Summary of rock mechanical tests. Elastic modulus (E), Poisson's ratio (v), point load index (Isso), uniaxial compressive strength (crc) and Modulus of Rupture (Smax). 24 Depth E V Is so Is so O"Cl O"cz Smax Rocktype m GP a MP a MP a MP a MP a MP a 32, 34,19,16 7,25 6,29 173,92 15,96 12,82 GRAN (OL-KR15B) 46, 55,17,16 5,47 6,45 q1,17 154,87 11,41 GRAN (OL-KR15) 75,3 37,27,26 6,78 6,16 162,69 147,79 11,2 GRAN (OL-KR15) 13,7 39,93,25 8,7 8,57 28,85 25,68 13,39 GRAN (OL-KR15) 117, 38,53,21 5,48 5,38 131,42 129,22 14,8 MGN (OL-KR15) 144,2 36,75,31 4,76 4,7 114,32 97,71 12,92 MGN (OL-KR15) 171,2 6,26,29 6,32 6,53 151,69 156,82 24,8 MGN (OL-KR15) 2,4 4,72,23 4,87 4,83 116,76 ll6,3 11,74 MGN (OL-KR15) 221,8 77,79,32 7,81 8,87 187,36 212,76 13,18 MGN (OL-KR15) average 46,73,24 6,37 152,78 13,87 median 14,64,6 1,43 34,27 3,95 All together median% 31% 24% 22% 22% 28% average 5,81,27 5,89 141,41 15,2 median 17,8,5 1,5 36,4 5,3 MGN median% 35% 18% 25% 25% 33% average 41,64,21 6,96 166,99 12,21 median 9,32,6 1,15 27,7 1,7 GRAN median% 22% 27% 17% 17% 9%

33 25 5. MONITORING RESULTS 5.1 Electric conductivity of drilling and returning water During the drilling of the boreholes OL-KR15 and OL-KR15B, the electric conductivity of drilling water and returning water was monitored. The conductivity of each drilling water batch was measured after mixing the label agents. The conductivity of the drilling water batches varied between ms/m. The full results are presented in Appendix Electric conductivity of the returning water of the borehole OL-KR15B varied from 16.1 to 28.3 ms/m. Variation of the conductivity of the OL-KR15 returning water was larger and it was from 18.8 to 229. ms/m. The highest conductivity values were measured while drilling at depth 77 m. The results are presented graphically in Figure 6. Electric conductivity E en E Depth m Figure 6. Electric conductivity of returning water from the boreholes OL-KR15 and OL KR15B. 5.2 Quantities of drilling and returning water During the drilling of the borehole OL-KR15, 99.4 m 3 of water was used. After the drilling was finished, the borehole was flushed with 7. m 3 of water. During the drilling and flushing, 53. m 3 of returning water was measured. This is about 5% of the drilling and flushing water. Some water went past the flow meter during the air lift pumping and lifting of the drill rods.

34 26 During the drilling of the borehole OL-KR15B, 15.5 m 3 of water was used. After the drilling was finished, the borehole was flushed with 1. 7 m 3 of water. During the drilling and flushing, 5.6 m 3 of returning water was measured. This is about 32% of the drilling and flushing water. Some water went past the flow meter during the lifting of the drill rods. The cumulative consumption of drilling water and the amount of measured returning water are shown in Figure 7. :i: Drilling water -Returning water G) -Q) E 6 :c ::s 4 2 Drilling and returning water Depth m Figure 7. Cumulative consumption of drilling water and amount of returning water during the drilling ofboreholes OL-KR15 and OL-KR15B. 5.3 Drilling water pressure During the drilling of the borehole OL-KR15 the drilling water pressure increased quite steadily with depth. At the beginning of the borehole pressure was.2 MPa and at the end it was 1.2 MPa. The pressure varied between.5 MPa and.8 MPa during the drilling of the borehole OL KR15B. The pressure graphs are presented in Figure 8.

35 I 27 Pressure of drilling water i ! 1. i C. osj V\ T. :; lj... I.4 j!.21 I Depth m.--- Kuva 8. Drilling water pressure during the drilling of the boreholes OL-KR15 and OL-KR15B. 5.4 Groundwater level in the borehole Groundwater level in the borehole OL-KR15 varied between 1 to 12 m. The result depends strongly on the stabilising time before measurements. The groundwater depth is measured from the ground surface. 5.5 Drilling cuttings yield Drilling cuttings was collected in a sedimentation tank and measured. From the borehole OL KR15, 99 litres of water drilling cuttings mixture was collected. The borehole diameter is 76 mm and the core diameter is 52 mm, 2.47 litres of rock per metre was ground to drilling cuttings by the diamond bit. Consequently, the total drilling cuttings generated was 48 litres. If the expansion factor 1. 7 of wet cuttings is assun1ed, the yield would be about 82 litres. Therefore, it can be speculated that the water content in drilling cuttings was higher, or the additional drilling cuttings was generated from the fractures. However, the result indicates that there cannot be significant amount of drilling cuttings residue in the borehole. From the borehole OL-KR15B, 12 litres of drilling cuttings water mixture was collected. The generated drilling cuttings during drilling was 1 litres and with the expansion factor 1. 7, the

36 28 yield should have been 17 litres. This indicates that about 3% of the drilling cuttings was left in the fractures intersected in the borehole. 5.6 Drilling water and returning water label agent concentrations The concentration of the label agent is used to estimate the representativeness of the groundwater samples taken from the borehole. The planned label agent concentration of the drilling water was.5 g/m 3 The achieved concentrations were close to this level. However, in the drilling water batch 2, the concentration was slightly lower,.449 g/m 3 It is possible that some of the chemical was left in the vial. The label agent mixings, drilling water samples, electric conductivity and uranine concentrations are listed in Appendix Returning water samples were collected once a day as long as water was flowing from the borehole. In total, 1 samples were taken. High uranine concentrations in the returning water indicate that the water is mainly drilling water. At the depth of 16 m uranine concentration dropped indicating increase of groundwater flow into the borehole. Concentrations in the returning water varied from 14 to 435 J.lg/1. The analysis of uranine concentrations are presented in Appendix 8.13.

37 29 6.SUMMARY Finnish parliament ratified the policy decision and Posiva Oy can concentrate its geological investigations for the underground final disposal facility for spent fuel in the Olkiluoto area in the municipality of Eurajoki. Within next few years, an underground rock characterisation facility, ONKALO, will be built in the area. As a part of the investigations, Suomen Malmi Oy core drilled a m deep borehole in the area. The borehole identification is OL-KR15. Because the precollar for the borehole OL-KR15 was done by down the borehole percussion drilling, a second diamond borehole OL-KR15B was drilled next to it. Length of the OL-KR15B is 45.6 m. The core was acquired using a triple tube core barrel with a split inner sample tube. During the drilling, the electric conductivity of drilling and returning water, drilling water pressure and the amounts of drilling and returning water were monitored. The monitoring was aimed to get additional information of the bedrock quality. The electric conductivity of the drilling water and returning water in OL-KR15 varied from 14. to 16.2 ms/m and from 16.1 to 229. ms/m, respectively. The drilling water pressure was at the beginning of the borehole OL-KR15.2 MPa and increased quite linearly with the depth to 1.2 MPa. The drilling water pressure in the borehole OL-KR15B varied from.5 to.8 MPa. Drilling water used was marked with uranine as the label agent. During the drilling of the borehole OL-KR15, about 16 m 3 of water was used. The amount of returning water was about 53 m 3 During the drilling of the borehole OL-KR15B, about 17 m 3 of water was used and 6m 3 returning water was measured. After the drilling, borehole OL-KR15 was flushed by pumping about 14 m 3 of water from the bottom of the borehole. For the flushing of the borehole OL-KR15B, about 16 m 3 of water was used. The deviation of the borehole was measured with EZ-Shot survey tool. Based on the results, at 233 m depth the borehole OL KR15 has deviated m to NW and.63 m up from the target. Uniaxial compressive strength, Young's modulus, and Poisson's ratio were determined from the core samples. The average uniaxial compressive strength is 152 MPa, Young's Modulus 47 GPa and Poisson's ratio.24. Rock types intersected in the boreholes are migmatitic mica gneiss and granite. Rocks are unweathered or only weakly weathered. Filled fractures are the most common fracture type. The average fracture frequency in the borehole OL-KR15 is 1.55 fractures per metre and in OL-KR15B 3.33 fractures per metre. Mean RQD values of the boreholes OL-KR15 and OL KR15B are 97.7% and 93.7%, respectively. 27 fractures with slickensides, six grain filled and 15 clay filled fractures were intersected in the boreholes. One strongly fractured zone was intersected in both boreholes. The total thickness of these zones is 1.19 m which is.5% of the core. There was no core discing observed.

38 3 7. REFERENCES Barton, N & Choubey, V., The shear strength of rock joints in theory and practice. Teoksessa: Rock Mechanics 1, s Springer-Verlag. Gardemeister, R., Johansson, S., Korhonen, P., Patrikainen, P., Tuisku, T. & Vahasarja, P Rakennusgeologisen kallioluokituksen soveltaminen. VTT Julkaisusarja, Tiedonanto 25. ISRM Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials. In Rock Characterization Testing & Monitoring. Oxford, Pergamon Press. s ISRM Suggested Method for Determining Point Load Strength. International Journal Rock Mech. Min. Sci. & Geomech. Vol. 22, no 2. S Korhonen, K-H., Gardemeister, R., Jaaskelainen, H., Niini, H. & Vahasarja, P Rakennusalan kallioluokitus. VTT Julkaisusarja, Tiedonanto 12. Laurila, T The comparison of the deviation survey methods and corrections to results at work sites ofposiva in 1997 (in Finnish). Tyoraportti Niinimaki, R. 21. Core drilling of deep borehole OL-KR14 at Olkiluoto in Eurajoki 21 (in Finnish). Tyoraportti Saltikoff, B Mineraalinimisanasto. Espoo, Geological Survey of Finland. Report of Investigation N:o 11 (in Finnish). 82 pages. ISBN

39 31 Time schedule Appendix 8.1 Item October!November Down-the-hole drilling/ casing setting Borehole OL-KR15 Move to the hole Drilling m Deviation measurements, borehole flushpumping Borehole OL-KR15B Move to the hole Drilling - 45 m Direction/dip measurements, borehole flushpumping

40 33 Drilling equip1nent Appendix 8.2 Item Quantity 1. Core drilling equipment - Diamec 1 S 1 pc - Royal Bean -pump, suckfilter CT -I 2 I pc - Alu 72 -drill rods 25m -Triple tube core barrel, WL-76 6 pc - Drill bits, WL pc - Reamers, WL pc - Casing 84/77 5 m - Casing 9/77 8m - Casingshoe 9/77 1 pc - Valve equipment I pc -Electric centrale 1 pc -Tools etc. 2. Flushing water equipment - Water container 5 m 3 I pc - Water container 3 m 3 2 pc - Compressor 1 pc - Waterpump 3 pc - Water amount counter 6pc - Sedimentation pool 1 pc - Submersible pump, diameter. 48 mm 1 pc - Pneumatic hose 17m -Water line 3m - Water level measuremant 1 pc 3. Auxiliary equipment - Office container 1 pc - Rest container 1 pc -Storage 1 pc - Mobil phone I pc 4. Accessories -Core boxes 4 pc - Label agent 3 pc 5. Measurement equipment - Conductivity measurement 1 pc - PP-dip inclinometer I pc - EZ Shot - survey tool 1 pc 6. Reporting equipment -Computer 1 pc - Examination instruments 1 serie -Rock Tester -instrument 1 pc

41 34 Drilling equipment Appendix 8. 2._, -. \... C:i - -- \\== : 1= : LF; (J- -= _-_-jj \j /I \ ) -----, C.'! \ / / WL-76 triple tube core barrel

42 Appendix 8. 3 CONSTRUCTION OF THE UPPER PART OF THE HOLE OL-KR15 Z - to of the casing ( center of the casi ) (...)..c.... ) c Q) ttr: Cl. L? Cl. Cl. (j Cl) Cl) Q) c () L? (j ls (j...c.... ) c Q) 1? 1? lj lj DIMENSIONS Z - ground level = +8,42 m Z- top of the casing = +8,82 m (V) or- or- ) c (/) ro (...) a= 3,6 m b= 4,12m c,4 m d = 233,54 m "..c... a. Q) " Q)..c

43 Appendix 8.3 CONSTRUCTION OF THE UPPER PART OF THE HOLE OL-KR15B Z - to of the casing ( center of the casi ).....c en c Q) L? CJ '''= CJ C:l. C:l. m CfJ CfJ Q) c - '''= L? '''= (j '''= '''=- '''= C:l. CJ CJ L? CJ C:l. [S (j L? CJ.. (j..c +-" ') c Q) C:l. DIMENSIONS Z- ground level= +8,35 m Z - top of the casing = +8,99 m a= 2,4 m b = 4,48 m c =,64 m d = 45,14 m 1'-- 1'-- ) ') c CfJ m u "'...c +-".. Q) "' Q)..c E E < 1'--

44 casing Is opened at three positions 11 os 2-3mm wide tracks casing RST x mox.3 (X) m '$, ' s. n c > c V!X) v I") $ w -...) 12 1\.42 I Part I Drawlno number I 1 Name of tile part ar 1 Product code _,bfy crouo Generol toleronoea I Scole I Product 1:2 l::t u 8$- TERRA- TEAM OY rs= INOA Appr. kg I Stonclard I Fonn, model, quantity I Quality arllat Linked RST 1 Cone for 84/77 casing Prev. A/275 l New j Nr " (!) [ ;;:; w

45 39 Degree of weathering OL-KR15 Appendix 8. 4 Start End \Veathering degree Remarks Rpl partly epidotized RpO Rpl partly epidotized RpO

46 4 Degree of \veathering L-KR 15 B Appendix 8. 4 Start End Weathering degree Remarks RpO Rp RpO Rp RpO

47 41 Lifts, OL-KR15 Appendix 8.5 Lifts m Lifts, m Lifts, m Lifts, m Lifts, m

48 42 Lifts, OL-KR15B Appendix 8.5 Lifts, m

49 List of coreboxes, OL-KR15 Appendix 8. 6 Number Section, m - m Number Section, m - m

50 44 List of coreboxes, OL-KR15B Appendix 8. 6 Number Section, m - m

51 Main rock type Minor subdivisions Start End Start End m m m m Rock type GRAN MGN MGN MGN GRAN Description Medium-grained and coarse-grained granite. Colour varies from gray to reddish bro\\tn. The main minerals of the granite are feldspar group (potassimn feldspar and plagioclase ), quartz and biotite. In the granite occurs mica gneiss sections and restites of granitized mica gneiss. Sulfides () occures in mica gneiss. Son1e pinite grains occures in coarse-grained granite. Mica gneiss with some granite sections. Quartz vein Perthite Mica gneiss with some granite sections. In coarse grained granite occurs some quite big grains of perthite and pinite. Micmatic mica gneiss with some granite sections. The main minerals of the mica gneiss are biotite, feldspar group (potassium feldspar and plagioclase) and quartz. Some sulfide and little coverns (1-2 mm) Little cavern with crystlas (e.q. ) Quartz rich section A little cavern in granite section Amount of granite is quite high. Thin layer which have in both contacts 2-3 mm wide vein. Veins are light gray coloured. Some pertihite grains in coarse grained granite. In granite occurs some sections with light coloured flame texture. Some parts/grains are slightly green colored. Some grains of perthite. Amount of granite is about as same as gneiss In granitic section light/gray coloured flame texture.. tll (") ::L ".-.. g -v. > " "C$ ::s.. ;<.j:;;:. Ut

52 Main rock type Minor subdivisions Rock type Start End Start End m m m m GRAN MGN GRAN MGN Description Mainly coarse-grained red coloured granite with mica gneiss sections. Core sample starts with about 1 meter wide mica gneiss section. In coarse-grained granite occurs micro fractures. Migmatic mica gneiss with some granite sections. Medium-grained and coarse-grained granite. Colour varies from gray to reddish brov.11. In the granite occurs son1e mica gneiss sections and restites of granitized 1nica gneiss. Gneiss with granite sections Q.. ('t) (IJ (") ::1. 'S s? -VI tx1 -+:-. \ > '" '" ('t) ::s Q J

53 Foliation, OL-KR15 Appendix 8.8 Examination section Rock Foliation Degree of Remarks Start (m) End (m) type angle e) foliation On site core orientation is not possible on vertical boreholes 4,12 113,2 GRAN Granite with mica gneiss sections. Granite -1, gneiss ,7 MGN 55 2 Mica gneiss section in granite 6,5 MGN 4 2 Mica gneiss section in granite 93,7 MGN 6 2 Mica gneiss section in granite 113,2 233,54 MGN Micmatic mica gneiss with granite sections. Gneiss 1-2, granite , MGN ,45 MGN ,8 MGN ,3 MGN , MGN ,3 MGN ,95 MGN ,15 MGN ,3 MGN ,45 MGN ,8 MGN ,2 MGN ,15 MGN 5 2

54 48 Foliation OL-KR158 Appendix 8.8 Examination section Rock Foliation Degree of Remarks Start (m) End (m) type angle ( ) foliation On site core orientation is not possible on vertical boreholes 2,38 13,57 GRAN Granite with mica gneiss sections. Granite -1, gneiss ,4 MGN 5 2 Mica gneiss section in granite 13,57 28,46 MGN Migmatic mica gneiss. Gneiss 1-2, 16, MGN ,45 MGN ,5 MGN ,46 41,5 GRAN Granite with some mica gneiss sections. Granite -1, gneiss ,95 GRAN ,5 45,14 MGN 44,75 MGN 4 2

55 I 35 Fracture Start End Type Fracture Colour of number depth depth angle fracture m m () surface l 4.65 clfi 35 lgra fi 3 lgra fi 4 1gra, whit fi 7 whit fi 5 \Vhit fi 45 lgra fi 35 whit fi 65 1gra fi fisl 3 blac, gray fisl 3 gray, blac fi 1 blac, gray fi 55 gray fi 1 lgree fi 7 white fi 6 whit fi 65 whit, lgree ti 6 white fi 55 gray fi 7 gray fi 5 dgre fi 75 gray ti ti fi 2 gbro fi 6 b1ac fi fi 55 gray fi 55 lgra fi 45 whit, gray ti ti fi 7 dgre fi 75 whit fi 6 blac, gray ti 6 Fracture Thickness Fracture filling of filled shape fracture clay 1 carb.5 carb, su1f lite carb 1 lite carb, su1f carb carb 1 lite carb, su1f lite sulf clor, carb carb, clor, sulf carb 1 sen carb, su1f carb, sulf lite carb, sulf lite carb lite sulf sulf su1f lite sulf sulf sulf carb, su1f carb, sulf 1 plan carb, sulf 1 plan cl or plan Fracture hness smoo smoo Remarks mainly splitted some crystals c... q-. (") 2 >-I (l; v(.ll r---' VI > ' ' (l; ::l ;;, \.+:-. \.

56 I Fracture Start End Type Fracture Colour of number depth depth angle fracture m m () surface fi 65 gray, whit fi fi 5 blac, gray fi 7 gray fi 45 blac fisl 45 blac, lgra ti fi 9 lbro fi 8 whit fi 7 blac, whit fi 4 whit fi 65 gray fi 8 blac, dgra fi 85 dgre, blac ti ti fi 35 gray ti ti fi blac, gray fi 35 gray fi 3 blac, gray fi 4 dgra ti ti fi 85 whit fi 3 lgree, gray fi 75 whit fi 8 whit fi 7 whit fi 25 gray, blac clfi 4 gray fisl 5 lgra fi 35 lgra fi 6 \Vhit Fracture Thickness Fracture filling of filled shape fracture carb 1.5 sulf plan carb, sulf plan sulf sulf plan carb, sulf plan sulf carb, sulf sulf kaol carb.5 plan carb, mica 1 carb, sulf.5 carb, sulf sulf carb, sulf 1 carb carb, sulf plan carb, sulf plan carb carb, mica plan clay, carb, mica carb, mica CUIY mica, carb k:aol 1 Fracture hness smoo smoo smoo smoo smoo smoo - Remarks some crystals some crystals parly, filling -1 mm, undulating splitted, also fisl r--'...,..., 2 (1J "C/l r--' to Vl >- '" '" (1J [ ;:;: VI

57 I Fracture Start End Type Fracture Colour of number depth depth angle fracture m m CO) surface ti fi 8 dgra fi 7 gray, whit fi 7 lbro ti ti fi 7 whit fi 6 lgra fi 4 gray fi 8 lgra fi 75 lgra fi 75 lgra ti ti ti ti fi 6 gray fi 6 lbro ti fi 6 blac, whit fi 8 gray, whit fi ti fi 45 gray fi 5 gray fi 5 gray ti ti fi 35 whit ti fi 55 lbro fi 75 whit, lbro fi 85 whit, lbro ti ti fisl 6 ggra -- Fracture Thickness Fracture filling of filled shape fracture sulf sulf, carb sulf plan lite carb, sulf carb carb, sulf sulf, carb carb carb, sulf lite lite sulf plan sulf carb plan carb, sulf lite carb, sulf carb carb, sulf carb, sulf sulf carb, sulf carb, sulf klor CUI\ 1 lite plan plan lite Fracture hness smoo Remarks some crystals partly mostly splitted, r...., ::p P-l n 2..., (D V(/) r---' Id VI >- '" '" () ;:l ;;, \[) Vt

58 I I Fracture Start End Type Fracture Colour of number depth depth angle fracture m m CO) surface ti ti ti ti fi 5 whit, cray clfi 7 gray ti fi 4 lgra ti ti fi 4 blac, lgra fi 5 gray fi 55 gray fi 4 lbro fi 65 gray clfi 4 blac, gray ti fisl 25 blac, lgra fi 6 lgra ti fi 4 1gra fi 55 gray fi 6 lgra fi 6 b1ac fi 5 dgra, gray grfi 65 gray, blac fi 6 dgra fi 6 gray, dgra fi 75 gray, blac fi 65 gray ti fi 7 dgra fi 75 dgra fi 6 dgra fi 6 dgra fi 3 blac, dgra Fracture Thickness Fracture filling of filled shape fracture irrc kaol, sulf clay carb, sulf plan carb, sulf carb, sulf.5 carb, sulf.5 carb litc litc clor, carb carb.5 varb, sulf plan carb 1 carb lite 7 lite plan sulf lite sulf plan sulf sulf 1 Fracture hness smoo smoo Remarks clay with sandy material some crystals also fis1 crushed rock, not picked up t--< I-+; (') 2 1-i Y' r ;N Vo > :g ('t ;:I ;;, oc \ Vo t-...j

59 I Fracture Start End Type Fracture Colour of number depth depth angle fracture m m () surface fi 55 with, blac fi 8 lbro fi 6 lbro fi 6 ggra fi 4 with, gray fi 2 dgra fisl 4 blac, gray fi 2 with, lbro ti ti ti fi 8 dgra fi 9 gray, whit ti fi 75 dgra fi 6 gray fi 7 gray fi 4 b1ac, gray ti fi 65 1bro, whit i 8 gray fi 6 dgra fi 3 gray fi 8 lbro ti fis1 2 blac, lbro fi 5 1bro fisl 5 blac fi 8 gray fis1 4 blac fi 8 gray fi 5 lbro fi 35 whit fi 25 whit fi 7 lbro, whit fi 8 lbro Fracture Thickness Fracture filling of filled shape fracture kaol, sulf plan sulf sulf lite sulf kaol, sulf carb lite clor, carb kaol, sulf lite sulf lite kaol trre su1f lite sulf lite carb, sulf litc su1f litc carb carb, sulf.5 sulf, carb.5 sulf sulf, grap sulf lite sulf lite sulf sulf lite sulf lite su1f kao1 kao1 litc sulf, kao1.5 litc su1f Fracture hness smoo smoo Remarks little covem, little covem, little covem, little covem, partl:y' little covem, partly r c... ql p;l c -I (1) "[/l r?:l U1 )> " "d (1) ::J p.. ;:;, '- U1 vj

60 i I Fracture Start End Type Fracture Colour of number depth depth angle fracture m m () surface fi 8 lgra ti fi 8 gray, \Vhit fi 7 dgra fi 45 gray fisl 35 blac fisl 65 blac ti fi 65 lgra ti fi 35 gray, whit fi 75 gray, lbro fi 7 blac fi 8 dgra fisl 4 blac ti ti fl 45 whit fi 55 blac grfi 6 gray, blac fi 6 dgra ti fi 5 dgra fi 5 dgra fisl 25 blac fisl 35 blac ti ti ti ti 5 Fracture Thickness Fracture filling of filled shape fracture carb, sulf sulf, kaol grap, sulf grap, sulf plan carb, sulf litc carb, sulf sulf sulf sulf sulf kaol, carb sand, clay 1 plan grap plan plan Fracture hness smoo smoo smoo smoo smoo smoo smoo smoo Remarks little covem, a little clay A section with clay and grain filled fractures. Shear zone. About 8 fractures, one clay filling about 15 nun, widest filling varies 3-5 mm. Sample not picked up. I c: ;!; ,, (D y;, c- ::: Ul )> ' ' (D ::l ;;, 'D Ul #

61 Fracture Start End Type Fracture Colour of number depth depth angle fracture m m () surface ti fisl 4 blac fi 45 gray, whit, lbro ti fi 5 gray, whit ti ti ti fi 4 whit ti fi 2 lgre, blac fi 5 lbro, blac fi fisl 35 dgra fi 5 with lgra fisl 55 blac fi 5 gray, blac fi 2 whit fi 35 dgra ti fisl 3 blac fisl 25 blac ti fi 6 gray, lbo fi 55 whit, blac fi 15 blac, whit ti fi 6 lbro, blac fi 15 lbro, blac fi 55 dgra ti fi 6 whit fi 6 whit ti ti ti 6 Fracture Thickness Fracture filling of filled shape fracture carb, sulf kaol lite lite carb, sulf sulf carb.5 plan carb 1 litc grap plan grap lite plan carb, sulf.5 carb.5 litc plan sulf plan sulf plan kaol litc kaol plan Fracture hness smoo smoo smoo smoo smoo Remarks some crystals crystals l"' -... J n 2 VC/) l"' Id Vt )> '"d '"d ::l.. - Vt v.

62 I l"'ract ure Start End l'ype Fracture Colour of number depth depth angle fracture m m () surface fi 7 whit fi 7 whit fi 6 dgra ti fi 7 gray, 1bro ti fi 8 dgra, whit fi 45 gray ti ti fi 9 whit ti fi 1 lgra, b1ac ti fi 7 dgra, 1bro fi 7 lgra fi 8 \:Vhit ti fi 5 blac, lbro ti fi 75 whit, lbro fi 4 dgra ti fi 35 whit fi 7 lgra ti ti fi 4 gray, lbro, whit fi 7 lbro fi 7 gray fisl 35 blac ti fisl 5 blac fi 55 lgra ti ti 35 Fracture Thickness Fracture filling of filled shape fracture kaol kaol lite lite sulf plan kaol, sulf carb, sulf lite lite carb, kao1 lite sulf, carb carb lite sulf.5 plan kaol, sulf plan sulf lite carb, kaol, sulf carb lite lite sulf sulf sulf plan carb Fracture hness smoo smoo smoo smoo Remarks little cavern, crystals partly small crystals partly l' - c '""'i r, E '-! (i) (f, r :;:d VI ' g. - \D VI \

63 Fracture Start End Type Fracture Colour of number depth depth angle fracture m m () surface ti fi 2 lgra fi 55 whit ti fi 4 dgra fi 8 gray ti fi 5 lgre ti ti fisl --- _]_J L_ blac - Fracture Thickness Fracture filling of filled shape fracture carb, sulf 1.5 kaol sulf irrc mica, quar 3 lite grap, sulf, carb Fracture hness smoo Remarks filling 1-2 nun, some crystals filling 1-12, r' -... ::::;< p (") 2 '""1 (!; "1:/l r' Vi Vt..._] >- ' u (!;.. ;;;: \

64 Fracture Start End Type Fracture number depth depth angle m m () fi ti fi fi fi fi fi fi fi fi ti fi fi fi fi ti fi ti ti ti fi clfi ti fi fi ti fi fi fi fi fi fi fi fi fi R2 ti 85 Colour of Fracture Thickness fracture filling of filled surface fracture lbro sulf lgra carb, sulf.5 whit carb, sulf \vhit, lbro carb, sulf 1 whit carb, sulf lgra carb whit, lbro carb, sulf whit, gray carb whit, lgre carb \V hit lgra \V hit carb 1 dgra dgra, whit ea rh gray clay 1 whit whit blac, lbro lbro blac, gray gray, lbro blac, lbro blac, lbro gray whit whit carb, kaol carb, kaol sulf sulf carb sulf sulf sulf Fracture shape litc lite litc plan rrre Fracture hness Remarks filling.5-2 mm, undulating,...,., :::t p.l :::: '""I r. er, r' ::... Vl t::o )> '1j '1j Cil c.. ;;:;: \.Q VI

65 Fracture Start End Type Fracture Colour of number depth depth angle fracture m m () surface ti fi 8 gray fi 2 dgra ti ti ti fi 85 whit, blac fi 65 gray fi 65 dgra, blac ti ti fi 7 whit ti ti 7 whit ti fi 9 \Vhit fi 7 gray fi 6 gray, whit ti ti ti ti fi 7 whit fi 6 blac clfi 7 lgra clfi 65 whit clfi 7 whit clfi 65 gray clfi 7 gray fi 65 lgra ti ti 45 blac, gray ti 55 lgra, lbro fisl 4 blac ti fi 5 gray Fracture Thickness Fracture filling of filled shape fracture plan lite lite litc litc carb 1 lite plan carb, sulf.5 litc carb.5 plan carb sulf carb 1 IITC carb 1 cl or 1 carb carb litc carb, sulf carb, sulf litc lite carb, sulf Fracture hness smoo smoo smoo Remarks partly t r.h..., ::;> 2 (1) "'"" VVJ r-' 7;; U1 OJ > "'d "'d r. ::l \ U1 \

66 Fracture Start End T'pe Fracture Colour of number depth depth angle fracture m m () surface fi 6 lgra grfi 35 gray grfi 75 gray fisl 2 blac fi 7 whit fi 6 \:Vhit fi 6 lgra clfi 8 whit fi 7 lgra fi 7 whit fi 65 lgra fi 6 lgra, lbro fi 4 whit ti fi 35 dgre fi 6 whit fi 6 dgra fi 6 gray, dgra ti fi 4 lgra fi 5 lgra fi 6 gray clfi 6 dgra clfi 7 ggre clfi 7 whit fi 65 whit 99 23".77 grfi 4 blac fi 3 lgra ti fi 4 dgra clfi 3 blac fi 3 gray grfi 4 blac clfi 6 dgra carb Fracture Thickness Fracture filling of filled shape fracture plan lite 3 3 kaol, sulf kaol, sulf carb, kaol 1 kaol.5 lite carb 1 litc lite carb 1 lite carb, sulf.5 lite cab, kaol, sulf CUf\' lite lite carb 1.5 lite carb, sulf irrc carb carb 1 carb carb, sulf 2 plan.5 plan kaol.5 plan plan carb litc carb plan carb 4 litc plan plan plan Fracture hness smoo smoo smoo smoo Remarks weathered fracture with mainly grained material and a little clay rock pieces, grained rock and clay between two slickensided fracture S' soe crystals splitted, not picked up L' -,...,., :::;> (') 2 (il rface Y' f2 Vo td )> "a "a (!) ;::l c.. ;;, oc \D \

67 Fracture Start End Type Fracture Colour of number depth depth angle fracture m m () surface fi 3 gray ti fi 8 lgra ti fi 35 gray fi 6 whit ti fi 6 whit, lbro fi 6 ggre fi 6 ggre fi 4 dgra fi 55 dgra fi 8 blac fi 7 lgra fi fi 75 gray fi 6 gray ti ti 1 b1ac fi 3 whit fi 4 whit fisl 35 b1ac, gray fisl blac, gray fi 1 grav fi 4 whit fi 35 lgra ti 55 whit fi 6 gray fi 8 1gra fi 6 gray, lbro fi 4 lgra ti 7 whit ti fi 8 gray ti fi 4 hlac, gray, lbro Fracture Thickness Fracture filling of filled shape fracture carb plan plan carb carb.5 sulf, kaol sulf lite lite sulf carb carb 1 carb lite plan carb carb carb carb carb 1 carb 1 lite carb 1 carb lite carb, sulf carb, sulf 2 plan carb litc carb.5 litc litc carb carb, sulf Fracture hness smoo smoo smoo Remarks mostly splitted also grfi undulating, splitted partly r,...,., :::;" p n 2 '"'1 (ll Cil l" (Cl Vl tu )> " " ::l ;;:: \!:) \

68 63 Fracture frequency and RQD, OL-KR 15 Appendix 8. 1 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m % G loo G loo loo l 1

69 64 fracture frequency and RQD, OL-KR15 Appendix 8. I Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m % loo loo I I I loo loo loo loo loo

70 65 Fracture frequency and RQD, OL-KR 15 Appendix 8.1 Start End All fractures Natural fractures RQD Remarks m m pc/m pc/m % breaks over 2, fractures about I I loo loo loo I I loo loo loo

71 66 Fracture frequency and RQD, OL-KR 15 Appendix 8.1 Start End All tractures Natural tractures RQD Remarks l11 m pc/m pc/m % IOO I96 2 IOO I IOO I loo IOO IOO I loo loo IOO I loo I IOO I I IOO 22I I I IOO IOO

72 67 Fractur frequency and RQD, OL-KR15B Appendix 8.1 Stmt End All il-actures N atura1 fractures RQD Remarks m m pc/m pc/m % loo breaks over loo I breaks over

73 Fractured zones, core loss, OL-KR 15 Appendix Start End Class ofthe Core loss Remarks m m fractured zone m 148,22 148,66 RiV

74 7 Fractured zones, core loss, OL-KR 15B Appendix 8.11 Start End Class ofthe Core loss Remarks m m fractured zone m 3,3 3,78 Rill I

75 r Flush \Vater samples Appendix Boreholc OL-KR15 Date Time Depth Flov'vmeter reading Quantity Batch Electric Label litres conduc- tivity concentration m before after litres no ms/m g I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : l :

76 72 Flush water samples Appendix 8.12 Borehole OL-KR15B Date Time Depth Flo\'vmeter reading Quantity Batch Electric Label conduc- concentration litres tivity m before after litres no ms/m )lg I I : : : : : :

77 73 Returing water samples Appendix 8.13 Boreho1c OL-KR15 Date Time Depth Sample Flushing water Label batch concentration m no no JJ.g I : ".) : : ".) : : : : : : Borchole OL-KR15B Date Time Depth Sample Flushing water Label batch concentration m no 11 JJ.g : :

78 75 EZ-SHOT DEVIATION SURVEY Appendix 8.14 Borehole Initial azimuth Initial dip Magnetic declination OLKILUOTO, OL-KR degrees 89.4 degrees 4. 5 degrees Start X= y = z = 8.42 POINT DEPHT X y z AZIM. DIP 1, 92439, ,14 8,42 321, 89,4 2 3, 92439, ,12 5,42 32,84 89,14 3 6, 92439, ,8 2,42 32,88 88,88 4 9, 9244,3 2584,4 -,58 321,22 88, , 9244, ,99-3,58 32,97 88, , 9244, ,93-6,58 32,93 88, , 9244, ,87-9,57 32,94 87, , 9244, ,79-12,57 32,98 87,6 9 24, 9244, ,71-15,57 321,12 87, , 9244, ,62-18,57 32,96 87,7 11 3, 9244, ,52-21,56 32,96 86, , 9244, ,41-24,56 321,9 86, , 9244, ,29-27,55 32,99 86, , 92441, ,16-3,54 32,97 86, , 92441, ,3-33,54 321,32 85, , 92441, ,89-36,53 322,8 85, , 92441, ,75-39,52 322,49 85, , 92441, ,62-42,51 322,14 85, , 92441, ,48-45,5 321,38 85, , 92442, ,34-48,49 32,79 85, , 92442, ,19-51,49 32,83 85, , 92442, ,5-54,48 32,95 85, , 92442, ,9-57,47 321,2 85, , 92442, ,76-6,46 321,72 85, , 92443, ,62-63,45 322,41 85, , 92443, ,48-66,44 322,34 85, , 92443, ,34-69,43 322,19 85, , 92443, ,2-72,42 322,26 85, , 92443, ,6-75,42 321,83 85, , 92443, ,91-78,41 321,4 85, , 92444, ,77-81,4 321,1 85, , 92444, ,62-84,39 32,48 85, , 92444, ,48-87,38 32,61 85, , 92444, ,33-9,37 32,74 85, , 92444, ,18-93,36 32,24 85,56

79 76 EZ-SHOT DEVIATION SURVEY \ppendix 8.14 POINT DEPHT X y z AZIM. DIP 36 15, 92445, ,3-96,35 319,99 85, , 92445, ,89-99,34 32,27 85,59 38 Ill, 92445, ,74-12,34 32,18 85, , 92445, ,59-15,33 319,94 85, , 92445, ,44-18,32 319,96 85, , 92445, ,29 -Ill,31 32,4 85, , 92446, ,13-114,3 319,84 85, , 92446, ,98-117,29 319,28 85, , 92446, ,82-12,28 318,66 85, , 92446, ,66-123,27 318,32 85, , 92446, ,49-126,26 318,9 85, , 92447, ,33-129,25 317,85 85, , 92447, ,17-132,24 317,65 85, , 92447, , -135,23 317,19 85, , 92447, ,83-138,22 316,68 85, , 92447, ,65-141,21 316,66 85, , 92447, ,48-144,2 317,12 85, , 92448, ,3-147,19 317,7 84, , 92448, ,13-15,17 317,81 84, , 92448, ,94-153,16 317,33 84, , 92448, ,76-156,15 317,8 84, , 92448, ,57-159,14 316,99 84, , 92449, ,38-162,12 316,9 84, , 92449, ,2-165,11 316,97 84, , 92449, ,1-168,1 317,12 84, , 92449, ,82-171,9 317,12 84, , 92449, ,63-174,7 316,8 84, , 9245, ,43-177,6 316,85 84, , 9245, ,24-18,5 317,75 84, , 9245, ,5-183,3 318,1 84, , 9245, ,85-186,2 317,39 84, , 9245, ,66-189, 316,88 84, , 92451, ,46-191,99 317,21 84, , 92451, ,26-194,98 318,15 84, , 92451, ,6-197,96 318,62 84, , 92451, ,87-2,95 318,27 84, , 92452, ,67-23,93 318,2 84, , 92452, ,46-26,92 317,79 84, , 92452, ,26-29,9 317,8 84, , 92452, ,5-212,88 318,1 84, , 92452, ,85-215,87 317,41 84, , 92453, ,64-218,85 316,14 84, , 92453, ,43-221,84 314,87 84,2

80 EZ-SHOT DEVIATION SURVEY Appendix 8.14 Borehole Initial azimuth Initial dip Magnetic declination OLKILUOTO, OL-KR15B. degrees 9 degrees 4.5 degrees Start X= y = z = 8.35 POINT DEPHT X y z AZIM. DIP 1, 92442, ,44 8,35, 9, 2 3, 92442, ,44 5,35, 89,9 3 6, 92442, ,45 2,35 92,49 89,78 4 9, 92442, ,47 -,65 91,68 89, , 92442, ,49-3,65 91,33 89, , 92442, ,51-6,65 92,25 89, , 92442, ,54-9,65 93,1 89, , 92442, ,57-12,65 94,84 89, , 92442, ,6-15,65 94,1 89, , 92442, ,62-18,65 92,91 89, , 92442, ,65-21,65 93,52 89, , 92442, ,69-24,65 93,32 89, , 92442, ,72-27,65 91,66 89, , 92442, ,76-3,65 91,66 89, , 92442, ,79-33,65 91,66 89, , 92442, ,83-36,65 91,66 89,31

81 79 EZ-SHOT deviation survey Appendix 8.15 OL-KR15 Olkiluoto OL-KR15 Horizontal proct1on OT tha dv1ot1on 1n N<orth)-E(ost) coordinates N E Vrt1C1 proact1n Or thg CQV1t1on I l EZ-SHOT-borhol In1tol o:z:1muth In1t1ol dip I Total 1 liiangth dv1ot1on survy == 321. asrs 9. d.agrliiiuiiis 234. m SMOY

82 degree -8. l om N I I 1--'- Vl>-j.. s. a s ::;l en s:: '-<: m (T) d==----= EZ-SHOT-borehole devlatlon survey Olklluoto OL-KR15 Oevlatlon angle projected on the plane wlth the lnltlal borehole dlp 1: 15 SMOY i 6. ;;: -Vl

83 m I -16. t -12. t L. om rn 1 I Vl...,... a.. (!) < a s ::s rj) s:: "'1 < (!) '-< o.or m <Th) EZ-SHOT-borehole dev1at1on survey Olklluoto OL-KR15 Horizontal projection 1: 15 SMOY "C) (!) Vl

84 m Ot'r1 N 1 I '""""' Ul.. ('D... < e... ::,:3 VJ c::. L =======+= m (T) N EZ-SHOT-borehole deviation survey Olkiluoto OL-KR15 Projection on the plane with the initial borehole dlp 1: 15 SMOY '"d ('D 8. '""""' Ul

85 m I / -16. t / -12. t / / om N I I o Vl.. (!)... < a... ::s rjj (!) <...<: m (T) o.or w EZ-SHOT-borehole deviation survey Olklluoto OL-KR15 Vertical projection: Axis T has the lnltlal dip of the borehole 1: 15 SMOY " (!) 8. $<' Vl

86 degree Otn N 1 I --o Vl,_,.. (!) < - s Vl '-< m (T) f r ; EZ-SHOT-borehole dev1at1on survey Olklluoto OL-KR15 D1p angle projected on the vertlcal plane 1: 15 SMOY "d (!) [ ;;< _. Vl

87 85 EZ-SHOT deviation survey Appendix 8.15 OL-KR15B Olkiluoto OL-KR15B Hor1zontcl proct1on o th dgv1ct1on 1n N<orth)-E<cst) coord1natea N Vrt1cal progct1on tha dqv1ct1n I EZ-SHOT-borgholg In1tcl caz1muth In1t1cl dip I Totcal lgnsth dv1ct1on survy 91.3 dsrqs 9. dgreiciis SMOY 45. m

88 degree om N.._ I 'C/'l ::t Vl O'o.. a c:r ::t Ul '-< m (T). T r \ EZ-SHOT-borehole dev1at1on survey Olklluoto OL-KR158 Devlatlon angle projected on the plane wlth the lnltlal borehole dlp 1: 25 SMOY '"d 5. ;;:< -Vl

89 E EZ-SHOT deviation survey OL-KR15B I (...-f I (\J..-f. I. I 87 E Lfl (T) Lfl N (T)...-f... Appendi 8.15 >-.. QJ > L :J (/) c r-1 +) r-1 c > QJ r-1 TI m +) Lfl u QJ...-f QJ...-f...-i ::: J D :::s:::.c I L N QJ...J ()_ I L N,.....-I. I I +l +l (T) I- c :J I...-i N Lf) U1 r-1 T""' N >- I L N...-i :::::E w I...-f (f).. N (Q...-f...-i

90 m Ot'Il rn I I t--- V.. tljo.. (D... < a... ::::s C/:J '< m (T) EZ-SHqT-borehole deviation survey Olklluoto OL-KR15B Projection on the plane wlth the initlal borehole dlp 1: 25 SMOY "'C) (D [ <" '""""" V..

91 m t OtiJ LiN I I... o VI-) t:dp. (D < a en s:: 1-t (6...::: m <T) =================+========= \ EZ-SHOT-borehole dev1at1on survey Olklluoto OL-KR158 Vertical projection: Ax1s T has the initial dip of the borehole 1: 25 SMOY " (tl [... VI

92 EZ-SHOT deviation survey OL-KR15B 9 Appendix 8.15 E Lf1 aj c...-i... Lf1 (T).--4 >-.. aj > L :J en c..-t +->... a > OJ D CD Lf1 aj....-i ::: ::::s:::..c. I aj _j L D. I +> I- :J I.-I c.n... I N.-I w...-i u..-t +-> L aj > aj..c. +-> c D OJ +> u... aj D -, D (\J L I... (\J... OJ I.-I m c (T) Lf1 (\J >- o_..-t.. L.--4 c.n ru ; ru L m QJ D I CD I I C\J I C\J

93 91

94 93 : - '"' :- -.

95 94

96 95 = !t r:y!.-..p ,..,..,. kt. - --=.

97 96

98 , ,..._ I ' ' ' r,j "'""' -1 I J :,.t..,j f I \ t! ' ' l - f..,., " 'I:!":. Ot,..,. ', "9 (t :;-:.. ;=-. ;::;:-...-.;- -].. I " _ -" ',. : - 4 th(. - - ' ;- - ' =:- '..,...Jo = -- : 1.,.. '', "._ ;, " I I...., -',.' ;> ' -.: --,- l.. - ' rr l ,.,... ] ,' - ". - _.._ ,.,. "tl i v..:... '!>.>...,.... ' "',... '

99 &., ,..z _.,-i _ r;, '''.,, - l_r;.;;:. v..., ' -.

100 # ' I - «' < t( >r """ J,... ' - I - * -.. _.,.. ; '!' \I r., --,:-.- ":.;.it(' : :-....;...

101 =--- --, ''""'"" :'..,.,t,.,... '\f ;...,..,..:...., '!' ,_ ' ". t- "'. '..,... {I A:r.f-..._ \

102 :: 11,_..; I lit.'. : 'l'{ \,.t..., I,.. - I '.'./...' I I ' r..,_...;;,,., : :.; -'( ---: ) ' _..

103 12

104 13,, 1'1 1{ m I OL-KR

105 14 ;;.._ ==...--,...,, t.!;, --=-7 '.. -;-. ' :" c: lf'4'". I tj.u. --,. _ ' -....)o =r # _,....,. '.

106 15 -: ::.. '.. ' '..,.- ' ; t;-;:.-:--'-- --.,-_,.- _,...-..,, :: ::.;::t7!..

107 16 /ill!'. ;} < (/j ,. 1 -, _, t e:-= ' --., _, =---. :o..,r-.e;,;.. -,:,.. ::--,..,--.. l...

Core Drilling of Oeep Bomhole Ol-KR37 at Olkiluoto in furajoki 2005

Core Drilling of Oeep Bomhole Ol-KR37 at Olkiluoto in furajoki 2005 Working Report 2005-62 Core Drilling of Oeep Bomhole Ol-KR37 at Olkiluoto in furajoki 2005 Risto Niinimaki November 2005 POSVA OY Fl-27160 OLKLUOTO, FNLAND Tel. +358-2-8372 31 Fax +358-2-8372 3709 TEKJA

Lisätiedot

Core Drilling of Deep Borehole 0 l-ka43 at Olkiluoto in [urajoki 2006

Core Drilling of Deep Borehole 0 l-ka43 at Olkiluoto in [urajoki 2006 .POSIVA Working Report 2006-115 Core Drilling of Deep Borehole 0 l-ka43 at Olkiluoto in [urajoki 2006 Risto Niinimaki December 2006 POSIVA OY Fl-27160 OlKILUOTO, FINLAND Tel. +35&-2-&372 31 Fax +35& 2

Lisätiedot

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. START START SIT 1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward. This is a static exercise. SIT STAND 2. SIT STAND. The

Lisätiedot

Efficiency change over time

Efficiency change over time Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel

Lisätiedot

Capacity Utilization

Capacity Utilization Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run

Lisätiedot

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007

National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 National Building Code of Finland, Part D1, Building Water Supply and Sewerage Systems, Regulations and guidelines 2007 Chapter 2.4 Jukka Räisä 1 WATER PIPES PLACEMENT 2.4.1 Regulation Water pipe and its

Lisätiedot

Core Drilling of Shallow Drillholes OL-PP72...OL-PP89 at Olkiluoto, Eurajoki 2011

Core Drilling of Shallow Drillholes OL-PP72...OL-PP89 at Olkiluoto, Eurajoki 2011 Working Report 2012-20 Core Drilling of Shallow Drillholes OL-PP72...OL-PP89 at Olkiluoto, Eurajoki 2011 Vesa Toropainen May 2012 POSIVA OY FI-27160 OLKILUOTO, FINLAND Tel +358-2-8372 31 Fax +358-2-8372

Lisätiedot

LYTH-CONS CONSISTENCY TRANSMITTER

LYTH-CONS CONSISTENCY TRANSMITTER LYTH-CONS CONSISTENCY TRANSMITTER LYTH-INSTRUMENT OY has generate new consistency transmitter with blade-system to meet high technical requirements in Pulp&Paper industries. Insurmountable advantages are

Lisätiedot

TEST REPORT Nro VTT-S Air tightness and strength tests for Furanflex exhaust air ducts

TEST REPORT Nro VTT-S Air tightness and strength tests for Furanflex exhaust air ducts TEST REPORT Nro VTT-S-04515-08 19.5.008 Air tightness and strength tests for Furanflex exhaust air ducts Requested by: Hormex Oy TEST REPORT NRO VTT-S-04515-08 1 () Requested by Order Hormex Oy Linnanherrankuja

Lisätiedot

Pohjavesiputkien PVPl 9 ja PVP20 asentaminen furajoen Olkiluodossa kesällä 2004

Pohjavesiputkien PVPl 9 ja PVP20 asentaminen furajoen Olkiluodossa kesällä 2004 Työraportti 2004-48 Pohjavesiputkien PVPl 9 ja PVP20 asentaminen furajoen Olkiluodossa kesällä 2004 Tauno Rautio Marraskuu 2004 POSIVA OY FIN-2760 OLKILUOTO, FINLAND Tel +358-2-8372 3 Fax +358-2-8372 3709

Lisätiedot

Gap-filling methods for CH 4 data

Gap-filling methods for CH 4 data Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling

Lisätiedot

Kalliopinnan varmistukset seismisillä linjoilla ja suunnitellun kuilun alueella syksyllä 2002

Kalliopinnan varmistukset seismisillä linjoilla ja suunnitellun kuilun alueella syksyllä 2002 Työraportti 2002-51 Kalliopinnan varmistukset seismisillä linjoilla ja suunnitellun kuilun alueella syksyllä 2002 Mari Lahti Lokakuu 2002 POSIVA OY FIN-27160 OLKILUOTO, FINLAND Tel. +358-2-8372 31 Fax

Lisätiedot

ONKALO Pose Experiment Core Drilling of Drillholes ONK-PP , ONK-PP and ONK-PP in ONKALO at Olkiluoto

ONKALO Pose Experiment Core Drilling of Drillholes ONK-PP , ONK-PP and ONK-PP in ONKALO at Olkiluoto Working Report 2010-86 ONKALO Pose Experiment Core Drilling of Drillholes ONK-PP223...226, ONK-PP253...261 and ONK-PP268...272 in ONKALO at Olkiluoto 2009 2010 Vesa Toropainen December 2010 POSIVA OY Olkiluoto

Lisätiedot

16. Allocation Models

16. Allocation Models 16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue

Lisätiedot

Drilling and the Associated Drillhole Measurements of the Pilot Hole ONK-PH4

Drilling and the Associated Drillhole Measurements of the Pilot Hole ONK-PH4 Working Report 2006-71 Drilling and the Associated Drillhole Measurements of the Pilot Hole ONK-PH4 Antti Öhberg Eero Heikkinen Hannele Hirvonen Kimmo Kemppainen Johan Majapuro Juha Niemonen Jari Pöllänen

Lisätiedot

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

The CCR Model and Production Correspondence

The CCR Model and Production Correspondence The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls

Lisätiedot

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 13.6.2013 19:42 / 1 Minimum

Lisätiedot

Information on preparing Presentation

Information on preparing Presentation Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals

Lisätiedot

Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi

Network to Get Work. Tehtäviä opiskelijoille Assignments for students. www.laurea.fi Network to Get Work Tehtäviä opiskelijoille Assignments for students www.laurea.fi Ohje henkilöstölle Instructions for Staff Seuraavassa on esitetty joukko tehtäviä, joista voit valita opiskelijaryhmällesi

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

anna minun kertoa let me tell you

anna minun kertoa let me tell you anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta

Lisätiedot

Drilling and the Associated Drillhole Measurements of the Pilot Hole ONK-PH6

Drilling and the Associated Drillhole Measurements of the Pilot Hole ONK-PH6 Working Report 2007-68 Drilling and the Associated Drillhole Measurements of the Pilot Hole ONK-PH6 Antti Öhberg, ed. Hannele Hirvonen Kimmo Kemppainen Juha Niemonen Nicklas Nordbäck Jari Pöllänen Tauno

Lisätiedot

Kairanreiän VB puhdistustyöt Loviisan Hästholmenilla

Kairanreiän VB puhdistustyöt Loviisan Hästholmenilla Työraportti 98-36 Kairanreiän VB puhdistustyöt Loviisan Hästholmenilla Tauno Rautio Toukokuu 1998 POSIVA OY Mikonkatu 15 A, FIN-00100 HELSINKI, FINLAND Tel. +358-9-2280 30 Fax +358-9-2280 3719 Työraportti

Lisätiedot

Metsälamminkankaan tuulivoimapuiston osayleiskaava

Metsälamminkankaan tuulivoimapuiston osayleiskaava VAALAN KUNTA TUULISAIMAA OY Metsälamminkankaan tuulivoimapuiston osayleiskaava Liite 3. Varjostusmallinnus FCG SUUNNITTELU JA TEKNIIKKA OY 12.5.2015 P25370 SHADOW - Main Result Assumptions for shadow calculations

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.9.269

Lisätiedot

Other approaches to restrict multipliers

Other approaches to restrict multipliers Other approaches to restrict multipliers Heikki Tikanmäki Optimointiopin seminaari 10.10.2007 Contents Short revision (6.2) Another Assurance Region Model (6.3) Cone-Ratio Method (6.4) An Application of

Lisätiedot

Curriculum. Gym card

Curriculum. Gym card A new school year Curriculum Fast Track Final Grading Gym card TET A new school year Work Ethic Detention Own work Organisation and independence Wilma TMU Support Services Well-Being CURRICULUM FAST TRACK

Lisätiedot

Data quality points. ICAR, Berlin,

Data quality points. ICAR, Berlin, Data quality points an immediate and motivating supervision tool ICAR, Berlin, 22.5.2014 Association of ProAgria Centres Development project of Milk Recording Project manager, Heli Wahlroos heli.wahlroos@proagria.fi

Lisätiedot

,0 Yes ,0 120, ,8

,0 Yes ,0 120, ,8 SHADOW - Main Result Calculation: Alue 2 ( x 9 x HH120) TuuliSaimaa kaavaluonnos Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet LX 70 % Läpäisy 36 32 % Absorptio 30 40 % Heijastus 34 28 % Läpäisy 72 65 % Heijastus ulkopuoli 9 16 % Heijastus sisäpuoli 9 13 Emissiivisyys.77.77 Auringonsuojakerroin.54.58 Auringonsäteilyn lämmönsiirtokerroin.47.50

Lisätiedot

I. Principles of Pointer Year Analysis

I. Principles of Pointer Year Analysis I. Principles of Pointer Year Analysis Fig 1. Maximum (red) and minimum (blue) pointer years. 1 Fig 2. Principle of pointer year calculation. Fig 3. Skeleton plot graph created by Kinsys/Kigraph programme.

Lisätiedot

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145

( ( OX2 Perkkiö. Rakennuskanta. Varjostus. 9 x N131 x HH145 OX2 9 x N131 x HH145 Rakennuskanta Asuinrakennus Lomarakennus Liike- tai julkinen rakennus Teollinen rakennus Kirkko tai kirkollinen rak. Muu rakennus Allas Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 2 km

Lisätiedot

( ,5 1 1,5 2 km

( ,5 1 1,5 2 km Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 4 5 3 1 2 6 7 8 9 10 0 0,5 1 1,5 2 km

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a

Tynnyrivaara, OX2 Tuulivoimahanke. ( Layout 9 x N131 x HH145. Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a , Tuulivoimahanke Layout 9 x N131 x HH145 Rakennukset Asuinrakennus Lomarakennus 9 x N131 x HH145 Varjostus 1 h/a 8 h/a 20 h/a 0 0,5 1 1,5 km 2 SHADOW - Main Result Assumptions for shadow calculations

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG VE1 SHADOW - Main Result Calculation: 8 x Nordex N131 x HH145m Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please

Lisätiedot

Results on the new polydrug use questions in the Finnish TDI data

Results on the new polydrug use questions in the Finnish TDI data Results on the new polydrug use questions in the Finnish TDI data Multi-drug use, polydrug use and problematic polydrug use Martta Forsell, Finnish Focal Point 28/09/2015 Martta Forsell 1 28/09/2015 Esityksen

Lisätiedot

The Viking Battle - Part Version: Finnish

The Viking Battle - Part Version: Finnish The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 5.11.2013 16:44 / 1 Minimum

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table 22.12.2014 11:33 / 1 Minimum

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Calculation: N117 x 9 x HH141 Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG

Lisätiedot

Hydraulically Conductive fractures and Their Properties in Boreholes KR4 and KR7-KR10 at Olkiluoto Site

Hydraulically Conductive fractures and Their Properties in Boreholes KR4 and KR7-KR10 at Olkiluoto Site . Working Report 2004-21 Hydraulically Conductive fractures and Their Properties in Boreholes KR4 and KR7-KR10 at Olkiluoto Site.. Pirjo Hella Eveliina Tammisto Henry Ahokas May 2004 POSVA OY FN-27160

Lisätiedot

Flow Measurements in ONKALO at Olkiluoto

Flow Measurements in ONKALO at Olkiluoto Working Report 2006-65 Flow Measurements in ONKALO at Olkiluoto Probe Holes and ONK-KR1 ONK-KR4, ONK-PVA1 and ONK-YPPL18 Markus Reiman Jari Pöllänen Juha Väisäsvaara September 2006 POSIVA OY FI-27160 OLKILUOTO,

Lisätiedot

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL

Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Characterization of clay using x-ray and neutron scattering at the University of Helsinki and ILL Ville Liljeström, Micha Matusewicz, Kari Pirkkalainen, Jussi-Petteri Suuronen and Ritva Serimaa 13.3.2012

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Use of spatial data in the new production environment and in a data warehouse

Use of spatial data in the new production environment and in a data warehouse Use of spatial data in the new production environment and in a data warehouse Nordic Forum for Geostatistics 2007 Session 3, GI infrastructure and use of spatial database Statistics Finland, Population

Lisätiedot

Rakennukset Varjostus "real case" h/a 0,5 1,5

Rakennukset Varjostus real case h/a 0,5 1,5 Tuulivoimala Rakennukset Asuinrakennus Liikerak. tai Julkinen rak. Lomarakennus Teollinen rakennus Kirkollinen rakennus Varjostus "real case" h/a 1 h/a 8 h/a 20 h/a 1 2 3 5 8 4 6 7 9 10 0 0,5 1 1,5 2 km

Lisätiedot

7.4 Variability management

7.4 Variability management 7.4 Variability management time... space software product-line should support variability in space (different products) support variability in time (maintenance, evolution) 1 Product variation Product

Lisätiedot

Exercise 1. (session: )

Exercise 1. (session: ) EEN-E3001, FUNDAMENTALS IN INDUSTRIAL ENERGY ENGINEERING Exercise 1 (session: 24.1.2017) Problem 3 will be graded. The deadline for the return is on 31.1. at 12:00 am (before the exercise session). You

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

MEETING PEOPLE COMMUNICATIVE QUESTIONS

MEETING PEOPLE COMMUNICATIVE QUESTIONS Tiistilän koulu English Grades 7-9 Heikki Raevaara MEETING PEOPLE COMMUNICATIVE QUESTIONS Meeting People Hello! Hi! Good morning! Good afternoon! How do you do? Nice to meet you. / Pleased to meet you.

Lisätiedot

Matalien kairareikien kairaus, porakonekairaukset, reikien videokuvaukset seka pohjavesiputkien asentaminen furajoen Olkiluodossa kevattalvella 2004

Matalien kairareikien kairaus, porakonekairaukset, reikien videokuvaukset seka pohjavesiputkien asentaminen furajoen Olkiluodossa kevattalvella 2004 Tyoraportti 2004-37 Matalien kairareikien kairaus, porakonekairaukset, reikien videokuvaukset seka pohjavesiputkien asentaminen furajoen Olkiluodossa kevattalvella 2004 Risto Niinimaki Tauno Rautio Suomen

Lisätiedot

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen

Lisätiedot

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG SHADOW - Main Result Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table WindPRO version 2.8.579

Lisätiedot

Choose Finland-Helsinki Valitse Finland-Helsinki

Choose Finland-Helsinki Valitse Finland-Helsinki Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun

Lisätiedot

Flow and Electrical Conductivity Measurements During Long-Term Pumping of Drillhole OL-KR6 at Olkiluoto, Results from June 2010 Measurements

Flow and Electrical Conductivity Measurements During Long-Term Pumping of Drillhole OL-KR6 at Olkiluoto, Results from June 2010 Measurements Working Report 2011-22 Flow and Electrical Conductivity Measurements During Long-Term Pumping of Drillhole OL-KR6 at Olkiluoto, Results from June 2010 Measurements Janne Pekkanen March 2011 POSIVA OY Olkiluoto

Lisätiedot

Studies of Quaternary Deposits in Investigation Trenches OL-TK15 and OL-TK16 on the Olkiluoto Study Site, Eurajoki, SW Finland. Working Report

Studies of Quaternary Deposits in Investigation Trenches OL-TK15 and OL-TK16 on the Olkiluoto Study Site, Eurajoki, SW Finland. Working Report Working Report 2009-25 Studies of Quaternary Deposits in Investigation Trenches OL-TK15 and OL-TK16 on the Olkiluoto Study Site, Eurajoki, SW Finland Pekka Huhta May 2009 POSIVA OY Olkiluoto FI-27160 EURAJOKI,

Lisätiedot

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2004

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2004 Working Report 2005-76 Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2004 Eveliina Tammisto Pirjo Hellä Jere Lahdenperä December 2005 POSIVA OY FI-27160 OLKILUOTO, FINLAND Tel +358-2-8372 31 Fax +358-2-8372

Lisätiedot

Rotarypiiri 1420 Piiriapurahoista myönnettävät stipendit

Rotarypiiri 1420 Piiriapurahoista myönnettävät stipendit Rotarypiiri 1420 Piiriapurahoista myönnettävät stipendit Ø Rotarypiiri myöntää stipendejä sille osoitettujen hakemusten perusteella ensisijaisesti rotaryaatteen mukaisiin tarkoituksiin. Ø Stipendejä myönnetään

Lisätiedot

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...

Lisätiedot

Studies of Quaternary Deposits of Investigation Trench OL-TK14 at the Olkiluoto Study Site, Eurajoki, SW Finland

Studies of Quaternary Deposits of Investigation Trench OL-TK14 at the Olkiluoto Study Site, Eurajoki, SW Finland Working Report 2008-31 Studies of Quaternary Deposits of Investigation Trench OL-TK14 at the Olkiluoto Study Site, Eurajoki, SW Finland Pekka Huhta Geological Survey of Finland May 2008 Base maps: National

Lisätiedot

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ https://community.plm.automation.siemens.com/t5/tech-tips- Knowledge-Base-NX/How-to-simulate-any-G-code-file-in-NX- CAM/ta-p/3340 Koneistusympäristön määrittely

Lisätiedot

AYYE 9/ HOUSING POLICY

AYYE 9/ HOUSING POLICY AYYE 9/12 2.10.2012 HOUSING POLICY Mission for AYY Housing? What do we want to achieve by renting apartments? 1) How many apartments do we need? 2) What kind of apartments do we need? 3) To whom do we

Lisätiedot

TIKIT a) Suorassa tikissä ristiommel jää nahan alle piiloon. b) Ristitikissä ommel jää näkyviin.

TIKIT a) Suorassa tikissä ristiommel jää nahan alle piiloon. b) Ristitikissä ommel jää näkyviin. CML WHEEL COVER -RUORINAHKAN OMPELUOHJE Liota nahkoja lämpimässä vedessä n. 15 minuuttia ennen ompelua. Pidä nahka kosteana koko ompelun ajan esim. sumutepullolla. Pidä ommellessa kevyt kireys nahkaan,

Lisätiedot

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2006

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2006 Working Report 2007-93 Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2006 Katriina Keskitalo Susanna Lindgren November 2007 POSIVA OY FI-27160 OLKILUOTO, FINLAND Tel +358-2-8372 31 Fax +358-2-8372 3709

Lisätiedot

C++11 seminaari, kevät Johannes Koskinen

C++11 seminaari, kevät Johannes Koskinen C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,

Lisätiedot

Tork Paperipyyhe. etu. tuotteen ominaisuudet. kuvaus. Väri: Valkoinen Malli: Vetopyyhe

Tork Paperipyyhe. etu. tuotteen ominaisuudet. kuvaus. Väri: Valkoinen Malli: Vetopyyhe etu Monikäyttöpaperi hoitaa useimmat pyyhintätehtävät Sopiva lasipintojen pyyhintään Sopii käsien kuivaamiseen Elintarvikekäyttöön hyväksytty Tork Easy Handling, pakkaus, jota on helppo kantaa mukana,

Lisätiedot

Studies of Quaternary Deposits of Investigation Trench OL-TK13 at the Olkiluoto Study Site, Eurajoki, SW Finland

Studies of Quaternary Deposits of Investigation Trench OL-TK13 at the Olkiluoto Study Site, Eurajoki, SW Finland Working Report 2007-34 Studies of Quaternary Deposits of Investigation Trench OL-TK13 at the Olkiluoto Study Site, Eurajoki, SW Finland Pekka Huhta May 2007 POSIVA OY FI-27160 OLKILUOTO, FINLAND Tel +358-2-8372

Lisätiedot

LUONNOS RT 80260 EN AGREEMENT ON BUILDING WORKS 1 THE PARTIES. May 1998 1 (10)

LUONNOS RT 80260 EN AGREEMENT ON BUILDING WORKS 1 THE PARTIES. May 1998 1 (10) RT 80260 EN May 1998 1 (10) AGREEMENT ON BUILDING WORKS This agreement template is based on the General Terms and Conditions of Building Contracts YSE 1998 RT 16-10660, LVI 03-10277, Ratu 417-7, KH X4-00241.

Lisätiedot

Suojaputkien irroitustyö kairanreiästä Ol-KR24 furajoen Olkiluodossa

Suojaputkien irroitustyö kairanreiästä Ol-KR24 furajoen Olkiluodossa Työraportti 2004-15 Suojaputkien irroitustyö kairanreiästä Ol-KR24 furajoen Olkiluodossa Risto Niinimäki Suomen Malmi Oy Huhtikuu 2004 Karttaoikeudet: Maanmittaushallitus lupa nro 41 /MYY/04 Pasivan työraporteissa

Lisätiedot

Kairanreikien Ol-KR 10 ja Ol-KR7 puhdistustyöt furajoen Olkiluodossa vuonna 2002

Kairanreikien Ol-KR 10 ja Ol-KR7 puhdistustyöt furajoen Olkiluodossa vuonna 2002 Työraportti 22-4 Kairanreikien Ol-KR 1 ja Ol-KR7 puhdistustyöt furajoen Olkiluodossa vuonna 22 Tauno Rautio Joulukuu 22 POSIVA OY FIN-2716 OLKILUOTO, FINLAND Tel. +358-2-8372 31 Fax +358-2-8372 379 Työraportti

Lisätiedot

Injektointi- ja kontrollireikien kairaus ja vesimenekkimittaus poisto- ja ilmanvaihtokuiluille Olkiluodossa vuosina Työraportti

Injektointi- ja kontrollireikien kairaus ja vesimenekkimittaus poisto- ja ilmanvaihtokuiluille Olkiluodossa vuosina Työraportti Työraportti 2008-08 Injektointi- ja kontrollireikien kairaus ja vesimenekkimittaus poisto- ja ilmanvaihtokuiluille Olkiluodossa vuosina 2006-2007 Tauno Rautio Helmikuu 2008 POSIVA OY Olkiluoto FI-27160

Lisätiedot

3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ

3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ Puhe ja kieli, 27:4, 141 147 (2007) 3 9-VUOTIAIDEN LASTEN SUORIUTUMINEN BOSTONIN NIMENTÄTESTISTÄ Soile Loukusa, Oulun yliopisto, suomen kielen, informaatiotutkimuksen ja logopedian laitos & University

Lisätiedot

MIKES, Julkaisu J3/2000 MASS COMPARISON M3. Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories

MIKES, Julkaisu J3/2000 MASS COMPARISON M3. Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories MITTATEKNIIKAN KESKUS CENTRE FOR METROLOGY AND ACCREDITATION Julkaisu J3/2000 MASS COMPARISON M3 Comparison of 1 kg and 10 kg weights between MIKES and three FINAS accredited calibration laboratories Kari

Lisätiedot

PAINEILMALETKUKELA-AUTOMAATTI AUTOMATIC AIR HOSE REEL

PAINEILMALETKUKELA-AUTOMAATTI AUTOMATIC AIR HOSE REEL MAV4 MAV5 MAV6 PAINEILMALETKUKELA-AUTOMAATTI AUTOMATIC AIR HOSE REEL Käyttöohje Instruction manual HUOMIO! Lue käyttöohjeet huolellisesti ennen laitteen käyttöä ja noudata kaikkia annettuja ohjeita. Säilytä

Lisätiedot

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be

Lisätiedot

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2010

Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2010 Working Report 2011-40 Slug-Tests in PP- and PVP-Holes at Olkiluoto in 2010 Heikki Hinkkanen July 2011 POSIVA OY Olkiluoto FI-27160 EURAJOKI, FINLAND Tel +358-2-8372 31 Fax +358-2-8372 3809 Working Report

Lisätiedot

Toimintamallit happamuuden ennakoimiseksi ja riskien hallitsemiseksi turvetuotantoalueilla (Sulfa II)

Toimintamallit happamuuden ennakoimiseksi ja riskien hallitsemiseksi turvetuotantoalueilla (Sulfa II) Toimintamallit happamuuden ennakoimiseksi ja riskien hallitsemiseksi turvetuotantoalueilla (Sulfa II) Happamuuskuormituksen ennustaminen valuma-aluetasolla Marie Korppoo ja Markus Huttunen 13.5.2019 Päämäärä

Lisätiedot

Geological Mapping of Investigation Trench OL-TK7 at the Olkiluoto Study Site, Eurajoki, SW Finland

Geological Mapping of Investigation Trench OL-TK7 at the Olkiluoto Study Site, Eurajoki, SW Finland Working Report 2004-66 Geological Mapping of Investigation Trench OL-TK7 at the Olkiluoto Study Site, Eurajoki, SW Finland Seppo Paulamäki March 2005 POSIVA OY FI-27160 OLKILUOTO, FINLAND Tel +358-2-8372

Lisätiedot

Bounds on non-surjective cellular automata

Bounds on non-surjective cellular automata Bounds on non-surjective cellular automata Jarkko Kari Pascal Vanier Thomas Zeume University of Turku LIF Marseille Universität Hannover 27 august 2009 J. Kari, P. Vanier, T. Zeume (UTU) Bounds on non-surjective

Lisätiedot

MUSEOT KULTTUURIPALVELUINA

MUSEOT KULTTUURIPALVELUINA Elina Arola MUSEOT KULTTUURIPALVELUINA Tutkimuskohteena Mikkelin museot Opinnäytetyö Kulttuuripalvelujen koulutusohjelma Marraskuu 2005 KUVAILULEHTI Opinnäytetyön päivämäärä 25.11.2005 Tekijä(t) Elina

Lisätiedot

KMTK lentoestetyöpaja - Osa 2

KMTK lentoestetyöpaja - Osa 2 KMTK lentoestetyöpaja - Osa 2 Veijo Pätynen 18.10.2016 Pasila YHTEISTYÖSSÄ: Ilmailun paikkatiedon hallintamalli Ilmailun paikkatiedon hallintamalli (v0.9 4.3.2016) 4.4 Maanmittauslaitoksen rooli ja vastuut...

Lisätiedot

Geometrical and Mechanical Properties of the Fractures and Brittle Deformation Zones Based on ONKALO Tunnel Mapping, m Tunnel Chainage

Geometrical and Mechanical Properties of the Fractures and Brittle Deformation Zones Based on ONKALO Tunnel Mapping, m Tunnel Chainage Working Report 2010-64 Geometrical and Mechanical Properties of the Fractures and Brittle Deformation Zones Based on ONKALO Tunnel Mapping, 0-2400 m Tunnel Chainage Harri Kuula September 2010 POSIVA OY

Lisätiedot

Salasanan vaihto uuteen / How to change password

Salasanan vaihto uuteen / How to change password Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change

Lisätiedot

Digitally signed by Hans Vadbäck DN: cn=hans Vadbäck, o, ou=fcg Suunnittelu ja Tekniikka Oy, email=hans.vadback@fcg.fi, c=fi Date: 2016.12.20 15:45:35 +02'00' Jakob Kjellman Digitally signed by Jakob Kjellman

Lisätiedot

Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta)

Ajettavat luokat: SM: S1 (25 aika-ajon nopeinta) SUPERMOTO SM 2013 OULU Lisämääräys ja ohje Oulun Moottorikerho ry ja Oulun Formula K-125ry toivottaa SuperMoto kuljettajat osallistumaan SuperMoto SM 2013 Oulu osakilpailuun. Kilpailu ajetaan karting radalla

Lisätiedot

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine 4.1.2018 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve

Lisätiedot

Digital Admap Native. Campaign: Kesko supermarket

Digital Admap Native. Campaign: Kesko supermarket Digital Admap Native Campaign: Kesko supermarket Digital Admap Native Campaign: Kesko Supermarket Mainosmuoto: Natiivi Media: IS.fi Campaign period: 25 September Date of measurement: 26 September Unique:

Lisätiedot

FIS IMATRAN KYLPYLÄHIIHDOT Team captains meeting

FIS IMATRAN KYLPYLÄHIIHDOT Team captains meeting FIS IMATRAN KYLPYLÄHIIHDOT 8.-9.12.2018 Team captains meeting 8.12.2018 Agenda 1 Opening of the meeting 2 Presence 3 Organizer s personell 4 Jury 5 Weather forecast 6 Composition of competitors startlists

Lisätiedot

Särmäystyökalut kuvasto Press brake tools catalogue

Särmäystyökalut kuvasto Press brake tools catalogue Finnish sheet metal machinery know-how since 1978 Särmäystyökalut kuvasto Press brake tools catalogue www.aliko.fi ALIKO bending chart Required capacity in kn (T) in relation to V-opening. V R A S = plates

Lisätiedot

Statistical design. Tuomas Selander

Statistical design. Tuomas Selander Statistical design Tuomas Selander 28.8.2014 Introduction Biostatistician Work area KYS-erva KYS, Jyväskylä, Joensuu, Mikkeli, Savonlinna Work tasks Statistical methods, selection and quiding Data analysis

Lisätiedot

Small Number Counts to 100. Story transcript: English and Blackfoot

Small Number Counts to 100. Story transcript: English and Blackfoot Small Number Counts to 100. Story transcript: English and Blackfoot Small Number is a 5 year-old boy who gets into a lot of mischief. He lives with his Grandma and Grandpa, who patiently put up with his

Lisätiedot

1. Liikkuvat määreet

1. Liikkuvat määreet 1. Liikkuvat määreet Väitelauseen perussanajärjestys: SPOTPA (subj. + pred. + obj. + tapa + paikka + aika) Suora sanajärjestys = subjekti on ennen predikaattia tekijä tekeminen Alasääntö 1: Liikkuvat määreet

Lisätiedot

Valuation of Asian Quanto- Basket Options

Valuation of Asian Quanto- Basket Options Valuation of Asian Quanto- Basket Options (Final Presentation) 21.11.2011 Thesis Instructor and Supervisor: Prof. Ahti Salo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta

Lisätiedot